
Quade, M, et al. 2019 Glyph: Symbolic Regression
Tools. Journal of Open Research Software, 7: 19.
DOI: https://doi.org/10.5334/jors.192

Journal of
open research software

SOFTWARE METAPAPER

Glyph: Symbolic Regression Tools
Markus Quade, Julien Gout and Markus Abel
Ambrosys GmbH, Potsdam, DE
Corresponding author: Markus Quade (markus.quade@ambrosys.de)

We present Glyph – a Python package for genetic programming based symbolic regression. Glyph is
designed for usage in numerical simulations as well as real world experiments. For experimentalists, glyph-
remote provides a separation of tasks: a ZeroMQ interface splits the genetic programming optimization
task from the evaluation of an experimental (or numerical) run. Glyph can be accessed at https://github.
com/Ambrosys/glyph. Domain experts are able to employ symbolic regression in their experiments with
ease, even if they are not expert programmers. The reuse potential is kept high by a generic interface
design. Glyph is available on PyPI and Github.

Keywords: Symbolic Regression; Genetic Programming; Machine Learning Control; MOGP; Python
Funding statement: This work has been partially supported by the German Science Foundation via SFB
880. MQ was supported by a fellowship within the FITweltweit program of the German Academic Exchange
Service (DAAD).

(1) Overview
Introduction
Symbolic regression [1] is an optimization method to find
an optimal representation of a function. The method is
“symbolic”, because building blocks of the functions,
i.e. variables, primitive functions, and operators, are
represented symbolically on the computer. Genetic
programming (GP) [2] can be implemented to find such a
function for system identification [3, 4] or fluid dynamical
control [5, 6]. Glyph is an effort to separate optimization
method and optimization task allowing domain-
experts without special programming skills to employ
symbolic regression in their experiments. We adopt this
separation of concerns implementing a client-server
architecture; a minimal communication protocol eases
its use. Throughout this paper “experiment” is meant as a
synonym for any symbolic regression task including a lab-
experiment, a numerical simulation or data fitting.

Previous work on system identification and reverse
engineering of conservation laws was reported in [1, 7].
As a substantial extension, we put the algorithms in the
context of control problems and in contrast to these works,
we publish the implementation. Modern algorithms also
include multi-objective optimization [4] and advances like
age fitness based genetic programming [8] or epigenetic
local search [9]. There exist various approaches to the
representation of multi IO problems, including stack- or
graph-based representations and pointers [9, 10]. As a
special feature we extended our implementation such
that it can be easily used for finding an optimal control

law for a given, measured and actuated system. This is,
however just one application of our software.

Implementation and architecture
Glyph is intended as a lightweight framework to build
an application finding an optimal system representation
given measurement data. The main application is
intended as system control, consequently a control law
is determined and returned. Glyph is built on the idea of
loose coupling such that dependencies can be released if
wanted.

A typical control application consists of a system and
its controller, possibly separated, cf. Figure 1. Glyph
has three main module to build such an application:
i) the assessment, which holds all methods and data
structures belonging to the experiment, ii) the GP which
is responsible for the system identification, and iii) the
application components, which constitute an application.

Abstraction Layers
Glyph is conceptualized around different layers of
abstraction:1

1. Representation layer: This layer consists of a data-
structure representing a GP solution, i.e. an individual,
and methods to manipulate such data-structures. This
abstraction layer also allows for an interchangeable
representation.

2. Algorithm layer: This layers encapsulates the
selection and tweaking of individuals.

https://doi.org/10.5334/jors.192
mailto:markus.quade@ambrosys.de
https://github.com/Ambrosys/glyph
https://github.com/Ambrosys/glyph

Quade et al: GlyphArt. 19, page 2 of 8

3. AssessmentRunner layer: Abstracts calculation
of cost functions.

4. GPRunner layer: This is an integration layer which
lets the user iterate the evolutionary algorithm cal-
culating statistics after each iteration.

5. Application layer: This layer sets the context and
control flow.

The first three layers are sufficient to formulate and
optimize a symbolic regression problem. The GPRunner
and Application let you gap the bridge between
prototypes and real-world-problem-solving applications.

