
Grady, M, et al. 2018 PLEASE: The Python Low-energy Electron Analysis
SuitE – Enabling Rapid Analysis of LEEM and LEED Data. Journal of Open
Research Software, 6: 7. DOI: https://doi.org/10.5334/jors.191

Journal of
open research software

SOFTWARE METAPAPER

PLEASE: The Python Low-energy Electron Analysis
SuitE – Enabling Rapid Analysis of LEEM and LEED Data
Maxwell Grady, Zhongwei Dai and Karsten Pohl
University of New Hampshire Department of Physics and Materials Science Program, US
Corresponding author: Maxwell Grady, Lead (max.grady@gmail.com)

PLEASE, the Python Low-energy Electron Analysis SuitE, provides an open source and cross-platform
graphical user interface (GUI) for rapid analysis and visualization of low energy electron microscopy
(LEEM) data sets. LEEM and the associated technique, selected area micro-spot low energy electron
diffraction (μ-LEED), are powerful tools for analysis of the surface structure for many novel materials.
Specifically, these tools are uniquely suited for the characterization of two-dimensional materials. PLEASE
offers a user-friendly point-and-click method for extracting intensity-voltage curves from LEEM and LEED
data sets. Analysis of these curves provides insight into the atomic structure of the target material
surface with unparalleled resolution.

Keywords: Physics; Materials Science; Electron Microscopy; Electron Diffraction; Surface Science;
Python; 2D Materials

(1) Overview
Introduction
Low energy electron microscopy, LEEM, and the associated
technique of micro-spot low energy electron diffraction,
μ-LEED, provide a unique avenue for atomic level surface
structure determination with sub-Å resolution [3],
(1Å = 10–10m). These characterization tools are useful
for the investigation of a wide gamut of novel materials
such as graphene, black phosphorus, and other two-
dimensional (2D) materials. The electronic structure of
2D materials is inherently linked to the surface structure
as a result of reduced dimensionality, thus, in order to
more fully understand the electronic properties of these
materials, their surface structure must be determined with
high resolution. Furthermore, detailed understanding of
the surface structure will help to guide future applications
of these materials.

The process of surface structure determination with
sub-Å resolution for ultra thin or 2D materials remains
a complicated task. There are a number of experimental
techniques that are surface sensitive, however, many are
not suited to the study of two-dimensional materials.
Many 2D materials can currently only be created in small
micron-sized flakes with one to few layer thickness. LEEM
and μ-LEED provide an excellent method for collecting
experimental data from a wide variety of materials
including 2D materials with small surface area, specifically
due to the non-destructive nature of the technique, and
its very small data acquisition area of order 1 μm. Surface
structure information can be obtained from LEEM and

μ-LEED experiments through analysis of intensity versus
voltage, I(V), data sets. These data sets map the relationship
between the intensity (I) of the reflected or diffracted
electrons and the energy (V) of the incident electron beam.
LEEM and LEED I(V) data sets are sensitive to the target
material’s atomic surface structure and composition in all
three dimensions with sub-Å resolution [3, 8].

The general outline of surface structure determination
using LEEM and LEED proceeds as follows. First,
experimental data is acquired using either LEEM or LEED
operation mode. I(V) data sets are collected by varying
the energy of the incident electrons in fixed steps and
recording each resulting image. Once the data has been
collected, the next step is to extract I(V) curves from the
data set from relevant parts of the images. The PLEASE
software package aims to make this step of the surface
structure determination easy and user friendly. I(V) curves
extracted using PLEASE can be output to text for further
processing. Next, the experimental data must be compared
to computational models. This is done by performing
dynamic electron multiple scattering calculations to
simulate the I(V) relationship. Already, software packages
exist for computational generation of LEED-I(V) curves
based on multiple scattering theory [7, 9, 10]. There is
also active research in using first-principles calculations
to generate LEEM-I(V) curves for novel materials [2, 4, 5].
The computational process iterates by comparing the
experimental data to the calculated data and adjusting
the modeled surface structure until sufficient agreement
is found between experiment and calculation. The final

https://doi.org/10.5334/jors.191
mailto:max.grady@gmail.com

Grady et al: PLEASEArt. 7, p. 2 of 8

structure input in this procedure can then be considered
the optimized surface structure and composition.

