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BayesTwin is an open-source R package that serves as a pipeline to the MCMC program JAGS to perform 
Bayesian inference on genetically-informative hierarchical twin data. Simultaneously to the biometric 
model, an item response theory (IRT) measurement model is estimated, allowing analysis of the raw 
phenotypic (item-level) data. The integration of such a measurement model is important since earlier 
research has shown that an analysis based on an aggregated measure (e.g., a sum-score based analysis) can 
lead to an underestimation of heritability and the spurious finding of genotype-environment interactions. 
The package includes all common biometric and IRT models as well as functions that help plot relevant 
information or determine whether the analysis was performed well.
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(1) Overview
Introduction
Statistical analysis of data on twins focuses on 
determining the relative contributions of nature and 
nurture to individual differences in a behavioral trait (i.e., 
phenotype). Twin pairs are either identical (monozygotic, 
MZ) and share the same genomic sequence or non-identical 
(dizygotic, DZ) and share on average only half of the 
segregating genes. When MZ twin pairs are more similar in 
a phenotype (e.g., depression or educational achievement) 
than DZ twin pairs, this implies that genetic influences are 
important.

Traditionally, in the classical twin study, the ACE model 
is used which decomposes total phenotypic variance (e.g., 
the total variance in the scores on a depression scale or 
mathematics test), 2

Pσ , into variance due to additive genetic 
(A) influences ( 2

Aσ ), common-environmental (C) influences 
( 2

Cσ ) and unique-environmental (E) influences ( 2
Eσ , residual 

variance) [1]. Common-environmental influences are 
shared influences that lead to alikeness between twins that 
cannot be attributed to their genetic resemblance and are 
parametrized as being perfectly correlated within one twin 
pair. Unique-environmental influences are not shared in 
the family and are parametrized as being uncorrelated for 
members of a twin pair. It is also possible to fit an ADE or 
AE model. In the ADE model, the C component is replaced 
by a D component (representing dominance effects, that 

is, non-additive genetic influences) and in the AE model 
the C component is fixed to 0. Furthermore, an interaction 
between genetic- and environmental influences (G × E) 
can be added to the model in which, conditionally on 
the genotypic value of a twin, unique-environmental 
influences can be either more or less important. Usually, 
for the collection of phenotypic data, a questionnaire 
or test is used where respondents answer a set of items, 
assuming that they are representative for the underlying 
trait of interest.

Item Response Theory
Commonly, when twin data are analysed, the phenotypic 
data of an individual twin is aggregated to a single score 
for example by calculating a twin’s sum over all answered 
items (i.e., the sum score). However, earlier research has 
shown that using an aggregated score such as the sum 
score can lead to an underestimation of heritability [2] 
and the spurious finding of G × E effects as artefact of 
scale properties such as heterogeneous measurement 
error [3, 4].

Earlier research has also shown that the incorporation 
of an item response theory (IRT) measurement model 
into the genetic analysis can overcome this potential bias 
[2, 3, 4]. The IRT approach is model-based measurement 
in which a twin’s latent trait (e.g., mathematical ability) 
is estimated using not only trait levels (e.g., performance 
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on a mathematics test) but also test item properties such 
as the difficulty or discrimination of each item are taken 
into account. The simplest IRT model is the one-parameter 
logistic model (1PLM), which models the probability of a 
correct answer to item k (e.g., of a mathematics test) by 
twin j from family i, P(Yijk = 1), as a logistic function of 
the difference between the twin’s latent trait score (e.g. 
mathematical ability) and the difficulty of the item:

	 ln( /(1 ))jk jk j kP P− = −θ β � (1)

where the difficulty parameter of item k, βk is parametrized 
as the trait level (e.g., the mathematical ability level) needed 
to have a 50% chance of answering item k right (or, in case 
of a personality test, responding “yes” to an item). While 
this model assumes that all items discriminate equally 
well between varying traits, in the two-parameter model 
(2PL), an extension of the 1PL model, also discrimination 
parameters (comparable to factor loadings) that differ 
between items are estimated [5].

The 1PL and 2PL are suitable for dichotomous data 
(e.g., scored as correct = 1 and false = 0), as for example 
collected from ability tests (e.g., mathematical ability). 
For non-dichotomous data such as ordered categories 
(e.g., Likert scale data) as often collected in personality 
tests, the partial credit model (PCM, without different 
discrimination parameters) or the generalized partial 
credit model (GPCM, with different discrimination 
parameters) can be used [5]. The PCM (GPCM) can be 
considered as an extension of the 1PL (2PL) that treats 
polytomous responses as ordered performance levels, 
assuming that the probability of selecting the kth cateogry 
over the [k – 1] category is governed by the dichotomous 
(1PL or 2PL respectively) IRT model [6].

