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(1) Overview
Introduction
Symbolic regression [1] is an optimization method to find 
an optimal representation of a function. The method is 
“symbolic”, because building blocks of the functions, 
i.e. variables, primitive functions, and operators, are 
represented symbolically on the computer. Genetic 
programming (GP) [2] can be implemented to find such a 
function for system identification [3, 4] or fluid dynamical 
control [5, 6]. Glyph is an effort to separate optimization 
method and optimization task allowing domain-
experts without special programming skills to employ 
symbolic regression in their experiments. We adopt this 
separation of concerns implementing a client-server 
architecture; a minimal communication protocol eases 
its use. Throughout this paper “experiment” is meant as a 
synonym for any symbolic regression task including a lab-
experiment, a numerical simulation or data fitting.

Previous work on system identification and reverse 
engineering of conservation laws was reported in [1, 7]. 
As a substantial extension, we put the algorithms in the 
context of control problems and in contrast to these works, 
we publish the implementation. Modern algorithms also 
include multi-objective optimization [4] and advances like 
age fitness based genetic programming [8] or epigenetic 
local search [9]. There exist various approaches to the 
representation of multi IO problems, including stack- or 
graph-based representations and pointers [9, 10]. As a 
special feature we extended our implementation such 
that it can be easily used for finding an optimal control 

law for a given, measured and actuated system. This is, 
however just one application of our software.

Implementation and architecture
Glyph is intended as a lightweight framework to build 
an application finding an optimal system representation 
given measurement data. The main application is 
intended as system control, consequently a control law 
is determined and returned. Glyph is built on the idea of 
loose coupling such that dependencies can be released if 
wanted.

A typical control application consists of a system and 
its controller, possibly separated, cf. Figure 1. Glyph 
has three main module to build such an application: 
i) the assessment, which holds all methods and data 
structures belonging to the experiment, ii) the GP which 
is responsible for the system identification, and iii) the 
application components, which constitute an application.

Abstraction Layers
Glyph is conceptualized around different layers of 
abstraction:1

1. Representation layer: This layer consists of a data-
structure representing a GP solution, i.e. an individual, 
and methods to manipulate such data-structures. This 
abstraction layer also allows for an interchangeable 
representation.

2.  Algorithm layer: This layers encapsulates the 
selection and tweaking of individuals.

https://doi.org/10.5334/jors.192
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3.  AssessmentRunner layer: Abstracts calculation 
of cost functions.

4.  GPRunner layer: This is an integration layer which 
lets the user iterate the evolutionary algorithm cal-
culating statistics after each iteration.

5.  Application layer: This layer sets the context and 
control flow.

The first three layers are sufficient to formulate and 
optimize a symbolic regression problem. The GPRunner 
and Application let you gap the bridge between 
prototypes and real-world-problem-solving applications.

Building an Application
An application consists of a GP callable, the gp_runner, 
an assessment callable for input, the assessment_
runner, and the application which uses both of these 
classes and holds all application-relevant details. A 
command-line application is built by
assessment_runner = AssessmentRunner (assess_args)
gp_runner = glyph.application.GPRunner (gp_args)
app = command_line_application (app_args)

The assessment_runner has one argument, the 
parallel_factory which implements a map() 
method, possibly parallel. For an application one needs to 
implement setup, assign_fitness, and measure: 
setup is self-explaining, measure is a key method 
which takes as input a set of measurement functions 
and combines them into a tuple of callable measures 
for multiobjective optimization. The measures are used 
eventually in assign_fitness where the return values 
are used to assign a fitness to an individual from GP. The 
interface is freely extensible. A gp_runner forwards 
the evolutionary iteration. It takes as arguments, gp_
args, an individual class, a gp_algorithm, and an 
assessment_runner. The individual class contains 
the representation of a function, the individual; it is 
based on DEAP’s tree-based implementation. The gp_
algorithm takes care for the breeding and selection 
steps, its principles are described in [2].

The application is run in the main function with app.
run().