At the time of initial development for this project,
there were no open source solutions for specifically
designed for the analysis of LEEM and μ-LEED data. The
PLEASE software package fills this gap by providing an
open source and cross platform graphical user interface
for rapid visualization and analysis of LEEM and LEED
data. While there are many steps to the overall process
of surface structure determination, emphasis in this
software is placed on ease of use in the extraction of
I(V) curves from LEEM and LEED data sets and analysis
of background signals. The software package adds to the
already rich ecosystem of scientific software written in
python, and provides a simple interface for interacting
with LEEM data.

Examples and Usage
The main data constructs in PLEASE are LEEM and LEED
I(V) data sets, which are represented natively as three-
dimensional arrays using the python NumPy library for
fast and efficient storage. The first and second array axes
represent the image axes. The third array axis represents
the voltage of the incident electron, or rather, its kinetic
energy. The I(V) data set, can thus be envisioned as a
vertical stack of images with the vertical axis representing
electron imaging energy. Each two-dimensional slice of
the three-dimensional array constitutes an image of the
sample in real space (LEEM) or reciprocal space (LEED)
at a fixed incident electron energy as shown in Figure 2.
Figure 1 demonstrates an example of real space LEEM
data analysis, whereas Figure 3 demonstrates reciprocal
space LEED analysis.

In a LEEM data set, an I(V) curve is generated by
taking a vertical slice through the array and plotting the
intensity of each pixel in the slice versus the incident
electron energy from that slice (I as a function of V).
Figure 1 demonstrates this functionality. The left-hand

image shows a single image from a LEEM I(V) set of
graphene islands on a ruthenium substrate with a 50
μm field of view collected at a fixed incident electron
energy of 7.1 eV. The right-hand side image displays the
I(V) curve extracted from the pixel designated by the
yellow cross-hair in the left image. The user interface
tracks the mouse movement within a LEEM image and
automatically extracts the electron I(V) curve and displays
in the right hand plotting area in real-time. Optionally,
the user can choose to apply a data smoothing method
to the displayed I(V) curve. The smoothed I(V) curve is
calculated via convolution of the input signal with a pre-
defined and user selectable window function. While data
smoothing is enabled, LEEM-I(V) curves are still plotted in
real-time by tracking user mouse movement in the LEEM
image plot.

The extraction of relevant I(V) curves from LEED data
sets is slightly more complicated, however the user
interface makes the process easy for the end user. In LEEM
analysis, by default, the I(V) curves are extracted from a
one pixel wide vertical slice of the main data array. For
LEED images, the intensity of an entire electron beam
spot must be recorded. Thus, the user selects one or more
electron beams with an adjustable sized square window.
The average intensity per image from the window region
is plotted as a function of incident electron energy, as
shown in Figure 3. Optionally, for LEEM-I(V) analysis the
user can chose to extract an average I(V) from a rectangular
window.

Finally, when analyzing LEED data sets, it is often useful to
extract I(V) data not only from the reflected and diffracted
electron beams but also from the surrounding regions
representing a local background signal. PLEASE provides
an automated way to extract the local background signal
for a given user selection. The background I(V) curves can
then be output to tab-delimited text alongside the user
selected data. An example of the automated background
selection process is shown in Figure 4.

Figure 1: 50 μm field of view bright field LEEM image of graphene islands (dark areas) atop a ruthenium single crystal
substrate (light). Image collected with incident electron energy of 7.1 eV. The I(V) curve is extracted from an area on
the graphene island marked by the yellow cross-hair.