Besides the ones above mentioned, further advantages 
of the IRT approach include the flexible handling of 
missing data and the harmonization of traits measured 
on different measurement scales. For example, when 
different twin registers have used different IQ tests not 
comparable in difficulty, IRT can be used to set the items 
scores on the same measurement scale [7].

Simultaneous estimation through MCMC algorithms
While free and open-source software for analysis of twin 
data is available [8], the software restricts the user to 
perform an item-level analysis using a two-step approach. 
That is, in the first step, an IRT model is analysed and in 
the second step, the resulting latent traits are used in a 
variance decomposition. This approach, however, does not 
solve the psychometric issues outlined in earlier research 
[2–4]. For example, measurement erorr is included in the 
estimated latent traits and the two-step approach cannot 
correct for bias through ceiling effects when the 1 PL 
model is applied [2].

To take full advantage of the IRT approach, both genetic 
and IRT model have to be estimated simultaneously 
[2], which requires the evaluation of multiple integrals 
when the tradional frequentist approach is used for 
inference. We can avoid this problem by adopting a 
Bayesian approach and using Markov chain Monte Carlo 

(MCMC) estimation procedures. In Bayesian analysis, 
statistical inference is based on the joint posterior density 
of the model parameters, which is proportional to the 
product of the likelihood function and a prior probability 
distribution. A prior probability distribution represents 
information about an uncertain parameter before any 
data has been observed.

Although MCMC modelling of twin data is easily carried 
out using off-the-shelf software packages like JAGS [9] and 
BUGS [10] and example syntax is published in journals 
available to the twin community [2–4, 11, 12], the twin 
research community seems reluctant to embrace the 
new technology with its richness of possibilities for two 
reasons: First, most researchers in the field of behavior 
genetics have an applied background and are therefore less 
familiar in learning a new programming language and/or 
adopting the available syntax to their own needs. Second, 
the use of Bayesian statistics is not that common yet in the 
field of behavior genetics which makes it more difficult 
for behavior geneticists to decide what information is 
relevant and how the output should be interpreted.

To facilitate the use of Bayesian statistics and prevent 
bias in heritability and/or the spurious finding of 
G × E interactions by analysing both IRT and genetic model 
simultaneously, the R package BayesTwin serves as a pipeline 
from R to the open-source MCMC software program JAGS 
[9]. The package includes all common univariate genetic 
twin models (ACE, AE, ADE) and can analyse dichotomous 
(using a 1PL or 2PL IRT model) as well as polytomous 
item-level data (using a PCM or GPCM). Optionally, G × E 
can be estimated and/or covariates can be included in the 
model. G × E is parametrized such that both genetic as 
well as environmental, influences are modelled as latent 
(i.e., unmeasured) variables, representing a powerful 
omnibus test to assess whether there is any statistically 
significant interaction. An interaction is considered on 
unique-environmental influences where 2

Eσ  is portioned 
into an intercept (i.e., representing average environmental 
variance) and a part that is a function of the genotypic 
value (i.e., representing G × E). For more technical detail, 
the reader is referred to earlier publications that used 
this G × E parametrization [3, 4, 11, 12]. Covariates are 
integrated into the model such that the phenotypic 
variance decomposition takes place after the effects of 
the covariates have been partialled out, but other than 
that the covariate data are not part of the covariance 
model [13].

Implementation and architecture
The main function IRTtwin () can be used to analyse 
item-level twin data. Furthermore, a function is included 
that can be used to simulate item-level item data 
(simulatetwin ()). In addition, BayesTwin includes 
functions that determine whether the Bayesian analyses 
was performed well or help plot relevant information in 
figures and compute posterior statistics such as posterior 
mean, posterior standard deviations, and 95% highest 
posterior density (HPD) intervals.

A requirement to use the main function IRTtwin is 
that the data of MZ and DZ twins (both phenotypic as 
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well as covariate data) need to be stored in two different 
matrices, one including the data of all MZ twin pairs and 
one including the data of all DZ twin pairs (function 
arguments data_mz and data_dz). The function 
then requires as input the specific data columns in 
which the phenotypic and covariate data of the first 
and second twin is stored (twin1_datacols_p, 
twin2_datacols_p, twin1_datacols_cov and 
twin2_datacols_cov). Furthermore, the genetic 
and IRT model to analyse the data has to be specified 
(decomp_model and irt_model), whether a G × 
E interaction effect should be included (ge = TRUE), 
the number of covariates (N_cov) and the number of 
categories when ordinal data is used (Nk) and whether 
fit statistics should be calculated (fit_stats = TRUE). 
Optional additional arguments concern technical details 
(e.g., the number of iterations for the MCMC algorithm, 
the number of Markov chains, the choice of initial values 
and the choice of the prior distribution for variance 
components). Below, you can find the R code that analyses 
data on 40 dichotomous items under the ACE with G × E, 
including 2 covariates and using the 1PL IRT model:

