
Michelson, D, et al. 2018 BALTRAD Advanced Weather Radar Networking. Journal
of Open Research Software, 6: 12. DOI: https://doi.org/10.5334/jors.193Journal of

open research software

SOFTWARE METAPAPER

BALTRAD Advanced Weather Radar Networking
Daniel Michelson1, Anders Henja2,3, Sander Ernes4, Günther Haase2, Jarmo Koistinen5,
Katarzyna Ośródka6, Tuomas Peltonen7, Maciej Szewczykowski8 and Jan Szturc6

1	Environment and Climate Change Canada, Toronto, Ontario, CA
2	Swedish Meteorological and Hydrological Institute, Norrköping, SE
3	HENJAB, Växjö, SE
4	IT and Development Centre, Ministry of the Interior, Tallinn, EE
5	Finnish Meteorological Institute, Helsinki, FI
6	Institute of Meteorology and Water Management, National Research Institute, Warsaw, PL
7	Radiation and Nuclear Safety Authority, Helsinki, FI
8	Brandpath Group, Warsaw, PL
Corresponding author: Daniel Michelson (daniel.michelson@canada.ca)

BALTRAD software exchanges weather-radar data internationally, operationally, and in real-time, and it
processes the data using a common toolbox of algorithms available to every node in the decentralized
radar network. This approach enables each node to access and process its own and international data
to meet its local needs. The software system is developed collaboratively by the BALTRAD partnership,
mostly comprising the national Meteorological and Hydrological institutes in the European Union’s Baltic
Sea Region. The most important sub-systems are for data exchange, data management, scheduling and
event handling, and data processing. C, Java, and Python languages are used depending on the sub-system,
and sub-systems communicate using well-defined interfaces. Software is available from a dedicated Git
server. BALTRAD software has been deployed throughout Europe and more recently in Canada.

Keywords: radar; weather radar; radar networking; data exchange; quality control
Funding statement: From 2009–2014, the BALTRAD and BALTRAD+ projects were part-financed by
the European Union (European Regional Development Fund and European Neighbourhood and Partnership
Instrument), with project numbers #009 and #101, respectively.

(1) Overview
Introduction
With the words “weather knows no boundaries”, eight
organizations in seven countries sought and were
granted funding in 2008 from the European Union’s
Baltic Sea Region (BSR) Programme, to network existing
weather radars in the region. Weather radar is an active
remote sensing technique that allows us to monitor the
atmosphere with high resolution in both time and space.
Such radars are deployed by the national meteorological
(and hydrological) institutes of the respective countries.
The radars operate at a frequency of around 5.6 GHz
(5 cm wavelength), and have common ranges of 200–250
km, with new data being acquired every 5–15 minutes.
Radar-based information helps save lives and property,
and it facilitates operations in several weather-dependant
sectors of the economy such as aviation, urban water
management, radiation and nuclear safety, construction,
and recreation.

The approved project, called BALTRAD (not an acronym),
marked the first time European structure funds were used

to build an element of regional infrastructure in the form
of an international weather radar network. BALTRAD
also marked the first time that the project partners
developed such a system together as a partnership. The
BSR required that all outputs be made available openly
and freely, which matched the partners’ desire to release
the software with an Open Source license. The lifetime of
the BALTRAD project was three years (February 2009 to
January 2012). Into the third year, the BSR approached
the partnership and solicited a second proposal for an
extension stage. The result was the BALTRAD+ project
that saw both geographical and thematic expansion,
now with 13 partners in all 10 BSR countries, and two
additional years.

This paper provides a technical reference for the
software that comprises a functional member of the
network: a so-called “BALTRAD node”, along with an
example user application. Following an introduction that
provides the historical context, the system’s main design
constraints and system components are presented.
Establishing a software framework will be highlighted

https://doi.org/10.5334/jors.193
mailto:daniel.michelson@canada.ca

Michelson et al: BALTRAD Advanced Weather Radar NetworkingArt. 12, p. 2 of 9

not just for real-time international data exchange but
also for data processing. So will the importance of
systematic data quality control and characterization, as
this is the main scientific innovation achieved by the
partnership.