Building an Application
An application consists of a GP callable, the gp_runner,
an assessment callable for input, the assessment_
runner, and the application which uses both of these
classes and holds all application-relevant details. A
command-line application is built by
assessment_runner = AssessmentRunner (assess_args)
gp_runner = glyph.application.GPRunner (gp_args)
app = command_line_application (app_args)

The assessment_runner has one argument, the
parallel_factory which implements a map()
method, possibly parallel. For an application one needs to
implement setup, assign_fitness, and measure:
setup is self-explaining, measure is a key method
which takes as input a set of measurement functions
and combines them into a tuple of callable measures
for multiobjective optimization. The measures are used
eventually in assign_fitness where the return values
are used to assign a fitness to an individual from GP. The
interface is freely extensible. A gp_runner forwards
the evolutionary iteration. It takes as arguments, gp_
args, an individual class, a gp_algorithm, and an
assessment_runner. The individual class contains
the representation of a function, the individual; it is
based on DEAP’s tree-based implementation. The gp_
algorithm takes care for the breeding and selection
steps, its principles are described in [2].

The application is run in the main function with app.
run().

In the application and gp_runner, the user has
freedom to add functionality using the list of callbacks in the
arguments, say, to implement other logging or streaming
options. This allows for very flexible programming. We
constructed the components that way to allow users to
specialize for their particular experiments and possibly
increase performance or extend the symbolic regression,
e.g. by replacing the DEAP tree-based representation of an
individual.

Remote Control
One main objective of glyph is its use in a real
experiment. In this case, the GP loop is separated from
the experimental loop in a client-server setup using
ZeroMQ [11], cf. Figure 2.

Consequently, one should implement the interface
to the experiment using the protocol described in the
following subsection. Having the implementation of the
experiment, the server, one needs to implement the client,
i.e. the interface to the gp_runner. In essence this means
connecting the correct sockets with ZeroMQ and ensuring
that the gp_runner and the assessment_runner
use the corresponding sockets. Then, the main application
is assembled as before, now using a RemoteApp for the
main application, which in turn uses a gp_runner,
which then uses now a RemoteAssessmentRunner. That
is it, we can run remotely our GP evaluation from some
client and the experiment in place of the experiment.

Communication Protocol
The communication is encoded in json [12]. A message is
a json object with two members:

{
 “action”: “value”,
 “payload”: “value”
}

The possible values are listed in Table 1. The config action
is performed prior to the evolutionary loop. Entering

Figure 1: Left: A typical closed loop control task is sketched. The system ẋ = f (x) is observed by some measurements s; it
is controlled by by adding the actuation a = u(s, t). The corresponding control law a = u(s, t) is determined by symbolic
regression. Right: gp-based symbolic regression finds different candidate control laws. Each candidate solution is
given a fitness score Γ which is used to compare different solutions and to advance the search in function space.
Figure adapted from [5] with permission.

ẋ = f(x) + a

u(s, t)

sa

Γ

Quade et al: Glyph Art. 19, page 3 of 8

the loop, discovered solutions will be batched and a
experiment action will be requested. You can configure
optional caching for re-discovered solutions. This includes
persistent caching between different runs. The shutdown
action will let the experiment program know that the GP
loop is finished and you can safely stop the hardware.

Configuration settings are sent as a json object in
key:value form, where the keys contain the option to be
set, there is only one mandatory option: the primitive set.
To configure the primitive set, the primitive names are
passed as content of the key config, whose values specify
the corresponding arities, both fields described again as
json object.

The experiment action sends a list of expressions,
encoded as string in prefix (also: polish) notation [13].
For each expression sent, the experiment returns a fitness
tuple.

Additionally, one can define the type of algorithm,
error metric, representation, hyper-parameters, etc. A
comprehensive up to date list can be found at http://
glyph.readthedocs.io/en/latest/usr/glyph_remote/.