IRTtwin (data_mz = data$y_mz, data_dz = data$y_dz,
         twin1_datacols_p = 1:20,  
         twin2_datacols_p = 21:40,
         twin1_datacols_cov = 41:42,  
         twin2_datacols_cov = 43:44,
         decomp_model = “ACE”, irt_model = “1PL”, 
         ge = TRUE,
         N_cov = 2, inits = NA, Nk = 0,  
         fit_stats = FALSE,
         n_iter = 10000, n_burnin = 8000,  
         n_chains = 1,
         var_prior = “INV_GAMMA”, inits = NA)

The retrieved output includes posterior samples, posterior 
point estimates with standard deviations and the 95% 
HPD interval for variance components and, if applicable, 
regression parameters. The HPD can be seen as the 

Bayesian version of a confidence interval. All objects that 
are returned from the main function are automatically 
assigned the class “bayestwin”. The S3 method summary.
bayestwin () can then be used to get a nicely formatted 
table in R that includes summary statistics for variance 
components, and, if applicable, regression parameters.

The function plotbayestwin () can be used to plot 
posterior distributions and trace lines. For an example of 
both plot types see Figure 1. When a model is estimated 
that includes G × E, the function geplot () can be used 
to plot the 95% credibility region of the interaction effect 
(see Figure 2).

Quality control
The code is based on earlier publications [3, 11, 12] that 
used simulation studies to test the newly developed 
methodology. Furthermore, multiple smaller and large 
code review were held throughout the development 
process. The structure of the package successfully passed 

Figure 1: Example of a trace plot (a) and posterior density plot (b) produced by the function plotbayestwin ().

Figure 2: Example of a G × E interaction plot produced by 
the function geplot ().



Schwabe: BayesTwinArt. 33, p. 4 of 5 

the CRAN R CMD check. Results from this check can 
be found on CRAN (https://cran.r-project.org/web/
packages/BayesTwin/index.html).

(2) Availability
Operating system
Since BayesTwin is written in R and uses JAGS for the 
MCMC sampling algorithm, it should run on any system 
on which R, JAGS and the BayesTwin dependencies 
run. R and JAGS can be obtained freely from https://
www.r-project.org/ and http://mcmc-jags.sourceforge.
net/. BayesTwin was tested on Apple Mac OS X 10.9 and 
Windows 7.

Programming language
R version 3.4.0 or higher and JAGS version 4.2.0 or higher.

Additional system requirements
An Internet connection is required to install the BayesTwin 
package and JAGS.

Dependencies
R packages: foreign, coda, matrixStats and rjags.

List of contributors
The package was created by Inga Schwabe.

Software location
Archive

Name: CRAN
Persistent identifier: https://cran.r-project.org/web/

packages/BayesTwin/index.html
Licence: GPLv2 or later
Publisher: Inga Schwabe
Version published: 1.0
Date published: 06/26/2017

Code repository
Name: GitHub
Persistent identifier: https://github.com/

ingaschwabe/BayesTwin
Licence: GPLv2 or later
Date published: 11/09/2014

Language
R and JAGS

(3) Reuse potential
The BayesTwin package is accompanied by extensive 
documentation of functionality. Each function is 
accompanied by an R help file, which can be accessed by 
the user by typing help(...) with the function name inside 
the brackets. Each help file contains worked examples of 
real R code that users can paste into the R console and run. 
Furthermore, code examples are provided at the personal 
website of the package author. These also include code 
example on how to run the R package on a computer 
cluster.

Full open access is provided to all source code and full 
reuse rights via the generous GPL-Clause license. This 

makes it easy for others to use the code base, also in order 
to collaborate or ask questions.

A drawback of the method is that it is computationally 
intensive and can take several hours to complete. Future 
research therefore will focus on optimizing the MCMC 
algorithm procedure. Furthermore, individual twins in 
the data set with partly missing covariate data cannot 
be included in the analysis, leading to reduced statistical 
power. Another problem is that covariates cannot always be 
defined as a twin pair covariate or an individual covariate: 
some covariates can be shared for some of the twin pairs, 
but non-shared for other pairs. In future releases of the 
package, a new Bayesian method will be applied that 
incorporates covariates that can be both shared and non-
shared, and that are given a prior distribution so that even 
individuals with partly missing data on the covariates can 
be used in the analysis [12].
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