Significant time has passed since the project funding
ended, so the software’s reuse potential will be discussed
in the light of project vs. post-project realities.

Lead-up to BALTRAD
Weather-radar data have been exchanged in real time in
the Nordic collaboration called NORDRAD since the early
1990’s [1, 2]. The first version of the system was developed
using the Ada and Pascal programming languages, and
it was deployed on VAX-VMS platforms. Data were
exchanged over the X.25 protocol using a “notify-pull”
mechanism whereby a node broadcasts data availability
and those nodes entitled to such data are responsible
for fetching the data. The software development and
maintenance was performed by a commercial third
party on behalf of the NORDRAD members. The first
countries to deploy NORDRAD were Finland, Norway,
and Sweden. Owing to low network bandwidth, the
primary data that were exchanged were so-called CAPPI
(Constant Altitude Plan Position Indicator) products,
where the radar data’s original spherical coordinate
system expressed as elevation angle (from horizontal
level), azimuth angle (from true north) and range
(distance from the radar’s location) is transformed
to a regular Cartesian grid on a horizontal plane at a
selected altitude. Each country reprocessed its own
CAPPIs together with data from its neighbours, using
the common software, to create so-called composite
products covering large international domains using a
projection and coverage area that was adapted to that
country’s needs. This is an example of a decentralized
radar network concept.

In the early 2000’s, the second generation NORDRAD
system was commissioned, also by a commercial third-
party. The decentralized networking concept was
preserved, as was the basic data processing approach
of exchanging and processing Cartesian data. There
were two innovations with this new system: 1) it was
Python-based for deployment on Linux platforms with
communications using the TCP/IP protocol, and 2)
algorithmic improvements from research experiences
in the Baltic Sea Experiment [3] were pulled through
to operations [4, 5]. Yet it soon became evident that
improved network bandwidth was sufficient to support
the exchange of original radar data in spherical
coordinates, and that there was much greater potential
in harmonizing data quality by accessing and processing
such data. At the same time it became increasingly
clear to the members, now including Denmark, Estonia,
and Latvia, that such functionality could be created
collaboratively. An important driving force in the weather
radar world, for open and harmonized post-measurement
data processing, is the fact that the quality challenges of
the measured data are relatively large, especially as great
variety exists among the technical and signal-processing

properties of the radar systems that establish international
networks. Moreover, many weather radar operators and
service providers are not able to put major resources in
the R&D of new methodologies and algorithms. This led
to the BALTRAD and BALTRAD+ projects that acted as
development incubators, with a critical mass of resources
devoted to establishing the partnership, software system,
and weather radar network.

As has been noted in [6], BALTRAD is one of several open
source radar software systems that have emerged in recent
years. TITAN [7] is a system that pioneered the concept
of open software for weather radar, and like BALTRAD is
deployed in real-time operational environments. Py-ART
[8] and wradlib [9] are two other packages that have a
critical mass of developers and users, mainly for research
and development purposes, but also for processing large
amounts of archived data.

Implementation and architecture
BALTRAD software is designed to exchange weather radar
data in real time. Optionally, a sub-system is responsible
for processing data using a common toolbox of algorithms.
The same de-centralized networking concept as was
applied in NORDRAD has also been used with BALTRAD,
such that no individual partner is dependent on another
to process data and disseminate radar-based products.
A BALTRAD node is an instance of a complete system
containing the functionality to exchange and, if desired,
process data. BALTRAD software does not interact directly
with the weather radar instrument. When the Partnership
was formed, and its skill set inventoried, it was found that
around half of the developers preferred Python and the
other half preferred Java, while there were no objections
to C/C++. So the decision was made to create functional
sub-systems in any of these languages and ensure that
they communicated with each other through well-defined
interfaces.

A small package called the node-installer installs
a complete functional BALTRAD node. It downloads
specific versions of its dependencies (listed below), and
provides a robust framework for installing and performing
a basic configuration of a node. What follows are brief
descriptions of each of the main sub-systems comprising
a node, and how they interact. These sub-systems are
illustrated in Figure 1.