In the application and gp_runner, the user has 
freedom to add functionality using the list of callbacks in the 
arguments, say, to implement other logging or streaming 
options. This allows for very flexible programming. We 
constructed the components that way to allow users to 
specialize for their particular experiments and possibly 
increase performance or extend the symbolic regression, 
e.g. by replacing the DEAP tree-based representation of an 
individual.

Remote Control
One main objective of glyph is its use in a real 
experiment. In this case, the GP loop is separated from 
the experimental loop in a client-server setup using 
ZeroMQ [11], cf. Figure 2.

Consequently, one should implement the interface 
to the experiment using the protocol described in the 
following subsection. Having the implementation of the 
experiment, the server, one needs to implement the client, 
i.e. the interface to the gp_runner. In essence this means 
connecting the correct sockets with ZeroMQ and ensuring 
that the gp_runner and the assessment_runner 
use the corresponding sockets. Then, the main application 
is assembled as before, now using a RemoteApp for the 
main application, which in turn uses a gp_runner, 
which then uses now a RemoteAssessmentRunner. That 
is it, we can run remotely our GP evaluation from some 
client and the experiment in place of the experiment.

Communication Protocol
The communication is encoded in json [12]. A message is 
a json object with two members:

{
 “action”: “value”,
 “payload”: “value”
}

The possible values are listed in Table 1. The config action 
is performed prior to the evolutionary loop. Entering 

Figure 1: Left: A typical closed loop control task is sketched. The system ẋ = f (x) is observed by some measurements s; it 
is controlled by by adding the actuation a = u(s, t). The corresponding control law a = u(s, t) is determined by symbolic 
regression. Right: gp-based symbolic regression finds different candidate control laws. Each candidate solution is 
given a fitness score Γ which is used to compare different solutions and to advance the search in function space. 
Figure adapted from [5] with permission.

ẋ = f(x) + a

u(s, t)

sa

Γ
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the loop, discovered solutions will be batched and a 
experiment action will be requested. You can configure 
optional caching for re-discovered solutions. This includes 
persistent caching between different runs. The shutdown 
action will let the experiment program know that the GP 
loop is finished and you can safely stop the hardware.

Configuration settings are sent as a json object in 
key:value form, where the keys contain the option to be 
set, there is only one mandatory option: the primitive set. 
To configure the primitive set, the primitive names are 
passed as content of the key config, whose values specify 
the corresponding arities, both fields described again as 
json object.

The experiment action sends a list of expressions, 
encoded as string in prefix (also: polish) notation [13]. 
For each expression sent, the experiment returns a fitness 
tuple.

Additionally, one can define the type of algorithm, 
error metric, representation, hyper-parameters, etc. A 
comprehensive up to date list can be found at http://
glyph.readthedocs.io/en/latest/usr/glyph_remote/.

Application example: control of the chaotic Lorenz 
System
In the following, we demonstrate the application and use 
of Glyph by the determination of an unknown optimal 
control law for a chaotic system. As an example, we study 
the control of the potentially chaotic Lorenz system. 
Chaotic systems are very hard to predict and control in 

practice due to their sensitivity towards small changes in 
the initial state which may lead to exponential divergence 
of trajectories. The Lorenz model [14] consists of a system 
of three ordinary differential equations:
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&
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with two nonlinearities, xy and xz. Here x, y, and z make 
up the system state and s, r, b are parameters: s is the 
Prandtl number, r is the Rayleigh number, and b is related 
to the aspect ratio of the air rolls. For a certain choice 
of parameters and initial conditions chaotic behavior 
emerges.

We present two examples where the target is to learn 
control of bring a chaotic Lorenz system to a complete 
stop, that is, (x, y, z) = 0 (t ∈ R). In the first example, 
“control in y”, the actuator term is applied to ẏ. This allows 
for a more direct control of the system, since y appears in 
every equation of (1) and, thus, influence all three state 
components, x, y, and z. In the second example, “control in 
z”, the actuator term is applied to ż, which leads to a more 
indirect control, since the flow of information from z to x 
is only through y.