Grady et al: PLEASE Art. 7, p. 3 of 8

Implementation and architecture
PLEASE is written purely in the interpreted programing
language, python, with the user interface based on the
Qt C++ application framework via the python bindings,
PyQt and PyQtGraph. Python was chosen for this project
for a number of reasons. First and foremost, python is
cross-platform and open source, which is beneficial
for reaching the largest audience in the scientific
community. Second, python has been well accepted in
the scientific community as an excellent resource for
scientific computing due to its well established set of
third-party libraries, which are often referred to as the
“scientific-stack” [6]. Third, in general, python features
lower development time compared to many other
modern languages. Simply put, it was quicker to learn
to write a full application in python rather than C++.
Finally, the python language emphasizes readability,
which is crucial for promoting reusability in scientific
programing.

To elaborate on the second point, its worth noting
that at its core, python provides a very high degree of
extensibility and interoperability for usage of code from
other languages, namely C/C++ and Fortran [6]. Thus, the
success of the python “scientific stack” stems from the
ability to create python wrappers around heavily optimized
C, C++, and Fortran libraries. This allows the user to offload
the heavy lifting in numeric code to other languages, while
retaining the ability to write their code in a high-level
readable language. For example, rather than reinventing
the wheel, the python NumPy library will link to standard
math libraries such as BLAS, Intel MKL, etc. The impact this
has on writing scientific code in python is two fold. First,
python features low development time for numeric code
as a result of not needing to write in low-level languages.
Finally, python can leverage the speed of optimized C or
Fortran code while retaining a high-level and readable
syntax. This is an important aspect of scientific software,
where often reproducibility and reusability are required.

Figure 3: LEED pattern obtained from a 5 μm diameter region on the 2H surface termination of MoS2 with an incident
electron energy of 85.0 eV [1]. I(V) curves are extracted from three user selected diffracted electron beams. The center
beam intensity is extracted using an 80 × 80 pixel window, the first order diffracted beam intensities are extracted
using a 40 × 40 pixel window.

Figure 2: Intensity-Voltage data sets can be envisioned as a vertical stack of LEEM or LEED images acquired at varying
incident electron energies. Shown here is an example of real space LEEM images acquired at multiple energies. The
intensity of a given pixel varies from image to image as a function of electron energy; this relationship is shown to
the right with the intensity extracted from the location labeled by the red dots. For clarity not all images from the
data set are shown.

Grady et al: PLEASEArt. 7, p. 4 of 8

The PLEASE software package depends on a number
of python libraries that are all freely available and fairly
straightforward to install:

•	 The NumPy library provides optimized and efficient
methods for handling n-dimensional arrays and com-
putations on arrays in python. This library forms the
core of the python “scientific stack,” and is used heav-
ily by PLEASE for efficient representation and manip-
ulation of LEEM/LEED data.

•	 SciPy extends NumPy and provides many methods for
statistical analysis of array-like data.

•	 Pillow, the friendly fork of PIL, the Python Imaging
Library, provides convenience methods for loading
many image types into NumPy arrays for analysis and
visualization. Pillow is used for converting images
into single channel grayscale format.

•	 The PyQt library, from Riverbank Computing Ltd.,
acts as a python wrapper for the Qt C++ application
framework, and serves as the main library for creat-
ing and managing the graphical user interface. The Qt
event system is used to handle user interaction with
the experimental data. Finally, the QThread system
provided by PyQt is used to handle multithreading of
all data I/O processes. This ensures that the main UI
thread is not blocked while reading or writing data
from disk.

•	 PyQtGraph is an additional library that provides con-
venient UI classes for plotting and scientific applica-
tions by leveraging the Qt QGraphicsView Framework
for ultra-fast display. Here it is worth noting that
early versions of PLEASE utilized Matplotlib as the
library for plotting data and displaying images. While
Matplotlib is likely the most popular and well-used
python plotting library, its aim is centered on gener-
ating static publication quality plots. Matplotlib is not
well suited to slideshow-like display of a large num-
ber of images, and thus was replaced by PyQtGraph to
improve performance in real time plotting.

•	 PyYAML provides methods for reading and writing
YAML documents. YAML, (“YAML ain’t a markup lan-
guage”), is a human readable data serialization lan-
guage similar to JSON. This is used to store the con-
figuration for each LEEM and LEED experiment in a
simple, structured, and readable fashion. This greatly
reduces the amount of time needed to begin analyz-
ing data from new experiments.