Data exchange (DEX)
The DEX contains the functionality used to subscribe
to and exchange data in real time. In contrast to the
NORDRAD “notify-pull” exchange mechanism, we
use a “subscribe-push” model over secure network
communications. Recalling that the partnership
comprises different legal entities in different sovereign
states, it is important that the communications contain
sufficient security and checks and balances. To summarize:

1.	 Two nodes exchange secure keys, allowing them to
transact securely.

2.	 A sender node selectively exposes its data catalogue
to another receiver node.

Michelson et al: BALTRAD Advanced Weather Radar Networking Art. 12, p. 3 of 9

3.	 The receiver node selects which data it wishes to
subscribe to.

4.	 The sender node pushes subscribed data to the
receiver node in real time.

5.	 The receiver node validates that it has received what
it has requested.

This peer-to-peer functionality is achieved in Java using
a Tomcat server container. All communications between
nodes are conducted through a single open port.

All weather radar data are expected to be exchanged
using the modern European HDF5-based standard rep-
resentation [10], and it is each partner’s responsibility to
convert its data to this ODIM_H5 format before “inject-
ing” the data into their nodes. The partnership has devel-
oped converters/injectors in Java and Python for these
purposes.

BALTRAD database (bdb)
Each node operates a PostgreSQL database instance
that is used to manage all data and metadata. A Python
application is responsible for this. Exchanged data
entering a node from the DEX are passed to the bdb, the
metadata are extracted from ODIM_H5 files to populate
database tables, and the ODIM_H5 files themselves are
preserved inside the database. This approach allows files
to be associated with their metadata quickly, allowing
for rapid access to input data by other parts of the node.
ODIM_H5 files can be optionally exported to local or
remote file system. The bdb interacts with other sub-
systems through a RESTful interface.

Beast
This sub-system is devoted to interacting with the
other system components, to schedule event-based and

non-trivial data processing jobs, among other things,
without actually running the jobs themselves. This Java
application therefore interfaces with the bdb to learn
when data are available to trigger such jobs, and they are
triggered by messaging the BALTRAD Toolbox. A web-
based interface is shared with the DEX for configuring
and scheduling the node as a whole, along with
different types of data processing jobs. Jobs are defined
through this interface either using pre-defined rule-
based menus, or through the use of Groovy scripting
(based on Java).

An event-based job can be processing data from
a single radar site, e.g. generating a Cartesian
representation from the data’s original polar geometry.
An example of non-trivial scheduling of a job is
generating a composite image containing data from
many radars; such a job is triggered either when all
input data are available, or with those data that have
arrived at a specified timeout.

BALTRAD Toolbox
The science of refining radar data into useful
information is the responsibility of this software toolbox.
It comprises a main package called the Radar Analysis
and Visualization Environment (RAVE) along with
several add-on packages for processing data for specific
purposes. The code base is written in a combination of
C and Python, to benefit from the high performance
and relatively low memory footprint of C together with
the ease of managing the system using Python. In real
time, the Toolbox receives job requests from the Beast
through an XML-RPC interface to its server, jobs are
dispatched to an asynchronous pool of worker processes
organized through Python’s multiprocessing module,
and output is forwarded to the DEX and on to the bdb.

Figure 1: BALTRAD node subsystems. The BALTRAD Toolbox is labeled RAVE and is shown on the left together with
some of its add-on packages.

Michelson et al: BALTRAD Advanced Weather Radar NetworkingArt. 12, p. 4 of 9

Off-line work, e.g. algorithm development and processing
archived data, is performed interactively through the
Python interpreter, command-line utilities, or hands-off
through scripting.

The Toolbox and its add-ons contains functionality
for quality controlling radar data, e.g. identifying and
removing non-precipitation echoes [11], correction
due to topographical beam blockage, attenuation
correction of conventional reflectivity data, data-quality
characterization [12], and dealiasing of radial velocity
data based on [13]. Compositing of data from many
radars is supported in different ways, including the
ability to use data quality as the main selection criterion
(Figure 2).

