
Matter, U 2018 RWebData: A High-Level Interface to the Programmable Web. Journal
of Open Research Software, 6: 11. DOI: https://doi.org/10.5334/jors.201Journal of

open research software

SOFTWARE METAPAPER

RWebData: A High-Level Interface to the Programmable
Web
Ulrich Matter
University of St. Gallen, SEPS-HSG/SIAW, Bodanstr. 8, 9000 St. Gallen, CH
ulrich.matter@unisg.ch

The rise of the programmable web offers new opportunities for the empirically driven sciences. The access
to, compilation and preparation of data from the programmable web for statistical analysis can, however,
involve substantial up-front costs for the practical researcher. The R-package RWebData provides a high-
level framework that allows data to be easily collected from the programmable web in a format that can
be used directly for statistical analysis in R without bothering about the data’s initial format and nesting
structure. It was developed specifically for users who have no experience with web technologies and
merely use R as statistics software. This paper provides an overview of the high-level functions, explains
the basic architecture of the package, illustrates the implemented data mapping algorithm, and discusses
RWebData’s further development and reuse potential.

Keywords: R; programmable web; web api; rest
Funding statement: The author acknowledges financial support from the University of Basel Research
Fund as well as support from the Swiss National Science Foundation (grant 168848).

(1) Overview
Introduction
Digital data from the Internet has in many ways become
part of our daily lives. Broadband facilities, the separation
of data and design, as well as a broader adoption of
certain web technology standards increasingly facilitate
the integration of data across different software
applications and hardware devices over the web. The
Internet is increasingly becoming a programmable web,1
where data is published not only in HTML-based websites
for human readers, but also in standardized machine-
readable formats to be “shared and reused across
application, enterprise, and community boundaries” [28].
The technical ecology of this programmable web consists
essentially of web servers providing data in formats such
as Extensible Markup Language (XML) via Application
Programming Interfaces (APIs)2 to other server- or
client-side applications (see, e.g., [11] for a detailed
introduction to web technologies for R-programmers).
In the conceptual framework of this paper, APIs serve
a dual function: they are the central nodes between
different web applications and, at the same time, the
central access points for empirical researchers when
they want to systematically collect and analyze data from
the programmable web. More and more of these access
points are becoming available every day. Moreover, this
trend is likely to continue with the increasing number of
devices to access the Internet and the increasing amount

of data recorded by embedded systems (i.e., sensors and
applications in devices such as portable music players or
cars that automatically feed data to web services).3

Background and related packages
While the advantages of accessing the programmable
web and integrating it into research projects are very
promising, the practical utilization of this technology
comes at a cost and demands that researchers possess
a specific skill set and a certain knowledge of web
technologies. RWebData substantially reduces these
costs by providing several high-level functions that
facilitate the exploration and systematic collection
of data from APIs based on a Representational State
Transfer (REST) architecture.4 Moreover, the package
contains a unified framework to summarize, visualize,
and convert nested/tree-structured web data that
works independently of the data’s initial format
(XML/RSS, JSON, YAML). The package is aimed at
empirical researchers using R as their daily data analysis-
and statistics tool, but who do not have a background
in computer science or data science. In addition, several
lower level functions of RWebData might also be useful
for more advanced R-programmers who wish to develop
client applications to interact with REST APIs. The
package thus bridges the gap between the fundamental
and very valuable R-packages that integrate several web
technologies into the R-environment (see, e.g., [26, 24,

https://doi.org/10.5334/jors.201
mailto:ulrich.matter@unisg.ch

Matter: RWebDataArt. 11, p. 2 of 12

1, 14]) and the statistical analysis of the programmable
web universe.

Interacting with a REST API from within the
R-environment, therefore, means, sending HTTP requests
to a web server and handling the server’s response with
R. In addition to the basic functionality necessary for
this, which is delivered in the base-package [16], more
detailed functions for HTTP requests are provided in
packages such as RCurl [24], curl [13], and httr [30].
RWebData builds on the libcurl-based RCurl package,
which is designed to interact with web servers hosting
a REST API. The implementation is focused on a robust
download of resources that checks the received HTTP
response for potential problems (e.g., unexpected binary
content of the HTTP responses’ body-entity) to make sure
that the user does not have to specify anything other
than the URL.

Most functions related to the fitting and testing of
statistical models as well as to exploratory data analysis
and data visualization in the R computing environment
work on data represented in data-frames (a table-like
flat representation in which each row represents a
data-record/observation and each column a variable
describing these records).5 Data-frames (and their
newer variants, data-tables [4] and tibbles [8]) are
likely the most common R-objects used by researchers
when conducting an empirical analysis with R. Many
input/output-functionalities in R serve to import (export)
data into (from) R as data-frames.6 However, when it comes
to reading data from web APIs into R, this is not necessarily
the case. The reason lies in the nature of web data formats
that allow for more flexibility than solely table-like data
representation and come (in the context of web APIs)
typically in a nested structure. While a conversion from
one table in, e.g., an XML-document to a data-frame
is straightforward (see, i.e., xmlToDataFrame() in
Temple Lang [26]; see also [21]), the conversion of a more
complex XML-document with a nested data structure
to a flat table-like data representation in R or any other
computing environment is ex ante less clear and depends
on the nature of the data and the purpose the data is
being converted for.7 This is particularly the case for data
provided by a non-scientific API that is explicitly made for
web developers in order to integrate the data in dynamic
websites or mobile applications and not for researchers
to integrate the data in their analysis. Not surprisingly,
there are different solutions offered in the R-environment
to map web data formats such as JSON and XML to
R-objects.8 Most packages represent web data as nested
lists containing objects of different classes such as atomic
vectors or data-frames. After converting the original
web data to R-objects, the user, therefore, often has to
extract and rearrange the data records of interest in order
to obtain a data representation for statistical analysis.
This process becomes even more complex, as queries to
the same API method might provide slightly different
results depending on the amount of detail embedded
in the data records. In these cases, data extraction can
become particularly costly if the data set that needs to
be compiled depends on many API requests involving
various API methods.

