
Henderson, R and Rothe, R 2017 Picasso: A Modular Framework for Visualizing the
Learning Process of Neural Network Image Classifiers. Journal of Open Research
Software, 5: 22, DOI: https://doi.org/10.5334/jors.178

Journal of
open research software

SOFTWARE METAPAPER

Picasso: A Modular Framework for Visualizing the
Learning Process of Neural Network Image Classifiers
Ryan Henderson and Rasmus Rothe
Merantix GmbH, Leuschnerdamm 31, 10999, Berlin, DE
Corresponding author: Ryan Henderson (ryan@merantix.com)

Picasso is a free open-source (Eclipse Public License) web application written in Python for rendering
standard visualizations useful for analyzing convolutional neural networks. Picasso ships with occlusion
maps and saliency maps, two visualizations which help reveal issues that evaluation metrics like loss and
accuracy might hide: for example, learning a proxy classification task. Picasso works with the Tensorflow
deep learning framework, and Keras (when the model can be loaded into the Tensorflow backend). Picasso
can be used with minimal configuration by deep learning researchers and engineers alike across various
neural network architectures. Adding new visualizations is simple: the user can specify their visualization
code and HTML template separately from the application code.

Keywords: Neural networks; Deep learning; Visualization; Tensorflow; Keras

(1) Overview
Introduction
Neural networks (NNs) [1] and convolutional neural
networks (CNNs) [2, 3, 4] are subject to unique training
pitfalls [5, 6]. Consider this motivating example [7]:

Once upon a time, the US Army wanted to
use neural networks to automatically detect
camouflaged enemy tanks. The researchers trained
a neural net on 50 photos of camouflaged tanks in
trees, and 50 photos of trees without tanks[…].

Wisely, the researchers had originally taken 200
photos, 100 photos of tanks and 100 photos of
trees. They had used only 50 of each for the training
set. The researchers ran the neural network on the
remaining 100 photos, and without further training
the neural network classified all remaining photos
correctly. Success confirmed! The researchers
handed the finished work to the Pentagon, which
soon handed it back, complaining that in their own
tests the neural network did no better than chance
at discriminating photos.

It turned out that in the researchers’ dataset,
photos of camouflaged tanks had been taken
on cloudy days, while photos of plain forest had
been taken on sunny days. The neural network had
learned to distinguish cloudy days from sunny days,
instead of distinguishing camouflaged tanks from
empty forest. [emphasis added]

While this story may be apocryphal, it nonetheless
illustrates a common pitfall in machine learning: training
on a proxy feature instead of the intended feature. In
this case, cloudy vs. sunny instead of tank vs. no tank. As
CNNs are increasingly used in critical applications, sound
training can literally be a matter of life and death [8].

We developed Picasso to help protect against situations
where evaluation metrics like loss and accuracy may not
tell the whole story in training neural networks on image
classification tasks. Picasso includes two visualizations
so far: partial occlusion [10] and saliency mapping [11].
The user may upload new input images and select from
among installed visualizations and their attendant
settings. Picasso was designed with ease of adding new
visualizations in mind, detailed in the Implementation
and architecture and Reuse Potential sections. At the time
of this writing, Picasso has support for neural networks
trained in Keras [12] or Tensorflow [13].

At Merantix, we work with a variety of neural network
architectures. Picasso makes it easy to see standard
visualizations across our models in various fields: including
applications in automotive, such as understanding when
road segmentation or object detection fail; advertisement,
such as understanding why certain creatives receive
higher click-through rates; and medical imaging, such
as analyzing what regions in a CT or X-ray image contain
irregularities. See Figure 1 for a screenshot of the Picasso
application after computing partial occlusion maps for
various images. The user has chosen to use the VGG16 [9]

https://doi.org/10.5334/jors.178
mailto:ryan@merantix.com
http://www.merantix.com/

Henderson and Rothe: PicassoArt. 22, p.  2 of 5

model for image classification. This example is included
with Picasso, along with a trained MNIST [14] model in
both Keras and Tensorflow.

Other visualization packages exist to help bring
transparency to the learning process, most notably the Deep
Visualization Toolbox [15] and keras-vis [16], which
can also generate saliency maps. There are also various
applications for visualizing the computational graph itself
and monitoring the evaluation metrics, like Tensorboard.
Not all of these tools provide a web application out-of-the-
box, however. We furthermore required an application that
would easily allow us to add new visualizations, which may
in the future include visualizations such as class activation
mapping [17, 18] and image segmentation [19, 20].