The functionality for reading and writing data to
ODIM_H5 is separated from the data processing. This
is done to enable the efficient chaining of processing
algorithms in memory, without needing to write
temporary/intermediate files to disk, which is achieved
through a so-called “quality-plugin” framework.

As part of the extended thematic scope in BALTRAD+,
we introduced the BALTRAD Cookbook (URL below)
as a collection of openly documented data-processing
algorithms, which can serve as a reference collection for
implementation in our Toolbox or independently in other
software.

Front-end applications
BALTRAD software is mostly intended to support
various users, but we have also developed specific
applications, one being a Web Map Services (WMS) server
supporting radiation and nuclear safety in Finland, called
baltrad-wms and based on an Open Source Geospatial
Foundation (OSGeo) MapServer. Radar composites
generated by a BALTRAD node are disseminated to a
baltrad-wms instance where they are converted from
ODIM_H5 to GeoTIFF format and displayed (Figure 3).

Quality control
Each of the sub-systems requires that unit tests be written.
This is done using JUnit for Java and unittest for Python.
Most developers apply agile methods when developing
the system, to ensure that the system components achieve
stable and consistent interfaces as early as possible, and
to introduce new functionality in many small iterations.
During the most intense development phase, lasting over
a year, new versions of the node-installer were released
and deployed live every two weeks. Project infrastructure
supporting the development includes a dedicated Git
server together with a Jenkins continuous integration
server. Code coverage output is given for Java. Tickets
are written and managed using a Trac server, which also
hosts the BALTRAD Cookbook using its wiki functionality.

Figure 2: The BALTRAD Toolbox has been used with reflectivity data from 180 Canadian and American weather radars.
Data have been quality controlled, and the derived quality information has been actively used when creating this
composite product. July 8, 2014 at 07:40 UTC, showing storms over the American mid-west, the Great Lakes, and
Atlantic Canada. Visualization has used Python’s matplotlib and basemap packages on the Open Radar Virtual
Machine [15].

Michelson et al: BALTRAD Advanced Weather Radar Networking Art. 12, p. 5 of 9

Anyone is able to clone any of the software packages
on the BALTRAD Git server; authorized users can push
new commits. Each new commit triggers Jenkins to
build the package and run its unit tests. The fundamental
criterion that decides if new changes are acceptable is if
all the unit tests pass; this will automatically merge the
changes into the master branch. Jenkins also performs a
nightly build and test run for the most important system
components.

(2) Availability
Operating system
Linux, preferably 64-bit

Programming languages
Gnu C/C++ 4.1+
Python 2.6 and 2.7 (migration to 3.5 underway)
Java 1.6+
Javascript, Groovy

Additional system requirements
None

Dependencies
PostgreSQL 8.4+
Java SDK 1.6+
Gnu make 3.8+
Autoconf 2.59+
Unicode support (ICU)
bzip2 development libraries
PostgreSQL development libraries
Doxygen 1.4+

The following packages and their exact versions are
managed by the BALTRAD node-installer, although more
recent versions are also known to work.

Apache ant 1.8.0
Apache Tomcat 7.0.64

Figure 3: BALTRAD Web Map Services (baltrad-wms) instance displaying weather-radar reflectivity composite data
together with the gamma dose-rate monitoring network operated in Finland for nuclear radiation safety.

Michelson et al: BALTRAD Advanced Weather Radar NetworkingArt. 12, p. 6 of 9

cURL 7.22.0
distribute 0.6.9
expat 2.0.1
HDF5 1.8.5-patch1
hdf-java 2.6.1
Python Imaging Library 1.1.7
NumPy 1.4.1
PIP 7.1.2
PROJ.4 4.7.0
ASN.1 Library for Python 0.1.2
PyCrypto 2.4.1
PycURL 7.19.5.3
Python 2.6.4 or 2.7.2
python-keyczar 0.7b
setuptools for Python 2.7
zlib 1.2.4

Additional optional dependencies are required for certain
features.