Web data conversion
Web data provided via REST APIs are typically in a format
such as XML, JSON, or YAML and are not structured in
tables containing data values in rows and columns, but are
rather organized in a nested (tree-like) structure. However,
independent of the data format and data structure,
documents provided by a particular REST API have basic
aspects in common. Based on these commonalities,
this section presents a conceptual and terminological
framework as well as a description of how this framework
is used to develop the data mapping strategy applied
in RWebData and serves as the foundation of the data
mapping algorithm that will be outlined later on.

Original data structure and data semantics
From the researcher’s point of view, the data sets provided
by web APIs obey, independent of the raw data format
and nesting structure, some very basic data semantics. For
these data semantics, I use mainly the same terminology
that is nicely outlined by Wickham [31, p. 3]:

1. “A dataset is a collection of values, usually either
numbers (if quantitative) or strings (if qualitative).”

2. “Every value belongs to a variable and an observation.”
3. “A variable contains all values that measure the

same underlying attribute (like height, temperature,
duration) across units.”

4. “An observation contains all values measured on the same
unit (like a person, or a day, or a race) across attributes.”

5. In addition, each observation and each variable
belongs to a specific observation type. Thus, in a multi-
dimensional data set describing, for example, a firm,
observation types could be employees or shareholders.

The following fictional XML example further illustrates
the basic data semantics outlined above.
<?xml version=”1.0” encoding=”UTF-8”?>

<firm>

 <employees>

 <employee>

 <firstName>John</firstName>

 <secondName>Smith</secondName>

 </employee>

 <employee>

 <firstName>Peter</firstName>

 <secondName>Pan</secondName>

 </employee>

 </employees>

 <shareholders>

 <shareholder>

 <ID>S1</ID>

 <Name>Karl Marx</Name>

 </shareholder>

 <shareholder>

 <ID>S2</ID>

 <Name>Bill Gates</Name>

 </shareholder>

 </shareholders>

 <firmName>MicroCapital Ltd</firmName>

 <firmID>123</firmID>

</firm>

Matter: RWebData Art. 11, p. 3 of 12

The XML document contains a data set describing a firm.
The variables “firstName” and “secondName” describe
observations of type “employee”, while observations of
type “shareholder” are described by the variables “ID” and
“Name”. Finally, the variables “firmName” and “firmID”
describe the firm itself, which forms another type of
observation. The following subsection illustrates how
the data would be mapped according to the procedure
implemented in RWebData.

Mapping nested web data to data-frames
The core idea behind the data mapping procedure in
RWebData is built around the basic semantics outlined
above. According to this system, documents returned
from APIs can contain data describing observational units
of one type or several different types. RWebData returns
one data-frame for each observation type. Observations
and variables belonging to different types are, thus,
collected in different data-frames, each describing one type
of observational unit. Some observations might describe
the document (or main type of observational unit) itself
(i.e., metadata). These are collected in a separate data-
frame. Table 1 (a–c) present the XML-document from the
example above after mapping to data-frames according
to the outlined mapping procedure. The next subsection
explains how this process is implemented in RWebData.

Implementation and architecture
Parsing and generic mapping of different web data
formats
In order to map nested web data to data-frames,
RWebData applies, in a first step, existing parsers for
different formats (mime-types) of the data in the body of
the HTTP response from the API to read the data into R.9
Independent of the initial format, the data is parsed and
coerced into a (nested) list representing the tree-structure
of the raw data. In a next step, the data is mapped to one
or several data-frames depending on the nesting structure
and the recurrence of observation types and variables. The
data-frames are returned to the user either directly (in a
list) or as part of an apiresponse-object.

The core idea behind the generic approach to web
data conversion in the RWebData package is thus to
disentangle the parsing of web data from the mapping
of the data to data-frames. This allows the parsers for
different web data formats to be relatively simple, while
the same mapping algorithm is focused on the data
semantics and can be applied independent of the initial
raw data format. In addition, it allows different parsers’
advantages to be combined in order to make the parsing
process more robust. The suggested procedure goes hand
in hand with the object-oriented approach applied in
RWebData and provides summary and plot methods
that work independent of the initial data format. The
modular design of mapping web data to data-frames
facilitates the extension of RWebData’s compatibility
with additional web data formats or alternative parsers
that are, for example, optimized for vast web documents.
Parsers simply need to read the web data as (nested) lists
or in a format that conserves the tree-structure of the raw
web data and can be easily coerced into a (nested) list.

Basic data mapping algorithm
Once a document is downloaded from an API and coerced
into a nested list, the algorithm consists essentially of two
procedures:

1. The extraction of different observation types (and
their respective observations and variables) as sub-
trees. While reversely traversing the whole data-tree,
the algorithm checks at each level (node) of the
tree whether either the whole current sub-tree or
one of its siblings can be considered an observation
type. If so, the respective sub-tree is extracted and
saved in a deposit variable. If not, the algorithm
traverses further down in the tree-structure. Checks
for observation types are defined as a set of control
statements that incorporate the above outlined data
semantics. Essentially, the recurrence of the same
variables as siblings (containing the actual data values
as leaf elements) is decisive in order to recognize
observation types. The result of this step is a set of
sub-trees, each sub-tree containing one observation
type and its respective observations and variables.

2. For each of the resulting observation types (in the
form of sub-trees), the respective observations are
extracted as character vectors and bound as rows in
a data-frame, while the variable names are conserved
and added as column names. This procedure is built
to be robust to observations described by a differing
number of variables. The result of this step is a set
of data-frames, each describing one observation type
and containing individual observations as rows and
variables as columns.

Singly occurring leaf nodes that are not nested within one
of the detected observation types are collected along the
way and then returned in one data-frame. According to
the logic of the data semantics and the algorithm outlined
above, these remaining data can be seen as metadata

Table 1: The same data as in the XML code example above,
but mapped to data-frames according to the generic
RWebData mapping procedure. While (a) contains
data describing the firm (the main observational unit)
itself, (b) and (c) contain the observations and variables
describing the observation types employee and
shareholder, respectively.

firmName firmID

1 MicroCapital Ltd 123

(a) Firm type

firstName secondName

1 John Smith

2 Peter Pan

(b) [Employee type]

ID Name

1 S1 Karl Marx

2 S2 Bill Gates

(c) [Shareholder type]

Matter: RWebDataArt. 11, p. 4 of 12

describing the data set as a whole. The Appendix presents
a detailed, more technical outline of the data mapping
algorithm.