Application example: control of the chaotic Lorenz
System
In the following, we demonstrate the application and use
of Glyph by the determination of an unknown optimal
control law for a chaotic system. As an example, we study
the control of the potentially chaotic Lorenz system.
Chaotic systems are very hard to predict and control in

practice due to their sensitivity towards small changes in
the initial state which may lead to exponential divergence
of trajectories. The Lorenz model [14] consists of a system
of three ordinary differential equations:

()

,

x s y x

y rx y xz
z xy bz

= −

= − −
= −

&

&

&

 (1)

with two nonlinearities, xy and xz. Here x, y, and z make
up the system state and s, r, b are parameters: s is the
Prandtl number, r is the Rayleigh number, and b is related
to the aspect ratio of the air rolls. For a certain choice
of parameters and initial conditions chaotic behavior
emerges.

We present two examples where the target is to learn
control of bring a chaotic Lorenz system to a complete
stop, that is, (x, y, z) = 0 (t ∈ R). In the first example,
“control in y”, the actuator term is applied to ẏ. This allows
for a more direct control of the system, since y appears in
every equation of (1) and, thus, influence all three state
components, x, y, and z. In the second example, “control in
z”, the actuator term is applied to ż, which leads to a more
indirect control, since the flow of information from z to x
is only through y.

The system setup is summarized in Tables 2 and
3. When r = 28, s =10, and b = 8/3, the Lorenz system
produces chaotic solutions (not all solutions are chaotic).
Almost all initial points will tend to an invariant set –
the Lorenz attractor – a strange attractor and a fractal.
When plotted the chaotic trajectory of the Lorenz system
resembles a butterfly (blue graph in Figure 3). The
target of control is, again, formulated as RMSE2 of the
system state with respect to zero (separately for each
component).

() () ()RMSE : RMSE , 0 , RMSE : RMSE , 0 , RMSE : RMSE , 0 .x y zx y z= = =

The control function u can make use of ideal measurements
of the state components. Additionally, we allow for a
single symbolic constant k to be used as argument for

Figure 2: Sketch of the implementation of the experiment – GP communication as client-server pattern. Left: single
experiment server plus event handler. Right: GP client. Both parts are interfaced using ZeroMQ. As described in Sec.
the GP program performs requests, e.g. the evaluation of a candidate solution. The event handler takes care of these
requests and eventually forwards them to the hardware.

Table 1: Communication protocol. The config action
contains the options to be set, the experiment action
contains a list of expressions, the shutdown action
terminates the application.

Action name Payload Expected return
Value

CONFIG – config settings

EXPERIMENT list of expressions list of fitness value(s)

SHUTDOWN – –

http://glyph.readthedocs.io/en/latest/usr/glyph_remote/
http://glyph.readthedocs.io/en/latest/usr/glyph_remote/

Quade et al: GlyphArt. 19, page 4 of 8

the control law. Given an expression, this constant is
optimized separately, see also [4]. The respective GP runs
for control in y and control in z are conducted with the
corresponding random seeds labeled “in y” and “in z”.

Control in y: For control in y the actuator term u
is added to the left side of the equation for ẏ in the
uncontrolled system (1):

() , ,y rx y xz u x y z= − − +&

The Pareto solutions from the GP run are shown in
Table 4. The wide spread of the RMSE values is a sign
of conflicting objectives that are hard to satisfy in
conjunction. Interestingly, almost all solutions, u,
commonly introduce a negative growth rate into ẏ. This
effectively drives y to zero and suppresses the growth
terms, sy and xy, in the equations for ẋ and ż respectively,
in turn, driving x and z to zero as well. As would be

Table 2: General setup of the GP runs.

population size 500

max. generations 20

MOO algorithm NSGA-II

tree generation halfandhalf

min. height 1

max. height 4

selection selTournament

tournament size 2

breeding varOr

recombination cxOnePoint

crossover probability 0.5

crossover max. height 20

mutation mutUniform

mutation probability 0.2

mutation max. height 20

constant optimization leastsq

Figure 3: Phase portrait of the forced Lorenz system with control exerted in ẏ. (Green and red: The system trajectories
when controlled by two particular Pareto-front solutions. Blue: the uncontrolled chaotic system).

x

−20 −15 −10 −5
0

5
10

15
20

y

−40
−30

−20
−10

0
10

20
30

z

0

10

20

30

40

50

start

uncontrolled

with u(x, y, z) = k · y − exp(x), k = −135.43

with u(x, y, z) = k · x+ z, k = −27.84

Table 3: Control of the Lorenz system: system setup.