The system setup is summarized in Tables 2 and 
3. When r = 28, s =10, and b = 8/3, the Lorenz system 
produces chaotic solutions (not all solutions are chaotic). 
Almost all initial points will tend to an invariant set – 
the Lorenz attractor – a strange attractor and a fractal. 
When plotted the chaotic trajectory of the Lorenz system 
resembles a butterfly (blue graph in Figure 3). The 
target of control is, again, formulated as RMSE2 of the 
system state with respect to zero (separately for each  
component).

( ) ( ) ( )RMSE :  RMSE ,  0 ,  RMSE : RMSE ,  0 ,  RMSE : RMSE ,  0 .x y zx y z= = =

The control function u can make use of ideal measurements 
of the state components. Additionally, we allow for a 
single symbolic constant k to be used as argument for 

Figure 2: Sketch of the implementation of the experiment – GP communication as client-server pattern. Left: single 
experiment server plus event handler. Right: GP client. Both parts are interfaced using ZeroMQ. As described in Sec. 
the GP program performs requests, e.g. the evaluation of a candidate solution. The event handler takes care of these 
requests and eventually forwards them to the hardware.

Table 1: Communication protocol. The config action 
contains the options to be set, the experiment action 
contains a list of expressions, the shutdown action 
terminates the application.

Action name Payload Expected return 
Value

CONFIG – config settings

EXPERIMENT list of expressions list of fitness value(s)

SHUTDOWN – –

http://glyph.readthedocs.io/en/latest/usr/glyph_remote/
http://glyph.readthedocs.io/en/latest/usr/glyph_remote/
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the control law. Given an expression, this constant is 
optimized separately, see also [4]. The respective GP runs 
for control in y and control in z are conducted with the 
corresponding random seeds labeled “in y” and “in z”.

Control in y: For control in y the actuator term u 
is added to the left side of the equation for ẏ in the 
uncontrolled system (1):

( )  , ,y rx y xz u x y z= − − +&

The Pareto solutions from the GP run are shown in 
Table 4. The wide spread of the RMSE values is a sign 
of conflicting objectives that are hard to satisfy in 
conjunction. Interestingly, almost all solutions, u, 
commonly introduce a negative growth rate into ẏ. This 
effectively drives y to zero and suppresses the growth 
terms, sy and xy, in the equations for ẋ and ż respectively, 
in turn, driving x and z to zero as well. As would be 

Table 2: General setup of the GP runs.

population size 500

max. generations 20

MOO algorithm NSGA-II

tree generation halfandhalf

min. height 1

max. height 4

selection selTournament

tournament size 2

breeding varOr

recombination cxOnePoint

crossover probability 0.5

crossover max. height 20

mutation mutUniform

mutation probability 0.2

mutation max. height 20

constant optimization leastsq

Figure 3: Phase portrait of the forced Lorenz system with control exerted in ẏ. (Green and red: The system trajectories 
when controlled by two particular Pareto-front solutions. Blue: the uncontrolled chaotic system).
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with u(x, y, z) = k · y − exp(x), k = −135.43

with u(x, y, z) = k · x+ z, k = −27.84

Table 3: Control of the Lorenz system: system setup.

Dynamic system GP

s 10 cost functionals RMSE (x, 0)

r 28 RMSE (y, 0)

b 8/3 RMSE (z, 0)

x(t0) 10.0 length (u)

y(t0) 1.0 argument set {x, y, z}

z(t0) 5.0 constant set {k}

t0, tn 0, 100 seed (in y) 4360036820278701581

n 5000 seed (in z) 2480329230996732981
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expected, minimal expressions, of length 1 or 2, cannot 
compete in terms of the RMSE. For example, the simple 
solution, u(x, y, z) = –ky (fourth row), is almost as good as 
the lengthier one, u(x, y, z) = –exp(x) + ky (first row), and 
even better in RMSEy.