Architecture
RWebData is specifically written to give practical
researchers a high-level interface to compile data
from the programmable web. The common user will
thus normally not be confronted with the range of
internal processes outlined above. The work-flow with
RWebData for the average user thus mainly involves the
specification of what data should be requested from what
API (in the form of either a list, a data-frame or simply
a string with a URL) to one of RWebData’s high-level
functions in order to obtain the desired data mapped to
data-frames. Figure 1 illustrates the basic architecture of
RWebData, summarizing its internal functionality and
the processing procedure when the package is used by
the average user.

RWebData’s high level functions take either lists, data
frames, or a URL (as a character string) as input values
and return a list of data-frames or an apidata-object.
First, RWebData generates an apirequest-object,
based on which the HTTP GET and responses are
handled. Upon successful interaction with the API, an
apiresponse-object, containing, inter alia, the raw
web data, is generated. Subject to consideration of the
mime-type of the raw data, the data is then preprocessed,
parsed, and coerced to a nested list. Finally, the data
mapping algorithm is applied in order to extract the data
in the form of data frames as outlined in the previous
section. The latter builds the main part of the package.

The procedure is straightforward and user-friendly in
practice.

Examples
In order to describe the basic usage of RWebData,
this section offers a step-by-step introduction to the
high-level functionality of the package. Some of the
functions described here offer more options, which are
not all discussed in this section.10 The latest version of
the package can be directly installed from the GitHub
repository via devtools::install_github() as
shown below.
R> # install.packages(“devtools”)

R> library(devtools)

R> install_github(“umatter/rwebdata”)

R> # load RWebData

R> library(RWebData)

RWebData’s implementation is motivated by the
convention over configuration paradigm and thus
provides a way for the user to interact with APIs using
as few specifications as necessary to access the data.
RWebData then converts data in the most common
formats provided by APIs to one data-frame or a list
of several data-frames. Hence, the user does not need
to specify any HTTP options or understand what XML
or JSON is and is able to obtain the data directly in
the expected format for statistical analysis. There
are primarily two high-level functions in RWebData
that provide this functionality in different ways:
getTabularData() and apiData(). The following
subsection discusses how these functions work and how
they can be applied in practice.

Figure 1: Basic architecture of the RWebData package.

Matter: RWebData Art. 11, p. 5 of 12

Fetching data from REST APIs
Querying data from a REST API is based on the same
client-server principle as opening a website in a web
browser. In order to visit a certain website, we normally
type a website’s address in the web browser’s address
bar. The browser (a type of web client) then sends
a message to the web server behind that address,
requesting a copy of the specific webpage and then
parses and renders the returned document (usually an
HTML document) in the browser window. Any website
address consists of several components that specify
the request to the server. For example, the address
https://www.admin.ch/gov/en/start.html
contains the components https (the scheme),
www.admin.ch (the host name/domain name with the
top-level domain ch), and the path to the specific webpage
(here, an HTML document): gov/en/start.html.

In REST terminology, the website’s address is a URL
and the website which the URL locates is a resource.
The document that the server sends in response to
the client’s request is a representation of that resource.
Importantly, every URL points to only one resource and
every resource should have only one URL (this is one of
the REST principles and is referred to as addressability).
The message that the browser sends to the web server
is a HTTP GET request, a HTTP method that essentially
requests a representation of a given resource.

REST APIs work basically the same way as the website
outlined above. The crucial difference is that their
design is intended for programmable clients (rather
than humans using a web browser) and that they
therefore consist of URLs pointing to resources that
are not optimized for graphical rendering, but which
instead contain the raw data (often in a format such as
XML or JSON that facilitates the integration of the data
in a HTML document). However, a URL pointing to an
API basically follows the same logic and consists of the
same components, including scheme, host name, path,
and potentially additional parameters (key-value pairs
separated by &). Thus, in order to query data from a
REST API, we first have to construct the respective URL
pointing to the data of interest and then apply the
functions provided RWebData to query the data. The
example below further illustrates this point.

The function getTabularData() provides a
straightforward way to get data from web APIs as data-
frames. In the simplest case, the function takes a string
containing the URL to the respective API resource as an
input.11 The function then handles the HTTP request and
response, parses the body of the response (depending
on the mime-type) and automatically extracts the
data records from the nested data structure as data-
frames. This enables us to fetch data from different APIs
providing data in different formats with essentially the
same command.

Consider, for example, the World Bank Indicators API
which provides time series data on financial indicators
of different countries.12 We want to use data from that
API to investigate how the United States’ public debt was
affected by the financial crisis in 2008. All we need in

order to download and extract the data is the URL to the
respective resource on the API.13

R> u <- paste0(“http://api.worldbank.org/v2/

countries/USA/indicators”, # address

+ “/DP.DOD.DECN.CR.GG.CD?”, # query method

+ “&date=2005Q1:2013Q4”) # parameters

R> usdebt <- getTabularData(u)

Without bothering about the initial format,14 the returned
data is already in the form of a data-frame and is ready to
be analyzed (e.g., by plotting the time series as presented
in Figure 2):
R> require(zoo)

R> plot(as.ts(zoo(usdebt$value, as.yearqtr

(usdebt$date))),

 ylab=”U.S. public debt(in USD)”)

The underlying data structure is relatively simple in this
example. The World Bank Indicators API is specifically
devised to provide data for statistical analysis. The next
section considers examples where the provided data
cannot easily be thought of as one single table.

Nested data structures
The high-level function getTabularData()
automatically handles nested data and converts them
to a list of various data-frames. It does not, however,
provide any information on the initial nesting structure
and can only handle individual requests. Alternatively,
we can use apiData() in order to exploit RWebData’s
internal classes and methods to handle requests to APIs.
The simplest way to call apiData() is again with a
URL-string pointing to an API resource. apiData()
returns an object of class apiresponse. Such
apiresponse objects contain additional information
about the executed request to the API and support
generic plot and summary functions illustrating the
structure and content of the retrieved web document.
The following example demonstrates the summary
methods for apiresponse objects with data from the
Ergast API (http://ergast.com/mrd/) on Formula 1 race
results.