Dynamic system GP

s 10 cost functionals RMSE (x, 0)

r 28 RMSE (y, 0)

b 8/3 RMSE (z, 0)

x(t0) 10.0 length (u)

y(t0) 1.0 argument set {x, y, z}

z(t0) 5.0 constant set {k}

t0, tn 0, 100 seed (in y) 4360036820278701581

n 5000 seed (in z) 2480329230996732981

Quade et al: Glyph Art. 19, page 5 of 8

expected, minimal expressions, of length 1 or 2, cannot
compete in terms of the RMSE. For example, the simple
solution, u(x, y, z) = –ky (fourth row), is almost as good as
the lengthier one, u(x, y, z) = –exp(x) + ky (first row), and
even better in RMSEy.

Table 4 shows the results from the GP run. One solution
immediately stands out: u = k · x + z, with k = –27.84
(second row). It is exactly what one might expect as a
control term for the chaotic Lorenz system with control
in y. This control law effectively reduces the Rayleigh
number r to a value close to zero (k ≈ r), pushing the
Lorenz system past the first pitchfork bifurcation, at r = 1,
back into the stable-origin regime. If r < 1 then there is
only one equilibrium point, which is at the origin. This
point corresponds to no convection. All orbits converge to
the origin, which is a global attractor, when r < 1.

The phase portrait of the solution from the first and
second row of Table 4 are illustrated in Figure 3. After
a short excursion in negative y direction (t ≈ 5), the green
trajectory quickly converges to zero. The red trajectory
seems to take a shorter path in phase space, but, it is
actually slower to converge to the origin. This is verified

by a plot of the trajectories for the separate dimensions x,
y and z over time Figure 4.

Control in z: For control in z the actuator term u is added
to the left side of the equation for ż in the uncontrolled
system (1)

() , , x y bz u x y z= - +ż

Selected Pareto-front individuals from the GP run are
displayed in Table 5. As mentioned at the beginning of
this section, effective control is hindered by the indirect
influence of z on the other state variables, hence, it is not
surprising that the control laws here are more involved
than in the previous case. Also, they generally do not
perform well in the control of z, which is expressed by the
relatively high values in RMSEz. This is confirmed by the
phase portrait of the solution u(x, y, z) = –(k · (–y) + x · z + y
+ z) shown in figure Figure 5: While going straight to the
origin in the xy-plane there are strong oscillations of the
trajectory along the z-axis.

The dynamics caused by the actuation, e.g. for the best
control law found, can be explained qualitatively: there

Table 4: Control of the Lorentz system in y: Pareto-front solutions.

RMSEx RMSEy RMSEz length expression constants

0.178884 0.087476 0.105256 7 –exp(x) + k · y k = –135.43

0.241226 0.069896 0.213063 5 k · x + z k = –27.84

0.246315 0.014142 0.222345 6 –z + k · y k = –75590.65

0.246316 0.014142 0.222347 4 –k · y k = 75608.50

0.246367 0.028851 0.220426 10 –x · (k + y) · exp(exp(y)) k = 9.62

0.246729 0.118439 0.211212 6 –x · (k + y) k = 29.21

0.246850 0.031747 0.220726 9 –x · (k + y) · exp(y) k = 26.12

4.476902 4.468534 7.488516 3 –exp(y)

7.783655 8.820086 24.122441 2 –x

7.931978 9.066296 25.047630 1 k k = 1.0

8.319191 8.371462 25.932887 2 –y

8.994685 9.042226 30.300641 1 z

Figure 4: Detailed view of the single trajectories in x, y, and z dimension. (blue: uncontrolled; green: u(x, y, z) = –exp(x)
+ k · y, k = –135.43; red: u(x, y, z) = k · x + z, k = –27.84).