•	 Pendulum provides an easy to use method of han-
dling date/time data. This is only used in writing user
configuration files to help with debugging. If there
are problems during the usage of PLEASE, it may be
beneficial to output as much information as possi-
ble about the user runtime environment to look for
potential conflicts and problems. Thus, a convenience
method to write this data to file in a structured format
is provided.

The source for PLEASE is written in an object-oriented
manner. While scientific programs are often written
in a procedural manner for clarity, the object-oriented
paradigm is used to facilitate ease of creating a robust
graphical user interface. The PEP-8 python coding
convention is followed, albeit sometimes loosely, with a
few small changes. Notably, the maximum line length is
allowed to be 120 instead of 80. This facilitates descriptive
naming of variables and methods at the expense of
lengthier lines of code.

PLEASE is designed to be executed as a GUI as opposed
to a module imported for use with other python software.
In the future it may be possible to refactor the source to
provide a user facing API that does not depend on the
GUI, however, for now the focus is primarily oriented on
providing a GUI for ease of use during data analysis.

Quality control
Since the PLEASE software package is intended to be used
for exploratory data analysis, the majority of testing for
the software has focused on functional testing using real

Figure 4: For LEED analysis, the local background signal (white) can be automatically generated from a user selection
(red). Here the I(V) data is plotted from the user selected electron beam and six background windows equally spaced
around the selected beam are generated for background analysis.

Grady et al: PLEASE Art. 7, p. 5 of 8

experimental data sets. Continued exposure to LEEM and
LEED experiments studying novel materials provided
a plethora of data sets for continuous testing and
development of this software. Differences in data formats
between one experiment to the next provided a rigorous
test of the I/O capabilities of the software. Using the YAML
document format, a standardized and structured format
was designed to store the experimental parameters
PLEASE needs to open a data set. This streamlines the
processing of many different experimental data sets stored
with potentially many different file parameters. To further
enhance ease of use, the main UI provides an option to
automate the generation of YAML files. Thus, when a new
data set is collected and ready to be analyzed with PLEASE,
a user may select the action “Generate Experiment Config
File” from the File menu. This will open a dialog box for
the user to input the required parameters and then save
the output to an appropriately formatted .yaml file.

In order to verify that the basic data extraction
methods were functioning as required, a number of test
data sets were created. These have no relation to actual
experimentally collected data and were designed to provide
a reference data set for testing user feature selection. The
main code repository contains a directory for test data.
This directory contains both actual experimental data
as well as computer generated test data. The computer
generated test data can be loaded into PLEASE to test that
the data extraction in both LEEM and LEED is working
properly. The only action required to load the data sets
is editing the experiment configuration file (a .yaml file)
provided with each data set. Only one property of the file
needs to be set in order to load the data, this property is
the local path to the data files. Instructions are provided
for editing and creating new experimental configuration
files. In order to facilitate ease of use, an additional python
script as been included within the test data directory,
which will attempt to automatically update the .yaml files
with the appropriate paths to the test data. This script will
only work properly if the test data directory is left as is
upon installation of PLEASE and not modified or moved

to an alternate location. Instructions for usage of this
automated script have been included within the test data
directory.

Figure 5 demonstrates a test of the LEED user
selection process. The test data set contains a mock LEED
image repeated 100 times. Thus the I(V) curve from the
simulated electron beam region should be constant.
The I(V) curve from the background area should also
be constant but everywhere equal to zero. The three
simulated electron beam spots were created to have
slightly different intensities. Data sets consisting of
actual experimental data as well as computer generated
data are provided for both LEEM and LEED analysis for
testing purposes.

(2) Availability
Operating system
The PLEASE software package was tested on Mac OS
X (version 10.8+), Windows 10, and Ubuntu 16.0.4. In
principle, any system that supports python versions 2.7
and 3.5+ will be compatible with PLEASE. No support is
provided or planned for mobile operating systems such as
Android or iOS, and the software has not been tested on
embedded-style Linux variants such as Raspbian for the
Raspberry Pi.