Figure 2: Plot of the time series on United States’ public
debt extracted from the World Bank Indicators API.

https://www.admin.ch/gov/en/start.html
http://www.admin.ch
http://gov/en/start.html
http://api.worldbank.org/v2/countries/USA/indicators
http://api.worldbank.org/v2/countries/USA/indicators
http://ergast.com/mrd/

Matter: RWebDataArt. 11, p. 6 of 12

R> f1 <- apiData(“http://ergast.com/api/

f1/2013/1/results.json”,

+ shortnames=TRUE)

R> summary(f1)

API data summary:

=================

The API data has been split into the following 2

data frames:

 Length Class Mode

metadata 19 data.frame list

Results 27 data.frame list

The respective data frame(s) contain the

following variables:

1. metadata:

xmlns, series, url, limit, offset, total,

season, round, 1, raceName, circuitId, 2,

circuitName, lat, long, locality,

country, date, time,

2. Results:

number, position, positionText, points, driverId,

permanentNumber, code, url, givenName,

familyName, dateOfBirth,

nationality, constructorId, url, name, nationality, grid,

laps, status, millis, time, rank, lap, time,

units, speed,

path,

The summary method called by the generic summary(),
provides an overview of the variables included in the
data and shows how RWebData has split the data into
several data-frames. This is particularly helpful in an
early phase of a research project when exploring an API
for the first time.

The next example demonstrates the visualization
of nested data returned from the Open States API.15
We query data on a legislator in the Council of the
District of Columbia with apiData() and call the
generic plot() on the returned apiresponse
object. Figure 3 shows the result of the plot command
below. Note that the Open States API is free to use for
registered users. Upon registration an api-key is issued
that is then added as a parameter-value to each API
request (indicated with “[YOUR-API-KEY]” in the
example below).
R> url <- “http://openstates.org/api/v1/

legislators/DCL000004/

+ ?apikey=[YOUR-API-KEY]”

R> p <- apiData(url)

R> plot(p, type=”vertical”)

The apiresponse plot method illustrates the nesting
structure of the original data by drawing entities
(variables or types) as nodes and nesting relationships
as edges in a Reingold-Tilford tree-graph [18] (see also
[3] for the implementation in R on which RWebData
relies). The option type=”vertical” displays the node
labels vertically in order to make long node names better
readable in the graph.

Figure 3: Reingold-Tilford tree-graph illustrating the nested structure of the raw JSON data from the Open States API.

http://ergast.com/api/f1/2013/1/results.json
http://ergast.com/api/f1/2013/1/results.json
http://openstates.org/api/v1/legislators/DCL000004/
http://openstates.org/api/v1/legislators/DCL000004/

Matter: RWebData Art. 11, p. 7 of 12

The transformed data (in the form of a list of data-
frames) saved in an apiresponse-object can then
be accessed with getdata (). In the current example,
the data has been split into two data-frames: one with
meta data containing general variables describing the
legislator, and one containing data on the legislator’s
roles in the 2011–2012 session.
R> pdata <- getdata(p)

R> summary(pdata)

 Length Class Mode

metadata 22 data.frame list

2011–2012 11 data.frame list

Interactive sessions
So far, we have only considered individual requests to
APIs. In practice, users might want to query an API in
many ways in an interactive session to explore the data
and assemble the data set that meets their needs. This can
easily be done with RWebData. We continue with the
Open States API example. First, we fetch general data on
all legislators in the DC Council.
R> url <- “http://openstates.org/api/v1/legislat

ors/?state=dc&chamber=upper

+ &apikey=[YOUR-API-KEY]”

R> dc_council <- getTabularData(url)

The goal is to combine these general data with data on
the legislators’ roles. In particular, we want to download
the detailed role data on all legislators and combine
these within one data set. As there is no API method
provided to obtain these data with one call to the API, we
use apiDownload() to handle all individual requests
at once. By inspecting the dc_council data-frame
from above, we see that the fifth column of that data-
frame contains all the IDs (id) pointing to the respective
resources on individual council members. We simply
paste these ids together with the legislators-method
and use the resulting URLs as the function argument to
apiDownload() in order to obtain all the data compiled
in one data-frame.
R> head(names(dc_council))

[1] “fax” “last_name” “updated_at” “full_name” “id”

[6] “first_name”

R> api_requests <- paste0(“http://openstates.

org/api/v1/legislators/”,

+ dc_councilid,

+ “/?apikey=”,

+ “YOUR-API-KEY”)

R> dc
l
eg

r
oles <- apiDownload(api_equests)

During the download, apiDownload() indicates the
number of queries processed on a progress bar printed to
the R console. Moreover, apiDownload() periodically
saves the processed data locally in a temporary file.
This relieves the working memory assigned to the
R-session and makes large downloads more robust to
network interruptions. A summary of the resulting
dc_leg_roles is presented in the Appendix.

Outlook: Writing interfaces to REST APIs
In the context of an ongoing research project, it might
be more comfortable to have a specific function for

specific queries to the same API. The further development
of RWebData is aimed at providing a way to write such
functions automatically. The current implementation
of this functionality is still being tested and made more
robust.16

The following example illustrates how this newest
extension of the package can be applied. Given the
parameters and the base URL for the respective API
method/resource, generateQueryFunction()
writes a function that includes all the functionality
of the package to handle queries to that specific API
method/resource. The same works for APIs that accept
requests via form URLs, such as the MediaWiki API.17 Here,
only the base URL (i.e., the endpoint of the API) and the
respective parameters have to be specified.
R> endpoint <- “https://en.wikipedia.org/w/api.php?”