�������������

����

���
���
��
�
�
��
��
��

�

�������������

����

���
���
���
���

�
��
��
��

�

�������������

����

�
�
��
��
��
��
��
��
��
��

�

Quade et al: GlyphArt. 19, page 6 of 8

is a strong damping in all variables but y. This reflects
the tendency to suppress z-oscillations and, at the same
time, to add damping in y through the xz term: if y grows,
the z contribution to damping on the right hand side of
the Lorenz equations (1) grows and, in turn, damps y.
This is, however, only possible to some extent, hence, the
oscillations observed in figure Figure 5.

We conclude the demonstration with a short summary:
Using Glyph we can find complex control laws, even for
unknown systems. This cannot be easily achieved with
other frameworks. The control laws found can be studied
analytically in contrast to several other methods which
have black-box character. The usage is straightforward,

as we have described above. The above example can be
found online as an example.

Other symbolic regression libraries
Due to its popularity, symbolic regression is implemented
by most genetic programming libraries. A semi-curated
list can be found at http://geneticprogramming.com/
software/. In contrast to other implementations, Glyph
implements higher concepts, such as symbolic constant
optimization, and also offers parallel execution for complex
examples (control simulation, system identification).
This is very important for practical applications. Glyph
is well tested, cf. Table 6 and currently applied in two

Table 5: Control of the Lorentz system in z: selected Pareto-front solutions.

RMSEx RMSEy RMSEz length expression constants

0.289289 0.139652 26.994070 13 –(k · (–y) + x · z + y + z) k = 793.129676

0.327926 0.267043 27.070289 8 exp(–k + y · sin(y)) k = –4.254574

0.431993 0.508829 32.116326 7 (k + x) · (y + z) k = 2.638069

0.471535 0.525010 26.986321 5 k + x · z k = 67.137183

0.637056 0.605686 26.895493 7 exp(k + y · sin(y)) k = 3.964478

0.677204 0.703577 27.019308 4 y + exp(k) k = 4.276256

0.930668 0.952734 26.895126 5 x + exp(exp(k)) k = 1.448198

1.764030 1.860288 26.766383 6 (k + x) · exp(y) k = 21.783557

Figure 5: Control of the Lorentz system in ż.

x

−20 −15 −10 −5
0

5
10

15

y

−20

−10

0

10

20

z

5

10

15

20

25

30

35

40

45

start

uncontrolled with u(x, y, z) = k · y − x · z − y − z, k = 793.13

http://geneticprogramming.com/software/
http://geneticprogramming.com/software/

Quade et al: Glyph Art. 19, page 7 of 8

experiments and several numerical problems. For control,
apart from our implementation, there exists only one
more alternative as a dedicated matlab toolbox (with
python interface), openMLC [15], which contains much of
the material treated in [6]. Apart from the fact that matlab
itself is no free software, one difference is that a toolbox is
not as powerful as a library made for developers to extend
into various directions. Our first application is control,
however the library is built in an extensible way and now
more and different applications are ongoing. Further,
we offer multi-objectivity, multi-output and constant
optimization which make symbolic regression applicable
and useful for practical tasks.

Quality control
Continuous Integration tests are conducted for Mac,
Linux and Windows using Travis and AppVeyor. The tests
consider Python version 3.6. Unit test coverage is around
85% as reported by codecov. Additionally, tests specifically
cover the stochastic parts of the optimization to ensure
reproducibility. Along with the software tests are shipped
which guarantee the correct execution of the examples.
The user can reuse these tests for further development.
Locally, tests can be executed via the pytest command.

(2) Availability
Operating system
Glyph is compatible with Mac, Linux and Windows.

Programming language
Python 3.6+

Dependencies
Glyph is based on DEAP [16], an evolutionary computation
framework adopting a toolbox-like structure for rapid
prototyping. Further dependencies are found up-to-date
at https://github.com/Ambrosys/glyph/blob/master/
requirements.txt. To run test, examples and to build the
documentation, one needs to install https://github.com/
Ambrosys/glyph/blob/master/requirements-dev.txt.

List of contributors
Core contributors (prior to open source): Markus Quade
Julien Gout Open source contributors can be found at
https://github.com/Ambrosys/glyph/graphs/contributors.