Programming language
Python versions 2.7 and 3.5+ are supported. All
other python versions are not officially supported.
The Anaconda Python distribution, provided free of
charge by Continuum Analytics, is suggested for ease
of use and community support. All python modules
required by PLEASE are available via a combination of
Anaconda’s package manager, Conda, and the standard
python package manager, Pip. All testing for PLEASE
was performed using the CPython implementation of
the python programing language. It may be possible to
use another implementation however, given that PLEASE
relies heavily on NumPy, it may be difficult to target
another python implementation.

Figure 5: A test data set for LEED I(V) data is provided with the source. This data is created to simulate an electron
diffraction I(V) data set and test the user data selection process.

Grady et al: PLEASEArt. 7, p. 6 of 8

Additional system requirements
The system and hardware requirements to run PLEASE
are relatively low, however, the amount of storage
and memory capacity required will vary greatly due
to differences in experimental data sets. The required
memory to load a given data set will depend on the
size and format of the data. Simultaneous visualization
of LEEM and LEED data sets can easily require greater
than 1 Gb of RAM. Thus, to prevent an out-of-memory
exception from being raised by the python interpreter,
it is suggested that PLEASE run only on machines with
6 Gb or more RAM. The most intensive tasks executed
by the GUI are the reading and writing of data. These
tasks are pushed to a separate thread so as to not
block the main UI thread. These tasks are generally I/O
bound as opposed to CPU bound. As a result, the CPU
requirements for PLEASE are not high. Most modern
computers with Intel or AMD CPU’s should have no
trouble running PLEASE. No support is provided for
mobile devices using ARM or other mobile architecture
processors.

Since PLEASE is used for exploratory data analysis
in LEEM and LEED data sets, it is beneficial to run the
software on a high resolution display. When run on
screens with low resolution, the UI can limit the available
area for displaying data. To help alleviate this problem,
the main UI controls are split into dockable widgets.
Thus, on small displays, it may be beneficial to pop-out
and move the control widgets to make more room for the
data display. It is, however, recommended that a display
with sufficient size and resolution should be used where
possible. PLEASE has been tested on monitors ranging in
resolution from 1280 × 720 to 2560 × 1440 and is usable
on all sizes in between.

An ideal PC to run PLEASE would be a CPU >= 2.5 GHz
with 8+Gb RAM and a 20” or larger display with 1080p
resolution, however these are by no means minimum
requirements.

Dependencies
•	 NumPy >= 1.12.0
•	 SciPy >= 0.19.0
•	 Pillow >= 4.0.0
•	 PyQt >= 5.6.0*
•	 PyYAML >= 3.12.0
•	 Pendulum >= 1.1.0
•	 PyQtGraph >= 0.10.0**

* Note: Riverbank Computing Ltd. provides two versions
of their python bindings for the Qt library, PyQt4 and
PyQt5. The APIs provided by these bindings are not
backwards compatible. As currently written, PLEASE will
not work with PyQt4 and there are no plans to add this
functionality in the future.

** Note: There are a few minor API changes between
versions 0.9 and 0.10.0 for the PyQtGraph module, with
the later version enabling support for PyQt5. PLEASE will
not work with version 0.9.0, thus, whether installing via
conda or pip, you must ensure version 0.10.0 or greater
is used.

List of contributors
1. Grady, Maxwell – Sole Developer
2. Dai, Zhongwei – Testing and Feature Suggestion
3. Pohl, Karsten – Testing and Feature Suggestion

Software location
Archive

Name: Figshare
Persistent identifier: https://doi.org/10.6084/

m9.figshare.4907369.v2
Licence: GPLv3
Publisher: Maxwell Grady
Version published: 1.0.0
Date published: 24/08/17

Code repository
Name: GitHub
Persistent identifier: https://www.github.com/

mgrady3/PLEASE
Licence: GPLv3
Date published: June 21, 2017

Language
English

(3) Reuse potential
Development of the PLEASE software package was
originally focused on providing a piece of software to
aid in the analysis of one specific set of LEEM and LEED
data. However, over the course of its development, the
project grew to encompass many features beneficial in a
wide array of material science experiments. This did not
happen by chance, rather reusability became a prominent
design goal of the project.