R> # set parameters (set to NA if no default

value in query-function wanted)

R> query_params <- data.frame

(parameters=c(“action”, “format”, “titles”,

“prop”),

+ values = c(“query”, “xml”, NA, NA))

R> mediaWiki <- generateQueryFunction(x=query_

params, base.url=endpoint)

R>

The new function mediaWiki() can now be used
to query the MediaWiki API for information about
Wikipedia pages.
R> # get meta data on the Wikipedia page about

the Internet

R> page_info <- mediaWiki(titles = “Internet”,

prop = “info”)

R> page_info[,1:5]

 page._idx page.pageid page.ns page.title page.

contentmodel

1 14539 14539 0 Internet wikitext

R> # get information about the latest revision

of the same Wikipedia page

R> revisions <- mediaWiki(titles = “Internet”,

prop = “revisions”)

R> revisions[,1:5]

 rev.revid rev.parentid rev.minor rev.user

rev.timestamp

1 823121130 822163533 Ragityman

2018-01-30T10:58:38Z

The MediaWiki API query method allows batch queries
of several Wikipedia page titles (separated with the pipe
operator ‘|’). mediaWiki() automatically recognizes
the different observations of the same observation-type
and returns the data as a data-frame with one row per
observation:
R> page_info <- mediaWiki

(titles = “USA|France|Germany|Switzerland”,

+ prop = “revisions”)

R> dim(page_info)

[1] 4 14

R>

http://openstates.org/api/v1/legislators/?state=dc&chamber=upper
http://openstates.org/api/v1/legislators/?state=dc&chamber=upper
http://openstates.org/api/v1/legislators/
http://openstates.org/api/v1/legislators/
https://en.wikipedia.org/w/api.php?

Matter: RWebDataArt. 11, p. 8 of 12

With only three lines of code, we have generated a basic
MediaWiki API R-client library that automatically provides
the web data as data-frames.

Discussion
Empirically driven research can benefit substantially
from the rapidly growing programmable web as a data
source covering countless dimensions of socio-economic
activity. However, the purpose and goals that drove the
initial development of web APIs focused on providing
general data for public use via dynamic websites and
other applications, and not on the provision of data
formatted for scientific research and statistical analyses.
This leads to technical hurdles a researcher has to
overcome in order to compile such data in a format
that is suitable for statistical analysis. The R package
RWebData presented here suggests a simple high-
level interface that helps to overcome such technical
hurdles (and the respective costs) associated with the
statistical analysis of data from the programmable
web. The package contributes to a frictionless and well
documented raw data compilation and data preparation
process that can help to increase the replicability and
reproducibility of original research based on data from
the programmable web. As pointed out in [2], empirical
research with newly available digital data from novel
sources generally poses new challenges to the reuse of
data as well as the reproduction of results. Empirical
research based on newly available public data from web
sources is a challenge demanding scientific rigor. With
the further development of RWebData, an R-script
documenting how the package’s high-level functions
have been applied to compile data as well as any further
step in the data preparation and analysis are enough to
ensure the replicability of a study based on big public
data from the programmable web.

Appendix
Data mapping algorithm
RWebData parses and coerces the raw web data to a
nested list representing the tree-structure of the data. Call
this list x.

The data mapping algorithm consists of two main parts.
First, x is split into n lists representing sub-trees, one for
each observation type in the data. The key problem that
the algorithm has to solve at this step is the identification
of cutting points (i.e., what part of the tree belongs to
what observation type). Second, each resulting sub-tree
is then split into individual character vectors. One for
each observation. The individual observations are then
stacked together in one data-frame with each vector
(observation) as a row. Algorithm 1 presents a formal
description of these procedures. In the resulting data-
frames, each row i represents one observation, and each

column j represents a variable/characteristic of the n
observations. The data-frames are then returned in a
list.

In order to make the formal descriptions of the
procedures in the data mapping algorithm conveniently
readable, the pseudo-code describes simple versions of
these procedures (that are not necessarily most efficient).
The algorithms’ R-implementations in RWebData are
more efficient and contain more control statements to
ensure robustness. The actual R-implementation relies
partly on existing R functions and favors vectorization
over for-loops in some cases.

Algorithm 1 Data mapping algorithm

1: procedure TYPES (x)
2: Types ← empty list
3: deposit ← empty list
4: if x is an observation type then
5: add x to Types
6: return Types
7: end if
8: if x contains a part i at the highest nesting level that

is an observation type then
9: add i to Types
10: remove i from x
11: end if
12: for all elements i in x
13: if i is a non-empty list then
14: if i is an observation type then
15: add i to Types
16: else
17: apply this very procedure to i ⊳ recursive call
18: add the resulting observation types to Types
19: add the remaining leaves (metadata) to deposit
20: end if
21: else
22: add i to deposit ⊳ it’s a leaf node

(i.e., just a value)
23: end if
24: end for
25: end procedure
26: procedure OBSERVATIONS (Types)
27: rows ← empty list
28: for all obs t ype in Types
29: for all observation in obs t ype do
30: unlist and transpose observation

⊳ extract leaves as vector
31: add resulting vector to rows
32: end for
33: bind rows to one data-frame (preserving

variable names)
34: end for
35: end procedure

Matter: RWebData Art. 11, p. 9 of 12

Open States API
R> url <- “http://openstates.org/api/v1/legislators/?state=dc&chamber=upper

+ &apikey=[YOUR-API-KEY]”

R> c_council <- getTabularData(url)

R> api_requests <- paste0(“http://openstates.org/api/v1/legislators/”,

 dc_council$id,

 “&apikey=”,

 “YOUR-API-KEY”)

 |

 | | 0%

 |

 |============================== | 50%

 |

 |==| 100%

R> # explore the data

R> summary(dc_leg_roles)

 Length Class Mode

metadata 55 data.frame list

2013-2014 13 data.frame list

2011-2012 13 data.frame list

offices 7 data.frame list

Quality control
The data mapping algorithm has been tested in unit
tests with various formats (see https://github.com/
umatter/RWebData/blob/master/testing.Rmd as well as
https://github.com/umatter/RWebData/blob/master/
unit_testing.R for details on the tests and https://github.
com/umatter/RWebData/blob/master/testing.html for
the test results). RWebData is delivered with a set of
documents with hierarchical data structures in different
formats on which the package’s own examples are based:
R> example(XMLtoDataFrame)

R> example(YAMLtoDataFrame)

R> example(JSONtoDataFrame)

In addition to unit testing, the code has already been
tested extensively in several real world applications
(both on Mac OSX and Ubuntu), both in the course of
the author’s own ongoing research projects in the areas
of political economics and political science [6] as well
as with regard to various openly accessible web APIs.
A list of these APIs is provided and further maintained
and extended in the code repository of RWebData (see
https://github.com/umatter/RWebData/blob/master/
testing.Rmd).