Table 4 shows the results from the GP run. One solution 
immediately stands out: u = k · x + z, with k = –27.84 
(second row). It is exactly what one might expect as a 
control term for the chaotic Lorenz system with control 
in y. This control law effectively reduces the Rayleigh 
number r to a value close to zero (k ≈ r), pushing the 
Lorenz system past the first pitchfork bifurcation, at r = 1, 
back into the stable-origin regime. If r < 1 then there is 
only one equilibrium point, which is at the origin. This 
point corresponds to no convection. All orbits converge to 
the origin, which is a global attractor, when r < 1.

The phase portrait of the solution from the first and 
second row of Table 4 are illustrated in Figure 3. After 
a short excursion in negative y direction (t ≈ 5), the green 
trajectory quickly converges to zero. The red trajectory 
seems to take a shorter path in phase space, but, it is 
actually slower to converge to the origin. This is verified 

by a plot of the trajectories for the separate dimensions x, 
y and z over time Figure 4.

Control in z: For control in z the actuator term u is added 
to the left side of the equation for ż in the uncontrolled 
system (1)

( ) ,  ,  x y bz u x y z= - +ż

Selected Pareto-front individuals from the GP run are 
displayed in Table 5. As mentioned at the beginning of 
this section, effective control is hindered by the indirect 
influence of z on the other state variables, hence, it is not 
surprising that the control laws here are more involved 
than in the previous case. Also, they generally do not 
perform well in the control of z, which is expressed by the 
relatively high values in RMSEz. This is confirmed by the 
phase portrait of the solution u(x, y, z) = –(k · (–y) + x · z + y 
+ z) shown in figure Figure 5: While going straight to the 
origin in the xy-plane there are strong oscillations of the 
trajectory along the z-axis.

The dynamics caused by the actuation, e.g. for the best 
control law found, can be explained qualitatively: there 

Table 4: Control of the Lorentz system in y: Pareto-front solutions.

RMSEx RMSEy RMSEz length expression constants

0.178884 0.087476 0.105256 7 –exp(x) + k · y k = –135.43

0.241226 0.069896 0.213063 5 k · x + z k = –27.84

0.246315 0.014142 0.222345 6 –z + k · y k = –75590.65

0.246316 0.014142 0.222347 4 –k · y k = 75608.50

0.246367 0.028851 0.220426 10 –x · (k + y) · exp(exp(y)) k = 9.62

0.246729 0.118439 0.211212 6 –x · (k + y) k = 29.21

0.246850 0.031747 0.220726 9 –x · (k + y) · exp(y) k = 26.12

4.476902 4.468534 7.488516 3 –exp(y)

7.783655 8.820086 24.122441 2 –x

7.931978 9.066296 25.047630 1 k k = 1.0

8.319191 8.371462 25.932887 2 –y

8.994685 9.042226 30.300641 1 z

Figure 4: Detailed view of the single trajectories in x, y, and z dimension. (blue: uncontrolled; green: u(x, y, z) = –exp(x) 
+ k · y, k = –135.43; red: u(x, y, z) = k · x + z, k = –27.84).
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is a strong damping in all variables but y. This reflects 
the tendency to suppress z-oscillations and, at the same 
time, to add damping in y through the xz term: if y grows, 
the z contribution to damping on the right hand side of 
the Lorenz equations (1) grows and, in turn, damps y. 
This is, however, only possible to some extent, hence, the 
oscillations observed in figure Figure 5.

We conclude the demonstration with a short summary: 
Using Glyph we can find complex control laws, even for 
unknown systems. This cannot be easily achieved with 
other frameworks. The control laws found can be studied 
analytically in contrast to several other methods which 
have black-box character. The usage is straightforward, 

as we have described above. The above example can be 
found online as an example.