While usage of this software for atomic surface structure
determination through analysis of μ-LEED data has already
been demonstrated [1], there are a number of related
experimental techniques for which this software can
provide data analysis. Photoemission electron microscopy
(PEEM) is a complementary technique available to many
LEEM systems. PEEM works by illuminating the target
with a collimated beam of monochromatic photons and
forming images from the photo-emitted electrons. these
image sequences can contain embedded spectroscopic
information such as elemental content, electronic
structure, and magnetic structure [3]. The direct
measurement of elemental composition is something
LEEM and LEED are unable to do on their own, making
PEEM a very useful and versatile technique. Since PEEM
and LEEM share a common data type, the PLEASE software
package can also be used to visualize and analyze PEEM
data, providing spectroscopic data in a pixel by pixel
fashion.

PLEASE uses a custom metadata format using the YAML
data serialization language to provide descriptions of
experimental data in order to properly load the data for
visualization. This metadata format can be easily extended
to include experimental configuration parameters for
PEEM and other related techniques. While the current
version of the software provides a minimal framework

https://doi.org/10.6084/m9.figshare.4907369.v2
https://doi.org/10.6084/m9.figshare.4907369.v2
https://www.github.com/mgrady3/PLEASE
https://www.github.com/mgrady3/PLEASE

Grady et al: PLEASE Art. 7, p. 7 of 8

for analysis and visualization of PEEM data sets, future
releases will extend this to include more useful features.
An example of a recent extension of the metadata format
is the addition of the ability to process LEEM/LEED data
sets as time series data rather than I(V) data. This allows for
analysis of I(t) data sets, which is useful for understanding
dynamic processes imaged with LEEM such as epitaxial
growth or surface structure phase transitions as seen with
LEED.

At the time of initial development, open source
solutions for analysis were limited. The two main options
were GXSM [11] and ImageJ. GXSM is a software package
for multi-dimensional image processing with an emphasis
on scanning probe microscopy techniques; this software
package supports most Linux variants as well as OS X,
but not Windows. This package also includes a plugin
for working with the UKSOFT LEEM/LEED image format.
ImageJ is a public domain image processing software
package including an extensive and extensible plugin,
macro, and scripting system and will run natively on all
major OS variants.

While ImageJ is capable of loading the raw LEEM data
in the native UKSOFT image format via the “Import Raw”
method, this requires the user to input the specifics of
the image format each time data is loaded, such as image
height, width, header length, bits per pixel, and byte
order. PLEASE offers a streamlined method of loading data
using the YAML metadata format. In this method, users
enter the experimental configuration once and only once,
then can load data at a later time from a .yaml file with
ease. PLEASE also offers a UI dialog for generation of .yaml
files to store experimental configurations. Thus there is no
need for the user to worry about editing the .yaml files by
hand in a text editor.

While both GXSM and ImageJ are capable of analyzing
LEEM and LEED images, they are much more generically
featured, and understanding how to use them for
LEEM/LEED analysis “out of the box” may be difficult for
a novice user. PLEASE was designed to create a simple and
straightforward method for visualization of LEEM and
LEED data with a “point-and-click” method for extracting
data of interest as opposed to being a drop-in replacement
to existing tools for analysis of arbitrary multidimensional
data sets. As a result, PLEASE offers some features such as
configurable data smoothing for extracted I(V) signals and
automated extraction of local background signals in LEED
data, which are not available in GXSM or ImageJ without
the usage of external plugins or user defined macros.

For those users who may already have a well established
data processing pipeline for analysis of LEEM/LEED data,
PLEASE may not offer much as a drop-in replacement.
However, PLEASE is well suited for those users who are
new to the field of LEEM/LEED experiments. Given that
many LEEM systems are hosted at national laboratory
user facilities, assistance is provided for collecting the
experimental data, however users are then left to their own
devices to visualize and analyze the data. While PLEASE does
not provide the robust ecosystem of plugins and macros,
instead it offers a streamlined and intuitive interface for
rapid analysis of I(V) data with a low learning curve.