(2) Availability
Operating system
RWebData is compatible with any operating system that is
compatible with R 3.2.3.

Programming language
RWebdata is written in and for R (>= 3.2.3).

Additional system requirements
There are no additional system requirements apart
from (for most parts of RWebData) a working Internet
connection.

Dependencies
igraph (>= 1.0.1), RCurl (>= 1.95–4.8), jsonlite (>= 1.3),
XML (>= 3.98–1.5), plyr (>= 1.8.4), stringr (>= 1.2.0),
XML2R (>= 0.0.6), httr (>= 1.2.1), mime (>= 0.5), yaml
(>= 2.1.14), RJSONIO (>= 1.3–0), methods (>= 3.2.3),
(devtools to install the package from GitHub)

List of contributors
Ulrich Matter: University of St. Gallen, SEPS-HSG/SIAW,
Bodanstr. 8, 9000 St. Gallen, Switzerland, ulrich.matter@
unisg.ch. Ingmar Schlecht: Faculty of Business and
Economics, University of Basel, Peter Merian-Weg 6, 4002
Basel, Switzerland.

Software location
Archive

Name: GitHub
Persistent identifier: https://doi.org/10.5281/

zenodo.1161954
Licence: GPL-2, GPL-3

http://openstates.org/api/v1/legislators/?state=dc&chamber=upper
http://openstates.org/api/v1/legislators/
https://github.com/umatter/RWebData/blob/master/testing.Rmd
https://github.com/umatter/RWebData/blob/master/testing.Rmd
https://github.com/umatter/RWebData/blob/master/unit_testing.R
https://github.com/umatter/RWebData/blob/master/unit_testing.R
https://github.com/umatter/RWebData/blob/master/testing.html
https://github.com/umatter/RWebData/blob/master/testing.html
https://github.com/umatter/RWebData/blob/master/testing.Rmd
https://github.com/umatter/RWebData/blob/master/testing.Rmd
mailto:ulrich.matter@unisg.ch
mailto:ulrich.matter@unisg.ch
https://doi.org/10.5281/zenodo.1161954
https://doi.org/10.5281/zenodo.1161954

Matter: RWebDataArt. 11, p. 10 of 12

Publisher: Ulrich Matter
Version published: 0.2.1
Date published: 01/29/2018

Code repository
Name: GitHub
Persistent identifier: https://github.com/umatter/

RWebData
Licence: GPL-2, GPL-3
Date published: 12/02/2015

Language
R 3.2.3

(3) Reuse potential
RWebData (both in the current and previous versions)
has already been used in the course of several research
projects (see, for example, Matter and Stutzer [6]). With
the increasing expansion of the programmable web and
thus the amount of digital data covering various aspects
of social, political, and economic processes, the reuse
potential for RWebData is expected to be high, especially
in disciplines where R is widely used for statistical analysis
and data preparation such as economics and political
science.

RWebData is explicitly made for researchers without
a background in web technologies/programming and
who are predominantly using R as statistics software
for their every-day empirical research. Together with
the increasing relevance of digital data from the web
for empirical research in various disciplines and fields,
RWebData has a broad and growing potential user base.
In addition, the publication of this software (particularly
the extensions mentioned in the outlook) provides
opportunities for other researchers to build on the code
provided in RWebData in order to write their own
custom made API clients for data collection.

Notes
 1 I use the term programmable web synonymously with

“Semantic Web” or “Web of Data” and as conceptually
motivated by [23].

 2 Web APIs are a collection of predefined HTTP
requests and response messages used to facilitate the
programmatic exchange of data between a web server
and web clients.

 3 The number of publicly accessible web APIs grew
from around 1,000 at the end of 2008 to over 10,000
at the end of 2013 [15]. Turner et al. [27] estimate
that the share of available digital data stemming
from embedded systems will rise to 10% by 2020
and will include up to 32 billion devices connected
to the Internet. See also [5] for a discussion of how
this ‘Internet of things’ could be expanded on a
crowd-sourced basis and employed for big-data
analytics.

 4 See [19] for an introduction to REST APIs.
 5 Technically, a data-frame can contain other R-objects

than just scalars (i.e., another data-frame). However,
in the vast majority of applications in the context of

statistical analysis and data visualization, data-frames
are used for a table-like flat data representation.

 6 See, i.e., data from CSV- and similar text files: read.
table() in [16] or similar functions in [33], Microsoft
Excel files: read.xls() in [29], data from other
statistical computing environments such as Stata:
read.dta() in [17], or data from ODBC-data bases
sqlQuery() in [20].

 7 See, e.g., the classical problem of mapping a set of
XML-documents to a relational data base scheme
(RDBS; i.e., a set of linked tables) with or without
knowing the scheme behind the XML-documents
[9, 7]. See also, in the R context, the different
implementations of mapping JSON to R-objects in
[1], [25], or [14] as well as a detailed discussion of this
matter in [12].

 8 See, e.g., the CRAN Task View on web technologies
and services (http://cran.r-project.org/web/views/
WebTechnologies.html), the CRAN Task View on open
data (https://github.com/ropensci/opendata), as well
as the rOpenSci (https://ropensci.org/packages/) for
an overview of popular R-packages that parse data from
the web and map it to R-objects. Some contributions
in this area also focus on the automated information
extraction from traditional websites made for human
interaction. Such methods are commonly summarized
under the terms “web scraping” or “screen scraping”.
See, e.g., the R-package rvest [32] for functions that
facilitate web scraping as well as [10] for a practical
introduction to web scraping with R.

 9 In the case of JSON, either the parser provided by
Ooms et al. [14] or (in order to increase robustness
in special cases) the one contributed by Temple Lang
[25] is applied. XML-documents or RSS-documents
are parsed with the parser provided in [26] and YAML-
documents with the parser provided by Stephens
[22].

 10 Details on all these options are provided by the
respective R help files. Users are generally encouraged
to read the detailed package documentation
of RWebData (https://github.com/umatter/
RWebData/blob/master/RWebData.pdf).

 11 The URL to the resource which a user wants to query
is very easy to find in any REST API documentation.
How to call the respective resource methods of
an API with URLs is the essential part of such
documentations.

