
(1) Overview
Introduction
ParaView [1] is one of the premier open source visuali-
zation software packages for 4D (3D space + time) data 
visualization. It is a very powerful tool built in a very gen-
eral way to serve visualization needs from many fields. 
However, with the general-purpose nature of the software, 
a great deal of data pre-processing and manipulation is 
often required to create discipline specific visualizations. 

This is true in particular for the geophysical fluid 
dynamics community. ParaView has native support for the 
network Common Data Form (netCDF), and in particular 
the widely accepted Climate and Forecast (CF) metadata 
conventions [2]. However, it provides little built-in func-
tionality, as for instance spherical geometry in pressure 
coordinates, and the requirement for logarithmic coordi-
nates. In general, the axes functionality is one of the few 
weak points of ParaView, which has arguably been a hin-
drance to more widespread usage of the software in the 
scientific community. The package described in this paper 
can convert longitude-latitude-pressure gridded data into 
log-pressure coordinates, and provides the possibility of 
adding correct axes and notation. 

This package does not need a working installation 
of Python, and no package installation is required. The 
routines are designed to be run within the Python Shell 
included in ParaView. As such, it can be used in a support-
ive way within the GUI, as it builds a fully interactive pipe-
line in ParaView. 

Implementation/architecture
General organization
The package is entirely written in Python, and can be exe-
cuted within the Python shell of ParaView. Therefore, no 
installation of any software other than ParaView (not even 

Python) is needed, as all necessary software is included in 
any installation.

The package as described here is intended to be a basic 
starting point for future development. Although the 
author is at this point developing further additions of 
geographical data, such as world maps and boundaries, it 
is the intent of this publication to encourage community 
based development of pv_atmos.

The package is separated into two scripts: atmos_basic.
py and atmos_grids.py. atmos_basic.py contains every-
thing necessary to load a given file, and apply a coordi-
nate transformation in all (3D) directions, including a 
logarithmic transformation of the z-coordinate (pressure 
to log-pressure). But the script is not limited to pressure 
coordinates, as also height (or any other z-coordinate) can 
be read as well. In addition, functions related to creating a 
spherical geometry are included.

Even though the netCDF files are assumed to follow the 
Climate and Forecasting (CF) conventions, the metadata 
has to follow those conventions only loosely. For instance, 
the coordinates can have arbitrary names in the netCDF 
file, as long as the time coordinate has an attribute called 
“units” containing the word “since”. 

atmos_grids.py builds on atmos_basic.py, and adds the 
possibility to add a full 3D grid to the data. In rectangu-
lar geometry, one can easily add a box around the data, 
with labels in all three directions, where the user can 
choose the positions of the grid lines and labels. In addi-
tion, planes can be added to show cross sections along 
any dimension. 

In spherical geometry, the user can add spherical shells. 
These are cross sections at one given pressure level, and 
include labelling of the pressure level. In addition, there 
is the possibility to add any text onto the outermost shell, 
which can be used as watermark.

SOFTWARE METAPAPER

Scientific Visualisation of Atmospheric Data with 
ParaView
Martin Jucker1

1	Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, USA

Jucker, M 2014 Scientific Visualisation of Atmospheric Data with ParaView. Journal of Open 
Research Software, 2(1): e4, DOI: http://dx.doi.org/10.5334/jors.al

Keywords: scientific visualisation; ParaView; Python scripting; geophysical fluid dynamics; netCDF

The pv_atmos package allows for an automated approach to 4D (3D space + time) visualization of atmos-
pheric data in netCDF format. Using Python scripting, the open source software ParaView is used to load, 
process, and visualize data. The scripts automatize the loading of data on a longitude-latitude-pressure 
grid, and re-compute the grid for a log-pressure or spherical representation of all data. Grid lines, planes, 
and labels can be added if desired. Two example scripts are included in the repository.

Journal of
open research software



JuckerArt. e4, p.  2 of 4 

The example scripts included, example_flat.py and 
example_sphere.py take data from an example netCDF 
file, and visualize zonal wind, wind direction and strength, 
and add grid lines or spherical shells at given pressure 
levels. Screenshots from these examples are shown in 
Figure 1.

Releases
Releases and versioning is enabled in the GitHub direc-
tory, under ‘releases’. This folder will contain numerated 
(versioned) zip files containing the pv_atmos package cor-
responding to major development steps. It is also planned 
to make the package available through PyPI.

How to use
All functions contain basic Python docstrings, which can 
be accessed by typing help(nameOfFunction) in the 
Python Shell.

Both atmos_basic.py and atmos_grids.py 
need the math package to be loaded. Thus, before using 
any of the functions, the user has to invoke import 
math.