Let us return to the tank example. Could the
visualizations provided with Picasso have helped the Army
researchers? We would like to be able to see that our model
(VGG16) is classifying based on the “tank-like” features of
the image, and not some proxy feature like the weather.
See Figure 2 for the partial occlusion maps generated by
Picasso. We see that when we occlude portions of the sky,
the model still classifies the image as a tank. Conversely,
when we occlude parts of the tank treads, the model is far
less certain that the image is a tank.

That the model is classifying on the correct features is
further supported by the saliency maps. Saliency maps
compute the derivative of the classification for a given
class with respect to the input image. Thus regions with

Figure 1: A screen capture of the Picasso web application after computing partial occlusion figures for various input
images. The classifier is a trained VGG16 [9] network.

https://github.com/yosinski/deep-visualization-toolbox
https://github.com/yosinski/deep-visualization-toolbox
https://github.com/raghakot/keras-vis
https://www.tensorflow.org/get_started/summaries_and_tensorboard

Henderson and Rothe: Picasso Art. 22, p.  3 of 5

high gradient–bright regions–are important to the given
classification because changing them would change the
classification more relative to other pixels. Figure 3 shows
the saliency map for the tank image. Notice that with a
few exceptions the non-tank areas are largely dark, which
means changing these pixels should not make the image
more or less “tanky.”

Implementation and architecture
Picasso was written in Python 3.5 using the Flask web
application framework. Visualization classes and HTML
templates must be defined separately by the user, but
do not require modifying any other source files to use.
Picasso handles the uploading of user-supplied images
and generates temporary folders containing input and
output images. If the visualization class has a settings

attribute, Picasso automatically renders the settings
selection as a separate page.

Application-level settings are handled via a configuration
file, where the user may specify the deep learning
framework (Keras or Tensorflow) as well as the location of
the checkpoint files for their chosen model. The user must
also supply a function to preprocess the image (reshape
the image into appropriate input dimensions) and decode
the output of the model (provide class labels).

Quality control
Picasso has unit tests written in the Pytest framework cov-
ering the web application functionality, and automatically
tests that new visualizations render without errors. The
GitHub repository performs continuous integration via
Travis-CI. Test coverage is monitored with Codecov. A user

Figure 2: The partial occlusion map sequentially blocks out parts of the image to determine which regions are
important to classification. The numbers in the header are the overall class probabilities. Brighter regions correspond
to areas where the probability of the given class is high–i.e. blocking out this part of the image does not change the
classification much. The tank image is in the public domain [21].

Figure 3: Saliency map for the tank. Brighter pixels indicate higher values for the derivative of “tank” with respect to
that input pixel for this image. The brightest pixels appear to be in the tank region of the image, which is a good
indication the model is classifying on the tank-like features.

http://flask.pocoo.org/
https://docs.pytest.org/en/latest/
https://travis-ci.org/
https://codecov.io/

Henderson and Rothe: PicassoArt. 22, p.  4 of 5

can verify the software is working by starting the web appli-
cation and pointing a web browser to 127.0.0.1:5000.
In addition to docstrings and inline comments, extensive
documentation is available on Read the Docs.

(2) Availability
Operating system
Any operating system capable of running Python 3.5 or
higher.

Programming language
Python >= 3.5.

Additional system requirements
None.

Dependencies
These Python packages will be installed as part
of the normal installation process: click >= 6.7,
cycler >= 0.10.0, Flask >= 0.12, h5py >= 2.6.0,
itsdangerous >= 0.24, Jinja2 >= 2.9.5, Keras >= 1.2.2,
MarkupSafe >= 0.23, matplotlib >= 2.0.0, numpy >= 1.12.0,
olefile >= 0.44, packaging >= 16.8, Pillow >= 4.0.0,
protobuf >= 3.2.0, pyparsing >= 2.1.10, python-
dateutil >= 2.6.0, pytz >= 2016.10, PyYAML >= 3.12,
requests >= 2.13.0, scipy >= 0.18.1, six >= 1.10.0,
tensorflow >= 1.0.0, Werkzeug >= 0.11.15.