In order to make the software available to the largest
audience, PLEASE was designed to be fully cross platform
and open source. Building PLEASE around the core python
scientific libraries makes the software easily extensible.
The software was written to provide flexibility with respect
the data that it can load for visualization.

Currently, data can be loaded from TIFF and PNG image
files, as well as raw binary (.dat) files output from the
LEEM control software. The core data construct is a NumPy
array, thus any type of image that can be converted to a 2D
NumPy array using pillow (PIL) should be possible to read
with PLEASE with minimal alteration of the source. In the
future it may be beneficial to extend the PLEASE data I/O
capabilities to other standardized scientific data formats
such as HDF5 or NetCDF. There are pre-existing python
libraries for handling these types of data formats, thus
integration into PLEASE should be straightforward. Initial
work has begun to facilitate storage of experimental data
and experiment configuration settings in a hierarchical
database using the HDF5 file format. This further
streamlines the ability to load and analyze data from
many different experiments while also providing a single
repository for data and configuration information.

Finally, it should be noted that PLEASE is still an evolving
piece of software. There are a wide variety of potential
features, which are being tested for future releases,
however the current edition of the software contains
features that are stable and useful for the rapid analysis
of LEEM and LEED data sets. The main GitHub repository
will always contain the “master” branch, which contains
the most up to date stable release of PLEASE, as well as a
number of other branches labeled with the prefix “dev_”.
These branches are created to test potential features. For
example, a branch exists for testing the usage of a HDF5
database for storing experimental data and parameters,
whereas another branch exists for testing an alternate
method of ROI selection using the pyqtgraph native ROI
objects.

The primary method of communication about the
project should be the main source repository, which is
hosted on GitHub. The GitHub page for the project has an
issue tracker system, which can be used for communication
between users as well as the project maintainer. This
communication channel is strongly encouraged not only
for bug reporting but for all questions, comments, and
suggestions for the project. The project will continue to
be hosted in a public source repository on GitHub for the
foreseeable future. GitHub was chosen not only to provide
version control and a remote host, but also to facilitate
conversation and contribution from outside users of the
project. Pull-requests for the source are encouraged as
a way to fix problems and suggest new features for the
program. Finally, interested parties should feel free to fork
the project and customize the software for their own needs.

Acknowledgements
Special thanks to Steven Arias (University of New Hampshire)
for discussing ideas for the original groundwork of this
software. Finally, gratitude is due to Taisuke Ohta and
Bogdan Diaconescu from the Sandia National Laboratory

Grady et al: PLEASEArt. 7, p. 8 of 8

Center for Integrated NanoTechnology as well as Samuel
Tenney and Jurek Sadowski from the Brookhaven National
Laboratory Center for Functional Nanomaterials for
providing a thorough and hands-on introduction to the
techniques of LEEM and μ-LEED.

Funding Information
Funding for this work was provided by the following
grants and fellowships: National Science Foundation
DMR-1006863 and the University of New Hampshire
NASA Space Grant Graduate Research Fellowship.

This research used resources of the Center for
Functional Nanomaterials, which is a U.S. DOE Office of
Science Facility, at Brookhaven National Laboratory under
Contract No. DE-SC0012704.

This work was performed, in part, at the Center for
Integrated Nanotechnologies, an Office of Science User
Facility operated for the U.S. Department of Energy (DOE)
Office of Science by Los Alamos National Laboratory
(Contract DE-AC52-06NA25396) and Sandia National
Laboratories (Contract DE-NA-0003525).

Competing Interests
The authors have no competing interests to declare.