 12 Note that this is an example of an API which is – unlike
most APIs – explicitly made for researchers retrieving
data from the web. Nevertheless, retrieving data from
this API with functions from, e.g., the XML package
[26] is not necessarily straightforward for users
without a background in web technologies.

 13 How to build query-URLs in the specific case of the World
Bank Indicators API is well documented on https://
datahelpdesk.worldbank.org/knowledgebase/
articles/898581-api-basic-call-structure.

 14 The World Bank Indicators API provides time series
data by default as XML in a compressed text file.
Handling solely one API query of this type might

https://github.com/umatter/RWebData
https://github.com/umatter/RWebData
http://cran.r-project.org/web/views/WebTechnologies.html
http://cran.r-project.org/web/views/WebTechnologies.html
https://github.com/ropensci/opendata
https://ropensci.org/packages/
https://github.com/umatter/RWebData/blob/master/RWebData.pdf
https://github.com/umatter/RWebData/blob/master/RWebData.pdf
https://datahelpdesk.worldbank.org/knowledgebase/articles/898581-api-basic-call-structure
https://datahelpdesk.worldbank.org/knowledgebase/articles/898581-api-basic-call-structure
https://datahelpdesk.worldbank.org/knowledgebase/articles/898581-api-basic-call-structure

Matter: RWebData Art. 11, p. 11 of 12

already involve many steps to fetch and extract the
data with the existing lower level functions. And,
thus, might be tedious for a user who only has limited
experience with web technologies.

 15 See https://sunlightlabs.github.io/openstates-api/ for
details.

 16 Note that this additional feature is built on top of the
matured features shown in the examples above. The
early stage and future development of this particular
extension thus does thus not affect the other
functionalities of the package that have already been
tested extensively.

 17 See https://en.wikipedia.org/w/api.php? for a
detailed documentation of this API.

Acknowledgements
I am grateful to Dietmar Maringer, Armando Meier, Reto
Odermatt, Michaela Slotwinski, Alois Stutzer, as well as
seminar participants at the University of Basel and the
University of Oxford for helpful remarks. Special thanks
go to Ingmar Schlecht for many productive discussions
on software development and the methodological aspects
of this paper. I also thank Joerg Kalbfuss for excellent
research assistance.

Competing Interests
The author has no competing interests to declare.

References
1. Couture-Beil, A 2013 rjson: JSON for R. R package

version 0.2.13. URL: http://CRAN.R-project.org/
package=rjson.

2. Crosas, M, Honaker, J, King, G and Sweeney, L 2015
ANNALS of the American Academy of Political and
Social Science, 659(1): 260–273. DOI: https://doi.
org/10.1177/0002716215570847

3. Csardi, G and Nepusz, T 2006 InterJournal Complex
Systems, 1695. URL: http://igraph.org.

4. Dowle, M and Srinivasan, A 2017 data.table:
Extension of ‘data.frame’. R package version 1.10.4.
URL: https://CRAN.R-project.org/package=data.table.

5. Helbing, D and Pournaras, E 2015 Nature, 527(7576):
33–34. DOI: https://doi.org/10.1038/527033a

6. Matter, U and Stutzer, A 2016 Does Public Attention
Reduce the Influence of Special Interest Groups? Policy
Positions on SOPA/PIPA Before and After The Internet
Blackout Berkman Klein Center Research Publication
2016–22 Berkman Klein Center for Internet & Society
at Harvard University. DOI: https://doi.org/10.2139/
ssrn.2884316

7. Men-hin, Y and Fu, A W c 2001 In: ‘Proceedings
of the 81h International Workshop on Knowledge
Representation Meets Databases (KRDB 2001), Rome,
Italy’.

8. Müller, K and Wickham, H 2017 tibble: Simple Data
Frames. R package version 1.3.4. URL: https://CRAN.R-
project.org/package=tibble.

9. Moh, C H, Lim, E P and Ng, W K 2000 In: ‘Proceedings
of the fth ACM Conference on Digital libraries’, 67–76.
ACM.

10. Munzert, S, Rubba, C, Meissner, P and Nyhuis,
D 2014 Automated Data Collection with R: A
Practical Guide to Web Scraping and Text Mining
John Wiley & Sons Chichester, UK. DOI: https://doi.
org/10.1002/9781118834732

11. Nolan, D and Temple Lang, D 2014 XML and Web
Technologies for Data Sciences with R UseR! Springer:
New York. DOI: https://doi.org/10.1007/978-1-4614-
7900-0

12. Ooms, J 2014 ArXiv e-prints. URL: https://arxiv.org/
abs/1403.2805.

13. Ooms, J 2017 curl: A Modern and Flexible Web Client
for R. R package version 3.0. URL: https://CRAN.R-
project.org/package=curl.

14. Ooms, J, Temple Lang, D and Wallace, J 2014
jsonlite: A smarter JSON encoder/decoder for R. R
package version 0.9.8. URL: http://CRAN.R-project.
org/package=jsonlite.

15. ProgrammableWeb 2014 ‘Programmableweb
research center: Growth in web apis from 2005 to
2013’. URL: www.programmableweb.com/api-research.

16. R Core Team 2013 R: A Language and Environment
for Statistical Computing R Foundation for Statistical
Computing Vienna, Austria. URL: http://www.R-
project.org/.

17. R Core Team 2014 foreign: Read Data Stored by
Minitab, S, SAS, SPSS, Stata, Systat, Weka, dBase, … R
package version 0.8-59. URL: http://CRAN.R-project.
org/package=foreign.

18. Reingold, E M and Tilford, J S 1981 IEEE Transactions
on Software Engineering, 7(2): 223–228. DOI: https://
doi.org/10.1109/TSE.1981.234519

19. Richardson, L and Amundsen, M 2013 RESTful Web
APIs O’Reilly Media Cambridge.

20. Ripley, B and Lapsley, M 2013 RODBC: ODBC Database
Access. R package version 1.3-0. URL: http://CRAN.R-
project.org/package=RODBC.

21. Sievert, C 2014 XML2R: EasieR XML data collection.
R package version 0.0.6. URL: http://CRAN.R-project.
org/package=XML2R.