List of contributors
•	 Bunk, Stefan stefan@merantix.com – code review
•	 Chen, Josh josh@merantix.com – code review
•	 Henderson, Ryan ryan@merantix.com – code review
•	 McSpedon, John john@merantix.com – code review
•	 Rothe, Rasmus rasmus@merantix.com – code review
•	 Scopel, Filippo filippo@merantix.com – development
•	 Sprengel, Elias elias@shirp.ch – development

Software location
Archive

Name: Picasso
Persistent identifier: https://github.com/merantix/

picasso/tree/v0.1.1
Licence: EPL
Publisher: Merantix
Version published: v0.1.1
Date published: 12/05/17

Code repository
Name: GitHub
Persistent identifier: https://github.com/merantix/

picasso
Licence: EPL
Date published: 12/05/17

Emulation environment
Name: N/A
Persistent identifier: N/A
Licence: N/A
Date published: N/A

Language
English.

(3) Reuse potential
Any researcher or engineer working with a model in
Tensorflow or Keras which takes images as inputs and
gives classification probabilities as output can use
Picasso with very little effort. Picasso does make some
assumptions about the topology of the neural network,
but developers can further adapt the Picasso framework
to more specialized computational graphs with minimal
changes to the code.

Picasso is specifically designed to make implementing
new visualizations as painless as possible (see the
visualization documentation). New visualization code
can be added without modifying any other source code.
We hope to add more visualizations as we continue to
develop this tool internally, and especially hope for new
community-developed visualizations.

Acknowledgements
The authors would like to thank the Merantix team for
support during development and documentation. Also,
thanks to David Dohan and Nader Al-Naji for helpful
discussions in preparing this manuscript.

Competing Interests
The authors have no competing interests to declare.

References
1. Warren, S M and Walter, P 1943 A logical calculus

of the ideas immanent in nervous activity. The
bulletin of mathematical biophysics, 5(4): 115–133,
ISSN 1522-9602. DOI: https://doi.org/10.1007/
BF02478259

2. Yann, L, Léon, B, Yoshua, B and Patrick, H 1998
Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):
2278–2324. DOI: https://doi.org/10.1109/5.726791

3. Yann, L, Fu, J H and Leon, B 2004 Learning methods
for generic object recognition with invariance to
pose and lighting. In Computer Vision and Pattern
Recognition, CVPR 2004. Proceedings of the 2004 IEEE
Computer Society Conference on, 2: II–104. IEEE, 2004.
DOI: https://doi.org/10.1109/CVPR.2004.1315150

4. Alex, K, Ilya, S and Geoffrey, E H 2012 Imagenet
classification with deep convolutional neural networks.
In Advances in neural information processing systems,
1097–1105.

5. Zhang, G P 2007 Avoiding pitfalls in neural
network research. IEEE Transactions on Systems,
Man, and Cybernetics, Part C (Applications and
Reviews), 37(1): 3–16. DOI: https://doi.org/10.1109/
TSMCC.2006.876059

6. Chiyuan, Z, Samy, B, Moritz, H, Benjamin, R
and Oriol, V 2016 Understanding deep learning
requires rethinking generalization. arXiv preprint
arXiv:1611.03530. URL: https://arxiv.org/abs/
1611.03530.

https://picasso.readthedocs.io/
mailto:stefan@merantix.com
mailto:josh@merantix.com
mailto:ryan@merantix.com
mailto:john@merantix.com
mailto:rasmus@merantix.com
mailto:filippo@merantix.com
mailto:elias@shirp.ch
https://github.com/merantix/picasso/tree/v0.1.1
https://github.com/merantix/picasso/tree/v0.1.1
https://github.com/merantix/picasso
https://github.com/merantix/picasso
https://picasso.readthedocs.io/en/latest/visualizations.html
https://picasso.readthedocs.io/en/latest/visualizations.html
https://doi.org/10.1007/BF02478259
https://doi.org/10.1007/BF02478259
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/CVPR.2004.1315150
https://doi.org/10.1109/TSMCC.2006.876059
https://doi.org/10.1109/TSMCC.2006.876059
https://arxiv.org/abs/1611.03530
https://arxiv.org/abs/1611.03530

Henderson and Rothe: Picasso Art. 22, p.  5 of 5

7. Eliezer, Y 2008 Artificial intelligence as a positive and
negative factor in global risk. Global catastrophic risks,
1(303): 184.