Other symbolic regression libraries
Due to its popularity, symbolic regression is implemented 
by most genetic programming libraries. A semi-curated 
list can be found at http://geneticprogramming.com/
software/. In contrast to other implementations, Glyph 
implements higher concepts, such as symbolic constant 
optimization, and also offers parallel execution for complex 
examples (control simulation, system identification). 
This is very important for practical applications. Glyph 
is well tested, cf. Table 6 and currently applied in two 

Table 5: Control of the Lorentz system in z: selected Pareto-front solutions.

RMSEx RMSEy RMSEz length expression constants

0.289289 0.139652 26.994070 13 –(k · (–y) + x · z + y + z) k = 793.129676

0.327926 0.267043 27.070289 8 exp(–k + y · sin(y)) k = –4.254574

0.431993 0.508829 32.116326 7 (k + x) · (y + z) k = 2.638069

0.471535 0.525010 26.986321 5 k + x · z k = 67.137183

0.637056 0.605686 26.895493 7 exp(k + y · sin(y)) k = 3.964478

0.677204 0.703577 27.019308 4 y + exp(k) k = 4.276256

0.930668 0.952734 26.895126 5 x + exp(exp(k)) k = 1.448198

1.764030 1.860288 26.766383 6 (k + x) · exp(y) k = 21.783557

Figure 5: Control of the Lorentz system in ż.
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experiments and several numerical problems. For control, 
apart from our implementation, there exists only one 
more alternative as a dedicated matlab toolbox (with 
python interface), openMLC [15], which contains much of 
the material treated in [6]. Apart from the fact that matlab 
itself is no free software, one difference is that a toolbox is 
not as powerful as a library made for developers to extend 
into various directions. Our first application is control, 
however the library is built in an extensible way and now 
more and different applications are ongoing. Further, 
we offer multi-objectivity, multi-output and constant 
optimization which make symbolic regression applicable 
and useful for practical tasks.

Quality control
Continuous Integration tests are conducted for Mac, 
Linux and Windows using Travis and AppVeyor. The tests 
consider Python version 3.6. Unit test coverage is around 
85% as reported by codecov. Additionally, tests specifically 
cover the stochastic parts of the optimization to ensure 
reproducibility. Along with the software tests are shipped 
which guarantee the correct execution of the examples. 
The user can reuse these tests for further development. 
Locally, tests can be executed via the pytest command.

(2) Availability
Operating system
Glyph is compatible with Mac, Linux and Windows.

Programming language
Python 3.6+

Dependencies
Glyph is based on DEAP [16], an evolutionary computation 
framework adopting a toolbox-like structure for rapid 
prototyping. Further dependencies are found up-to-date 
at https://github.com/Ambrosys/glyph/blob/master/
requirements.txt. To run test, examples and to build the 
documentation, one needs to install https://github.com/
Ambrosys/glyph/blob/master/requirements-dev.txt.

List of contributors
Core contributors (prior to open source): Markus Quade 
Julien Gout Open source contributors can be found at 
https://github.com/Ambrosys/glyph/graphs/contributors.

Software location
Archive Zenodo

Name: Ambrosys/glyph
�Persistent� identifier: http://doi.org/10.5281/zenodo. 
2572859

Licence: LGPL
Publisher: Markus Quade
Version published: 0.5.2
Date published: 19.02.19

Code repository Github
Name: glyph
 Persistent� identifier: https://github.com/Ambrosys/
glyph
Licence: LGPL
Date published: 08.12.16

Language
English

(3) Reuse potential
The potential to use Glyph is twofold: on one hand 
applications can be easily written and the elegant core 
functionality can be extended; on the other hand, 
researchers can use the code as core for symbolic regression 
and extend its functionality in a very generic way. With 
respect to applications, currently two main directions are 
targeted: modeling using genetic programming- based 
symbolic regression and the control of complex system, 
where a control law can be found generically, using genetic 
programming. The detailed examples and tutorial allow 
usage from beginner to experienced level, i.e. undergraduate 
research projects to faculty research. The design of Glyph is 
such that generic interfaces are provided allowing for very 
flexible extension.

Notes
 1 See also https://glyph.readthedocs.io/en/latest/usr/

concepts/.
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