List of contributors
•	 Rasphal Gill and Martin Sørensen, Danish

Meteorological Institute, Copenhagen, Denmark
•	 Harri Hohti and Markus Peura, Finnish Meteorological

Institute, Helsinki, Finland
•	 Iwan Holleman, Radboud University, Nijmegen,

Netherlands
•	 Daniel Johnson, Ulf Nordh, Lars Norin, Mats Sundqvist,

and Mats Vernersson, Swedish Meteorological and
Hydrological Institute, Norrköping, Sweden

•	 Tomasz Sznajderski and Łukasz Wojtas, Institute of
Meteorology and Water Management, Warsaw, Poland

Software location
Archive
(e.g. institutional repository, general repository)
(required – please see instructions on journal website for
depositing archive copy of software in a suitable repository)
Name: Figshare
Persistent identifier: https://doi.org/10.6084/m9.
figshare.5901868.v1
Licence: CC-BY 4.0
Publisher: Swedish Meteorological and Hydrological
Institute, on behalf of the BALTRAD Partnership
Version published: 2.2.1
Date published: 19/02/18

Code repository
(e.g. SourceForge, GitHub etc.) (required)
Name: BALTRAD Git
Identifier: http://git.baltrad.eu/git
Licence: Lesser Gnu General Public Licence
Date published: 26/08/16

Language
English

(3) Reuse potential
Externally-funded development projects are extremely
useful in creating a critical mass of people and resources
that can be used to create new outputs quickly and with

high priority; the BALTRAD and BALTRAD+ projects were
successful in this regard. The critical moment comes
when the projects end and the partner organizations
assume responsibility for the operations, maintenance,
and continued development of the project outputs. This
is particularly sensitive if the outputs have been created
by the partners themselves, and are not subject to any
commercial service-level agreement. It is common for
interest to wane at this point, so the challenge becomes
one of ensuring that the resources are secured by each
partner to continue contributing to the collaborative
effort. The BALTRAD Cooperation Agreement has been
written and signed by the partners to meet this challenge.
The radar network continues to operate, and the software
is being maintained and further developed. What follows
are examples of not just potential reuse, but real reuse of
BALTRAD outputs.

Before the end of the BALTRAD+ project, the Central
Aerological Observatory of the Russian Federation joined
the partnership, deployed a BALTRAD node, and started
exchanging Russian weather-radar data with other
partners. By the end of the project, data from 60 radars
in ten countries were being exchanged, with data from
eight additional specialized X-band radars in Denmark
supporting urban hydrology.

The network of European National Meteorological
Services (EUMETNET) and its project for weather radar
called OPERA [14] are responsible for a centralized
European facility for collecting and generating European
continental radar composite products. This service,
called Odyssey and hosted jointly by Météo France and
the United Kingdom Meteorological Office, has deployed
the BALTRAD Toolbox operationally to quality control all
available input radar data before European composites
are generated on behalf of its members.

In 2014, the first Open Source Radar Software short
course was held in association with a major radar
conference. Contributors created an Open Radar Virtual
Machine in which software presented in [6] was installed
and made openly and freely available [15]. This solution
has been proven useful at this short course and others
that have followed, through Jupyter notebooks that
run BALTRAD, Py-ART [8] and wradlib [9] software and
visualize the results. Interoperability between these
packages is also highlighted at these courses, an example
of which is given in Figure 4.

Recently, the BALTRAD Toolbox was deployed in
Canada to support the assimilation of weather radar
data in numerical weather prediction. File-format
decodes were required for North American data to
provide input data in ODIM_H5, and the NEXRAD Level
II decode from Py-ART [8] is another good example of
reuse for this purpose. Once this was achieved, the
Toolbox was able to process Canadian and American
data with the advantages of the BALTRAD data-quality
processing framework (Figure 2). This is, in principle,
the same quality-control approach as that already taken
in Europe [18].