Software location
Archive Zenodo

Name: Ambrosys/glyph
�Persistent� identifier: http://doi.org/10.5281/zenodo.
2572859

Licence: LGPL
Publisher: Markus Quade
Version published: 0.5.2
Date published: 19.02.19

Code repository Github
Name: glyph
 Persistent� identifier: https://github.com/Ambrosys/
glyph
Licence: LGPL
Date published: 08.12.16

Language
English

(3) Reuse potential
The potential to use Glyph is twofold: on one hand
applications can be easily written and the elegant core
functionality can be extended; on the other hand,
researchers can use the code as core for symbolic regression
and extend its functionality in a very generic way. With
respect to applications, currently two main directions are
targeted: modeling using genetic programming- based
symbolic regression and the control of complex system,
where a control law can be found generically, using genetic
programming. The detailed examples and tutorial allow
usage from beginner to experienced level, i.e. undergraduate
research projects to faculty research. The design of Glyph is
such that generic interfaces are provided allowing for very
flexible extension.

Notes
 1 See also https://glyph.readthedocs.io/en/latest/usr/

concepts/.
 2 1

2

0

1
RMSE(a, b) (() ())

N

i ii
a t b t

N

−

=
= −∑

Acknowledgements
We acknowledge very fruitful discussions with respect to
applications of MLC with S. Brunton, B. Noack, A. Pikovsky,
M. Rosenblum, R. Semaan, and B. Strom and coding gossip
with V. Mittal and F. Meckel.

Competing Interests
The authors have no competing interests to declare.

References
1. Schmidt, M and Lipson, H “Distilling Free-Form

Natural Laws from Experimental Data”. In: Science,
324(5923): 81–85. Apr. 2009. DOI: https://doi.org/10.
1126/science.1165893

Table 6: Comparison of Glyph and openMLC features. MOGP refers to multi-objective optimization. MO means
multiple outputs. SCO means symbolic constant optimization.

CI/tests doc caching checkpointing MOGP SCO MO

openMLC

Glyph

https://github.com/Ambrosys/glyph/blob/master/requirements.txt
https://github.com/Ambrosys/glyph/blob/master/requirements.txt
https://github.com/Ambrosys/glyph/blob/master/requirements-dev.txt
https://github.com/Ambrosys/glyph/blob/master/requirements-dev.txt
https://github.com/Ambrosys/glyph/graphs/contributors
http://doi.org/10.5281/zenodo.2572859
http://doi.org/10.5281/zenodo.2572859
https://github.com/Ambrosys/glyph
https://github.com/Ambrosys/glyph
https://glyph.readthedocs.io/en/latest/usr/concepts/
https://glyph.readthedocs.io/en/latest/usr/concepts/
https://doi.org/10.1126/science.1165893
https://doi.org/10.1126/science.1165893

Quade et al: GlyphArt. 19, page 8 of 8

2. Koza, J R Genetic programming: On the programming
of computers by means of natural selection, 1. MIT press,
1992.

3. Vladislavleva, E, et al. “Predicting the energy output
of wind farms based on weather data: Important
variables and their correlation”. In: Re-newable
Energy, 50: 236–243. Feb. 2013. DOI: https://doi.
org/10.1016/j.renene.2012.06.036

4. Quade, M, et al. “Prediction of dynamical systems
by symbolic regression”. In: Physical Review E,
94(1). July 2016. DOI: https://doi.org/10.1103/
PhysRevE.94.012214

5. Gout, J, et al. “Synchronization control of oscillator
networks using symbolic regression”. In: Nonlinear
Dyn, 91(2): 1001–1021. Nov. 2017. DOI: https://doi.
org/10.1007/s11071-017-3925-z

6. Duriez, T, Brunton, S L and Noack, B R Machine
Learning Control – Taming Nonlinear Dynamics
and Turbulence. Springer International Publishing,
2017. DOI: https://doi.org/10.1007/978-3-319-
40624-4

7. Schmidt, M D, et al. “Automated refinement
and inference of analytical models for metabolic
networks”. In: Physical Biology, 8(5). Aug. 2011. DOI:
https://doi.org/10.1088/1478-3975/8/5/055011

8. Schmidt, M and Lipson, H “Age-Fitness Pareto
Optimization”. In: Genetic Programming Theory and
Practice VIII, 129–146. New York: Springer, Oct.