8. The Tesla Team 2016 A tragic loss. URL: https://www.
tesla.com/blog/tragic-loss. Accessed: 2017-5-12.

9. Karen, S and Andrew, Z 2014 Very deep convolutional
networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556.

10. Matthew, D Z and Rob, F 2014 Visualizing and
Understanding Convolutional Networks, 818–833.
Springer International Publishing, Cham. ISBN 978-
3-319-10590-1. DOI: https://doi.org/10.1007/978-3-
319-10590-1

11. Karen, S, Andrea, V and Andrew, Z 2013 Deep
inside convolutional networks: Visualising image
classification models and saliency maps. CoRR,
abs/1312.6034. URL: http://arxiv.org/abs/1312.6034.

12. Franois, C K 2015 URL: https://github.com/fchollet/
keras.

13. Martín, A, et al. 2015 TensorFlow: Large-scale machine
learning on heterogeneous systems. URL: http://
tensorflow.org/. Software available from: tensorow.org.

14. Yann, L and Corinna, C 2010 MNIST handwritten digit
database. URL: http://yann.lecun.com/exdb/mnist/.

15. Jason, Y, Jeff, C, Anh, N and Thomas, F 2015
Understanding neural networks through deep

visualization. In: Deep Learning Workshop, International
Conference on Machine Learning (ICML). URL: https://
github.com/yosinski/deep-visualization-toolbox.

16. Raghavendra Kotikalapudi and contributors 2017
keras-vis. https://github.com/raghakot/keras-vis.

17. Bolei, Z, Aditya, K, Agata, L, Aude, O and
Antonio, T 2016 Learning deep features for
discriminative localization. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
2921–2929. URL: http://cnnlocalization.csail.mit.
edu/.

18. Ramprasaath, R S, Abhishek, D, Ramakrishna, V,
Michael, C, Devi, P and Dhruv, B 2016 Grad-cam: Why
did you say that? visual explanations from deep networks
via gradient-based localization. CoRR, abs/1610.02391.
URL: http://arxiv.org/abs/1610.02391.

19. Yi, Li, Haozhi, Q, Jifeng, D, Xiangyang, J and
Yichen, W 2016 Fully convolutional instance-aware
semantic segmentation. CoRR, abs/1611.07709. URL:
http://arxiv.org/abs/1611.07709.

20. Kaiming, H, Georgia, G, Piotr, D and Ross, B G 2017
Mask R-CNN. CoRR, abs/1703.06870. URL: http://
arxiv.org/abs/1703.06870.

21. U.S. Army US Army operating Renault FT tanks. URL:
https://en.wikipedia.org/wiki/Light_tank#/media/
File:FT-17-argonne-1918.gif.

How to cite this article: Henderson, R and Rothe, R 2017 Picasso: A Modular Framework for Visualizing the Learning Process of
Neural Network Image Classifiers. Journal of Open Research Software, 5: 22, DOI: https://doi.org/10.5334/jors.178

Submitted: 16 May 2017 Accepted: 27 July 2017 Published: 11 September 2017

Copyright: © 2017 The Author(s). This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

Journal of Open Research Software is a peer-reviewed open access journal published by
Ubiquity Press OPEN ACCESS

https://www.tesla.com/blog/tragic-loss
https://www.tesla.com/blog/tragic-loss
https://doi.org/10.1007/978-3-319-10590-1
https://doi.org/10.1007/978-3-319-10590-1
http://arxiv.org/abs/1312.6034
https://github.com/fchollet/keras
https://github.com/fchollet/keras
http://tensorflow.org/
http://tensorflow.org/
http://tensorow.org
http://yann.lecun.com/exdb/mnist/
https://github.com/yosinski/deep-visualization-toolbox
https://github.com/yosinski/deep-visualization-toolbox
https://github.com/raghakot/keras-vis
http://cnnlocalization.csail.mit.edu/
http://cnnlocalization.csail.mit.edu/
http://arxiv.org/abs/1610.02391
http://arxiv.org/abs/1611.07709
http://arxiv.org/abs/1703.06870
http://arxiv.org/abs/1703.06870
https://en.wikipedia.org/wiki/Light_tank#/media/File:FT-17-argonne-1918.gif
https://en.wikipedia.org/wiki/Light_tank#/media/File:FT-17-argonne-1918.gif
https://doi.org/10.5334/jors.178
http://creativecommons.org/licenses/by/4.0/

	(1) Overview
	Introduction
	Implementation and architecture
	Quality control

	(2) Availability
	Operating system
	Programming language
	Additional system requirements
	Dependencies
	List of contributors
	Software location
	Archive
	Code repository
	Emulation environment

	Language

	(3) Reuse potential
	Acknowledgements
	Competing Interests
	References
	Figure 1
	Figure 2
	Figure 3