Additional reuse potential is based on the free and open
availability of the software, and through its availability as
part of the Open Radar Virtual Machine, in operational

https://doi.org/10.6084/m9.figshare.5901868.v1
https://doi.org/10.6084/m9.figshare.5901868.v1
http://git.baltrad.eu/git

Michelson et al: BALTRAD Advanced Weather Radar Networking Art. 12, p. 7 of 9

real-time environments, or in academic/educational
settings.

Finally, the legacy NORDRAD system was
decommissioned in early 2017, marking reliance on
BALTRAD as the fully-operational system for weather-
radar networking in the BSR.

Support mechanisms
•	 FAQ, User Guide, and rendered inline documentation:

http://git.baltrad.eu/
•	 BALTRAD Cookbook: http://git.baltrad.eu/trac/wiki/

cookbook
•	 Google Group: baltrad@googlegroups.com
•	 Support: support@baltrad.eu

•	 BALTRAD and BALTRAD+ project information:
http://www.baltrad.eu/

•	 Open Radar Virtual Machine: http://openradarscience.
org/vm-docs/

Acknowledgements
The authors wish to acknowledge and thank members
of the BALTRAD Partnership not listed above, who did
not contribute to the code base but who have been
instrumental in setting up and running BALTRAD
nodes in their countries, testing the system, writing
algorithm recipes for the BALTRAD Cookbook, developing
applications based on BALTRAD output, and otherwise
contributing to the overall effort.

Figure 4: Reflectivity data from the polarimetric King City weather radar north of Toronto, Canada, have been corrected
for attenuation at C band [16] through software interoperability between BALTRAD and Py-ART [8] as implemented
on the Open Radar Virtual Machine [15]. Visualization uses the experimental interface from BALTRAD to Google
Maps. This event on July 8, 2013, gave 138 mm of rain near Toronto Pearson International Airport [17] and flooding
that caused an estimated CAD $1 billion in property damage.

http://git.baltrad.eu/
http://git.baltrad.eu/trac/wiki/cookbook
http://git.baltrad.eu/trac/wiki/cookbook
mailto:baltrad@googlegroups.com
http://support@baltrad.eu
http://www.baltrad.eu/
http://openradarscience.org/vm-docs/
http://openradarscience.org/vm-docs/

Michelson et al: BALTRAD Advanced Weather Radar NetworkingArt. 12, p. 8 of 9

Competing Interests
The authors have no competing interests to declare.

References
1.	 Carlsson, I 1995 NORDRAD – Weather Radar Network.

See [2], 45–52.
2.	 Collier, C G (ed.) 1995 COST 75 Weather Radar

Systems. Brussels: European Commission. EUR 1601
EN. 814.

3.	 Raschke, E, Meywerk, J, Warrach, K, Andræ, U,
Bergström, S, Beyrich, F, Bosveld, F, Bumke, K,
Fortelius, C, Graham, L P, Gryning, S-E, Halldin, S,
Hasse, L, Heikinheimo, M, Isemer, H-J, Jacob, D,
Jauja, I, Karlsson, K-G, Keevallik, S, Koistinen, J,
Lehmann, A, Liljebladh, B, Lobmeyr, M, Matthäus,
W, Mengelkamp, T, Michelson, D B, Napiórkowski,
J, Omstedt, A, Piechura, J, Rockel, B, Rubel, F,
Ruprecht, E, Smedman, A-S and Stigebrandt, A
2001 The Baltic Sea Experiment (BALTEX): A European
Contribution to the Investigation of Energy and
Water Cycle over a Large Drainage Basin. Bull. Amer.
Meteor. Soc, 82(11): 2389–2413. DOI: https://doi.
org/10.1175/1520-0477(2001)082<2389:TBSEBA>2.
3.CO;2

4.	 Michelson, D B, Andersson, T, Koistinen, J, Collier,
C G, Riedl, J, Szturc, J, Gjertsen, U, Nielsen, A
and Overgaard, S 2000 BALTEX Radar Data Centre
Products and their Methodologies, 76. Reports
Meteorology and Climatology RMK No. 90, SMHI,
SE-601 76 Norrköping, Sweden.