2010. DOI: https://doi.org/10.1007/978-1-4419-
7747-2_8

9. La Cava, W, Danai, K and Spector, L “Inference of
compact nonlinear dynamic models by epigenetic
local search”. In: Engineering Applications of Artificial
Intelligence, 55: 292–306. Oct. 2016. DOI: https://doi.
org/10.1016/j.engappai.2016.07.004

10. Galvan-Lopez, E “Efficient graph-based genetic
programming representation with multiple outputs”.
In: International Journal of Automation and Computing,
5(1): 81–89. Jan. 2008. DOI: https://doi.org/10.1007/
s11633-008-0081-4

11. Akgul, F ZeroMQ. Packt Publishing, 2013.
12. Ecma International. “The JSON Data Interchange

Format”. In: Standard ECMA-404, 9(2013).
13. Jorke, G, Lampe, B and Wengel, N Arithmetische

Algorithmen der Mikrorechentechnik. Verlag Technik,
1989.

14. Lorenz, E N “Deterministic Nonperiodic Flow”. In:
Journal of the At-mospheric Sciences, 20(2): 130–
141. 1963. DOI: https://doi.org/10.1175/1520-
0469(1963)020<0130:DNF>2.0.CO;2

15. MachineLearningControl. OpenMLC-Python. Aug.
2017. URL: https://github.com/MachineLearning
Control/OpenMLC-Python.

16. De Rainville, F-M, et al. “DEAP”. In: ACM
SIGEVOlution, 6(2): 17–26. (Feb. 2014). DOI: https://
doi.org/10.1145/2597453.2597455

How to cite this article: Quade, M, Gout, J and Abel, M 2019 Glyph: Symbolic Regression Tools. Journal of Open Research
Software, 7: 19. DOI: https://doi.org/10.5334/jors.192

Submitted: 12 September 2017 Accepted: 20 May 2019 Published: 17 June 2019

Copyright: © 2019 The Author(s). This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

OPEN ACCESSJournal of Open Research Software is a peer-reviewed open access journal published by
Ubiquity Press.

https://doi.org/10.1016/j.renene.2012.06.036
https://doi.org/10.1016/j.renene.2012.06.036
https://doi.org/10.1103/PhysRevE.94.012214
https://doi.org/10.1103/PhysRevE.94.012214
https://doi.org/10.1007/s11071-017-3925-z
https://doi.org/10.1007/s11071-017-3925-z
https://doi.org/10.1007/978-3-319-40624-4
https://doi.org/10.1007/978-3-319-40624-4
https://doi.org/10.1088/1478-3975/8/5/055011
https://doi.org/10.1007/978-1-4419-7747-2_8
https://doi.org/10.1007/978-1-4419-7747-2_8
https://doi.org/10.1016/j.engappai.2016.07.004
https://doi.org/10.1016/j.engappai.2016.07.004
https://doi.org/10.1007/s11633-008-0081-4
https://doi.org/10.1007/s11633-008-0081-4
https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
https://github.com/MachineLearningControl/OpenMLC-Python
https://github.com/MachineLearningControl/OpenMLC-Python
https://doi.org/10.1145/2597453.2597455
https://doi.org/10.1145/2597453.2597455
https://doi.org/10.5334/jors.192
http://creativecommons.org/licenses/by/4.0/

	(1) Overview
	Introduction
	Implementation and architecture
	Abstraction Layers
	Building an Application
	Remote Control
	Communication Protocol
	Application example: control of the chaotic Lorenz System
	Other symbolic regression libraries
	Quality control

	(2) Availability
	Operating system
	Programming language
	Dependencies
	List of contributors
	Software location
	Archive Zenodo
	Code repository Github

	Language

	(3) Reuse potential
	Notes
	Acknowledgements
	Competing Interests
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5
	Table 6