References
1. Dai, Z, Jin, W, Grady, M, Sadowski, J T, Dadap, J I,

Osgood, R M, Jr. and Pohl, K 2017 Surface Structure
of bulk 2H-MoS2: A selected area low energy electron
diffraction study. Surface Science, 660. DOI: https://
doi.org/10.1016/j.susc.2017.02.005

2. Feenstra, R M, Srivastava, N, Qin Gao, M, Widom,
M, Diaconescu, B, Ohta, T, Kellogg, J T R and
Vlassiouk, I V 2013 Low-energy electron reflectivity
from graphene. Physical Review, B 87. DOI: https://doi.
org/10.1103/PhysRevB.87.041406

3. Hannon, J and Tromp, R 2012 Low-energy electron
microscopy for nanoscale characterization. In:
Handbook of Instrumentation and Techniques for
Semiconductor Nanostructure Characterization,
World Scientific, 127–179. DOI: https://doi.
org/10.1142/9789814322843_0004

4. Hibino, H, Kageshima, H, Maeda, F, Nagase, M,
Kobayashi, Y and Yamaguchi, H 2008 Microscopic
thickness determination of thin graphite films formed
on SiC from quantized oscillation in reflectivity of
low-energy electrons. Physical Review, B 77(7). DOI:
https://doi.org/10.1103/PhysRevB.77.075413

5. McClain, J 2015 A supercell, Bloch wave method
for calculating low-energy electron reflectivity
with applications to free-standing graphene and
molybdenum disulfide. Ph. D. Thesis. University of
New Hampshire.

6. Oliphant, T 2007 Python for Scientific Computing.
Computing in Science & Engineering, 9(3): 10–20. DOI:
https://doi.org/10.1109/MCSE.2007.58

7. Pendry, J 1974 Low energy electron diffraction: the
theory and its application to determination of surface
structure. London: Academic Press.

8. Sun, J, Hannon, J B, Kellogg, G L and Pohl, K 2007
Local structural and compositional determination
via electron scattering: Heterogeneous Cu (001)-Pd
surface alloy. Physical Review, B 76. DOI: https://doi.
org/10.1103/PhysRevB.76.205414

9. Van Hove, M and Tong, S 1979 Surface Crystallography
by LEED. Berlin: Springer-Verlag. DOI: https://doi.
org/10.1007/978-3-642-67195-1

10. Van Hove, M, Weinberg, W and Chan, C 1986 Low-
energy electron diffraction. Berlin: Springer-Verlag.
DOI: https://doi.org/10.1007/978-3-642-82721-1

11. Zahl, P, et al. GXSM software project homepage.
http://gxsm.sourceforge.net 2000-today.

How to cite this article: Grady, M, Dai, Z and Pohl, K 2018 PLEASE: The Python Low-energy Electron Analysis SuitE –
Enabling Rapid Analysis of LEEM and LEED Data. Journal of Open Research Software, 6: 7. DOI: https://doi.org/10.5334/
jors.191

Submitted: 05 September 2017 Accepted: 16 January 2018 Published: 05 February 2018

Copyright: © 2018 The Author(s). This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

Journal of Open Research Software is a peer-reviewed open access journal published by
Ubiquity Press OPEN ACCESS

https://doi.org/10.1016/j.susc.2017.02.005
https://doi.org/10.1016/j.susc.2017.02.005
https://doi.org/10.1103/PhysRevB.87.041406
https://doi.org/10.1103/PhysRevB.87.041406
https://doi.org/10.1142/9789814322843_0004
https://doi.org/10.1142/9789814322843_0004
https://doi.org/10.1103/PhysRevB.77.075413
https://doi.org/10.1109/MCSE.2007.58
https://doi.org/10.1103/PhysRevB.76.205414
https://doi.org/10.1103/PhysRevB.76.205414
https://doi.org/10.1007/978-3-642-67195-1
https://doi.org/10.1007/978-3-642-67195-1
https://doi.org/10.1007/978-3-642-82721-1
http://gxsm.sourceforge.net
https://doi.org/10.5334/jors.191
https://doi.org/10.5334/jors.191
http://creativecommons.org/licenses/by/4.0/

	(1) Overview
	Introduction
	Examples and Usage
	Implementation and architecture
	Quality control

	(2) Availability
	Operating system
	Programming language
	Additional system requirements
	Dependencies
	List of contributors
	Software location
	Archive
	Code repository

	Language

	(3) Reuse potential
	Acknowledgements
	Funding Information
	Competing Interests
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5