5.	 Koistinen, J and Michelson, D B 2002 BALTEX
Weather Radar-based Precipitation Products and
their Accuracies. Boreal Env. Res, 7(3): 253–263. ISSN
1239-6095.

6.	 Heistermann, M, Collis, S, Dixon, M, Giangrande,
S, Helmus, J, Kelley, B, Koistinen, J, Michelson,
D, Peura, M, Pfaff, T and Wolff, D 2014 The
Emergence of Open-Source Software for the
Weather Radar Community. Bull. Am. Meteorol. Soc,
96(1): 117–128. DOI: https://doi.org/10.1175/
BAMS-D-13-00240.1

7.	 Dixon, M and Wiener, G 1993 TITAN: Thunderstorm
Identification, Tracking, Analysis, and Nowcasting—A
radar-based methodology. J. Atmos. Oceanic Technol.,
10: 785–797. DOI: https://doi.org/10.1175/1520-
0426(1993)010<0785:TTITAA>2.0.CO;2

8.	 Helmus, J J and Collis, S M 2016 The Python ARM
Radar Toolkit (Py-ART), a Library for Working with
Weather Radar Data in the Python Programming
Language. Journal of Open Research Software, 4(1):
e25. DOI: https://doi.org/10.5334/jors.119

9.	 Heistermann, M, Jacobi, S and Pfaff, T 2013
Technical Note: An open source library for processing
weather radar data (wradlib). Hydrol. Earth Syst. Sci,
17(2): 863–871. DOI: https://doi.org/10.5194/hess-
17-863-2013

10.	Michelson, D, Lewandowski, R, Szewczykowski, M,
Beekhuis, H and Haase, G 2014 EUMETNET OPERA
weather radar information model for implementation
with the HDF5 file format, version 2.2. EUMETNET
OPERA Deliverable, 38. http://www.eumetnet.eu/
sites/default/files/OPERA2014_O4_ODIM_H5-
v2.2.pdf.

11.	Peura, M 2002 Computer vision methods for
anomaly removal. Proc. Second European Conf. on
Radar Meteorology, 312–317. Delft, Netherlands. Delft
University of Technology. http://copernicus.org/erad/
online/erad-312.pdf.

12.	Ośródka, K, Szturc, J and Jurczyk, A 2014 Chain
of data quality algorithms for 3-D single-polarization
radar reflectivity (RADVOL-QC system). Meteorol. Appl,
21: 256–270. DOI: https://doi.org/10.1002/met.1323

13.	Haase, G and Landelius, T 2004 Dealiasing of
Doppler Radar Velocities Using a Torus Mapping. J.
Atmos. Oceanic Technol, 21: 1566–1573. DOI: https://
doi.org/10.1175/1520-0426(2004)021<1566:DODRV
U>2.0.CO;2

14.	Huuskonen, A, Saltikoff, E and Holleman, I 2014
The Operational Weather Radar Network in Europe.
Bull. Am. Meteorol. Soc, 95(6). DOI: https://doi.
org/10.1175/BAMS-D-12-00216.1

15.	Heistermann, M, Collis, S, Dixon, M, Helmus, J,
Henja, A, Michelson, D and Pfaff, T 2015 An Open
Virtual Machine for Cross-Platform Weather Radar
Science. Bull. Am. Meteorol. Soc, 96: 1641–1645. DOI:
https://doi.org/10.1175/BAMS-D-14-00220.1

16.	Gu, J-Y, Ryzhkov, A, Zhang, P, Neilley, P, Knight,
M, Wolf, B and Lee, D-I 2011 Polarimetric
Attenuation Correction in Heavy Rain at C Band. J.
Appl. Meteor. Climatol, 50: 39–58. DOI: https://doi.
org/10.1175/2010JAMC2258.1

17.	Boodoo, S, Hudak, D, Ryzhkov, A, Zhang, P,
Donaldson, N, Sills, D and Ried, J 2015 Quantitative
Precipitation Estimation from a C-Band Dual-Polarized
Radar for the 8 July 2013 Flood in Toronto, Canada.
J. Hydrometeor, 16: 2027–2044. DOI: https://doi.
org/10.1175/JHM-D-15-0003.1