22. Stephens, J 2014 yaml: Methods to Convert R Data to
YAML and Back. R package version 2.1.11. URL: http://
CRAN.R-project.org/package=yaml.

23. Swartz, A 2013 In: Hendler, J and Ding, Y (eds.),
‘Synthesis Lectures on The Semantic Web: Theory and
Technology’. Morgan & Claypool Publishers.

24. Temple Lang, D 2013a RCurl: General network (HTTP/
FTP/…) client interface for R. R package version 1.95-4.1.
URL: http://CRAN.R-project.org/package=RCurl.

25. Temple Lang, D 2013b RJSONIO: Serialize R objects
to JSON, JavaScript Object Notation. R package
version 1.0-3. URL: http://CRAN.R-project.org/
package=RJSONIO.

26. Temple Lang, D 2013c XML: Tools for Parsing and
Generating XML Within R and S-Plus. R package version
3.95-0.2. URL: http://CRAN.R-project.org/package=XML.

27. Turner, V, Gantz, J F, Reinsel, D and Minton, S 2014
The digital universe of opportunities: Rich data and
the increasing value of the internet of things White
paper IDC Framingham, MA.

https://sunlightlabs.github.io/openstates-api/
https://en.wikipedia.org/w/api.php?
http://CRAN.R-project.org/package=rjson
http://CRAN.R-project.org/package=rjson
https://doi.org/10.1177/0002716215570847
https://doi.org/10.1177/0002716215570847
http://igraph.org
https://CRAN.R-project.org/package=data.table
https://doi.org/10.1038/527033a
https://doi.org/10.2139/ssrn.2884316
https://doi.org/10.2139/ssrn.2884316
https://CRAN.R-project.org/package=tibble
https://CRAN.R-project.org/package=tibble
https://doi.org/10.1002/9781118834732
https://doi.org/10.1002/9781118834732
https://doi.org/10.1007/978-1-4614-7900-0
https://doi.org/10.1007/978-1-4614-7900-0
https://arxiv.org/abs/1403.2805
https://arxiv.org/abs/1403.2805
https://CRAN.R-project.org/package=curl
https://CRAN.R-project.org/package=curl
http://CRAN.R-project.org/package=jsonlite
http://CRAN.R-project.org/package=jsonlite
http://www.programmableweb.com/api-research
http://www.R-project.org/
http://www.R-project.org/
http://CRAN.R-project.org/package=foreign
http://CRAN.R-project.org/package=foreign
https://doi.org/10.1109/TSE.1981.234519
https://doi.org/10.1109/TSE.1981.234519
http://CRAN.R-project.org/package=RODBC
http://CRAN.R-project.org/package=RODBC
http://CRAN.R-project.org/package=XML2R
http://CRAN.R-project.org/package=XML2R
http://CRAN.R-project.org/package=yaml
http://CRAN.R-project.org/package=yaml
http://CRAN.R-project.org/package=RCurl
http://CRAN.R-project.org/package=RJSONIO
http://CRAN.R-project.org/package=RJSONIO
http://CRAN.R-project.org/package=XML

Matter: RWebDataArt. 11, p. 12 of 12

28. W3C 2013 ‘W3c semantic web activity: What is the
semantic web?’ URL: www.w3.org/2001/sw/.

29. Warnes, G R, Bolker, B, Gorjanc, G, Grothendieck, G,
Korosec, A, Lumley, T, MacQueen, D, Magnusson, A
and Rogers, J and others 2014 gdata: Various R Program-
ming Tools for Data Manipulation. R package version
2.13.3. URL: http://CRAN.R-project.org/package=gdata.

30. Wickham, H 2014a httr: Tools for Working with URLs
and HTTP. R package version 0.4. URL: http://CRAN.R-
project.org/package=httr.

31. Wickham, H 2014b Journal of Statistical Software,
59(10): 1–23. URL: https://www.jstatsoft.org/index.
php/jss/article/view/v059i10/v59i10.pdf. DOI:
https://doi.org/10.18637/jss.v059.i10

32. Wickham, H 2015 rvest: Easily Harvest (Scrape)Web
Pages. R package version 0.2.0. URL: http://CRAN.R-
project.org/package=rvest.

33. Wickham, H and Francois, R 2015 readr: Read
Tabular Data. R package version 0.1.0. URL: http://
CRAN.R-project.org/package=readr.

How to cite this article: Matter, U 2018 RWebData: A High-Level Interface to the Programmable Web. Journal of Open Research
Software 6: 11, DOI: https://doi.org/10.5334/jors.201

Submitted: 30 October 2017 Accepted: 07 February 2018 Published: 21 February 2018

Copyright: © 2018 The Author(s). This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

Journal of Open Research Software is a peer-reviewed open access journal published by
Ubiquity Press OPEN ACCESS

http://www.w3.org/2001/sw/
http://CRAN.R-project.org/package=gdata
http://CRAN.R-project.org/package=httr
http://CRAN.R-project.org/package=httr
https://www.jstatsoft.org/index.php/jss/article/view/v059i10/v59i10.pdf
https://www.jstatsoft.org/index.php/jss/article/view/v059i10/v59i10.pdf
https://doi.org/10.18637/jss.v059.i10
http://CRAN.R-project.org/package=rvest
http://CRAN.R-project.org/package=rvest
http://CRAN.R-project.org/package=readr
http://CRAN.R-project.org/package=readr
https://doi.org/10.5334/jors.201
http://creativecommons.org/licenses/by/4.0/

	(1) Overview
	Introduction
	Background and related packages
	Web data conversion
	Original data structure and data semantics
	Mapping nested web data to data-frames
	Implementation and architecture
	Parsing and generic mapping of different web data formats
	Basic data mapping algorithm
	Architecture

	Examples
	Fetching data from REST APIs
	Nested data structures
	Interactive sessions

	Outlook: Writing interfaces to REST APIs
	Discussion
	Appendix
	Data mapping algorithm

	Open States API
	Quality control

	(2) Availability
	Operating system
	Programming language
	Additional system requirements
	Dependencies
	List of contributors
	Software location
	Archive
	Code repository

	Language

	(3) Reuse potential
	Notes
	Acknowledgements
	Competing Interests
	References
	Table 1
	Figure 1
	Figure 2
	Figure 3