18.	Ridal, M and Dahlbom, M 2017 Assimilation of
Multinational Radar Reflectivity Data in a Mesoscale
Model: A Proof of Concept. J. Appl. Meteor. Climatol,
56: 1739–1751. DOI: https://doi.org/10.1175/
JAMC-D-16-0247.1

https://doi.org/10.1175/1520-0477(2001)082<2389:TBSEBA>2.3.CO;2
https://doi.org/10.1175/1520-0477(2001)082<2389:TBSEBA>2.3.CO;2
https://doi.org/10.1175/1520-0477(2001)082<2389:TBSEBA>2.3.CO;2
https://doi.org/10.1175/BAMS-D-13-00240.1
https://doi.org/10.1175/BAMS-D-13-00240.1
https://doi.org/10.1175/1520-0426(1993)010<0785:TTITAA>2.0.CO;2
https://doi.org/10.1175/1520-0426(1993)010<0785:TTITAA>2.0.CO;2
https://doi.org/10.5334/jors.119
https://doi.org/10.5194/hess-17-863-2013
https://doi.org/10.5194/hess-17-863-2013
http://www.eumetnet.eu/sites/default/files/OPERA2014_O4_ODIM_H5-v2.2.pdf
http://www.eumetnet.eu/sites/default/files/OPERA2014_O4_ODIM_H5-v2.2.pdf
http://www.eumetnet.eu/sites/default/files/OPERA2014_O4_ODIM_H5-v2.2.pdf
http://copernicus.org/erad/online/erad-312.pdf
http://copernicus.org/erad/online/erad-312.pdf
https://doi.org/10.1002/met.1323
https://doi.org/10.1175/1520-0426(2004)021<1566:DODRVU>2.0.CO;2
https://doi.org/10.1175/1520-0426(2004)021<1566:DODRVU>2.0.CO;2
https://doi.org/10.1175/1520-0426(2004)021<1566:DODRVU>2.0.CO;2
https://doi.org/10.1175/BAMS-D-12-00216.1
https://doi.org/10.1175/BAMS-D-12-00216.1
https://doi.org/10.1175/BAMS-D-14-00220.1
https://doi.org/10.1175/2010JAMC2258.1
https://doi.org/10.1175/2010JAMC2258.1
https://doi.org/10.1175/JHM-D-15-0003.1
https://doi.org/10.1175/JHM-D-15-0003.1
https://doi.org/10.1175/JAMC-D-16-0247.1
https://doi.org/10.1175/JAMC-D-16-0247.1

Michelson et al: BALTRAD Advanced Weather Radar Networking Art. 12, p. 9 of 9

How to cite this article: Michelson, D, Henja, A, Ernes, S, Haase, G, Koistinen, J, Ośródka, K, Peltonen, T, Szewczykowski, M
and Szturc, J 2018 BALTRAD Advanced Weather Radar Networking. Journal of Open Research Software 6: 12, DOI: https://doi.
org/10.5334/jors.193

Submitted: 12 September 2017  Accepted: 22 February 2018  Published: 19 March 2018

Copyright: © 2018 The Author(s). This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

Journal of Open Research Software is a peer-reviewed open access journal published by
Ubiquity Press OPEN ACCESS

https://doi.org/10.5334/jors.193
https://doi.org/10.5334/jors.193
http://creativecommons.org/licenses/by/4.0/

	(1) Overview
	Introduction
	Lead-up to BALTRAD

	Implementation and architecture
	Data exchange (DEX)
	BALTRAD database (bdb)
	Beast
	BALTRAD Toolbox
	Front-end applications

	Quality control

	(2) Availability
	Operating system
	Additional system requirements
	Dependencies
	List of contributors
	Software location
	Archive
	Code repository

	Language

	(3) Reuse potential
	Support mechanisms

	Acknowledgements
	Competing Interests
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4