Treat data: atmos_basic.py
The most common and basic tasks have been grouped 
together in the function loadData. All input parame-
ters are optional with default values except the input file 
name. A typical loading command for pressure or height 
coordinates would be
(output_nc, CorrZ,Coor, AspRat) = 
loadData(fileName, [coordP,coordY,coordX], 1),

or
loadData(fileName, [coordZ,coordY,coordX], 0)

This will load the file fileName (full path including 
extension) containing the dimensions [coordP/Z, 
coordY, coordX], and assuming pressure or height 
coordinates. It will also make sure that pressure assumes 
positive values, and adjust the aspect ratio to what it is set 
in the input (default is to keep it as given in the file). After 
this initial loading, the user can use any of ParaView’s 
GUI or Python interface to further analyse and visualise 
the data, as the filters output_nc, CorrZ, Coor, and 

AspRat will appear in the pipeline browser as if added 
from the GUI.

In order to convert to spherical geometry, it is sufficient 
to invoke the command
spherGeom = Cart2Spherical(radius=1, src=AspRat)

Note that the camera is not set with those two basic 
commands, but it can easily be adjusted by clicking the 
Reset Camera button in the ParaView GUI. Again, the 
user can now revert back to the GUI or python interface to 
add filters, colors, etc. in the pipeline browser.

Add grid: atmos_grids.py
Again the most common tasks have been grouped 
together. For rectangular geometries, invoking
AddGrid()

will add a box around the data, spanning from 0 to 360˚ 
in longitude, -90 to +90˚ in latitude, and 1000 to 0.1hPa 
in pressure. The default values are changed by adding the 
appropriate input parameters. Invoking
AtmosShells(radius=1, src=CoorZ)

will extract planes of constant pressure on the sphere 
(shells) from the source filter CoorZ and show them, 
labelled, together with the data (see Figure 1 right).

It is also possible to add slices of data to the visualisa-
tion at the appropriate places, and the same for label-
ling those planes. AddPresPlane, AddLatPlane, 
and AddLonPlane will add slices at constant pres-
sure (height), latitude (y-coordinate), and longitude 
(x-coordinate), which are extracted from the data and 
can be data colored or further used in the visualisation 
pipeline. In the case of spherical geometry, a subsequent 
Cart2Spherical command will again convert the 
planes into the spherical geometry. 

Note that the Add???Plane functions have an 
input called data: if it is set to 1, the cut out plane will 
be assumed to be within the domain of the data, and a 
Slice() operator will be applied. If data=0, the plane 
will be independent of data, and it is assumed that it will 
be used as grid lines.

If one likes to add another label to the grid, the functions 
AddPresLabel, AddLatLabel, and AddLonLabel 
can be called.

Fig. 1: Result of included scripts example_flat.py (left) and example_sphere.py (right). Shows the zonal wind at a given 
time step. Included is a customized grid with labels, and cross sections at one given longitude (left) or pressure 
surface (right).



Jucker Art. e4, p.  3 of 4 

Examples
As an example, the scripts from the pv_atmos package 
have been used by the author for the winning picture of 
Princeton University’s Art of Science competition in 2013 
[3], and one of the finalist movies at the same competition 
in 2014.
The two examples provided in the repository, example_
flat.py and example_sphere.py load the file uv_
daily.nc and create a basic visualisation in rectangular or 
spherical geometry, as shown in Figure 1. These examples 
need ParaView version 4.1 and up to run completely. They 
also run in earlier versions but don’t automatically color the 
extracted planes and isosurfaces. When running the example 
scripts, the user first has to set the path to atmos_basic.
py and atmos_grids.py, which is by default ../.

Quality control
The scripts have been successfully tested on all platforms 
where ParaView is available (Mac, Windows, Linux), with 
the oldest supported version being 3.14. This version 
includes Python 2.5.6. The example scripts include a func-
tionality of applying a pre-defined color map through 
scripting (AssignLookupTable), which is only available for 
ParaView version 4.1 onwards. Even so, the examples still 
work on ParaView versions 3.14 and up.

There is also a unit testing routine unitTest.py in 
the folder testing/. Note that this file tests the main 
routines only – these routines call all smaller functions 
contained in the package. Furthermore, the testing is made 
using random number generators, so that the pipeline out-
put in ParaView does not necessarily make physical sense.

(2) Availability
Operating system
ParaView 3.14 or up. Refer to www.paraview.org for system 
requirements. The here discussed scripts have no further 
requirements.

Programming language
Python 2.5 and up if ParaView module is loaded outside 
of the ParaView Python shell. Otherwise, Python shipped 
with ParaView is sufficient, and no programming lan-
guage has to be installed.

Additional system requirements
Scientific visualization can be demanding on memory and 
CPU power. However, this depends entirely on the data 
file. Keeping data files smaller than tens of megabytes 
should avoid major problems.

Dependencies
Python’s math library is needed for the value of pi and 
for computing logarithms. This is included in ParaView’s 
Python shell. If loaded in independent Python session, 
paraview.simple needs to be in the Python path.

Code repository
Name
pv_atmos

Persistent identifier
https://github.com/mjucker/pv_atmos.git 

License
MIT

Date published
20/02/2014

Language
English

(3) Reuse potential
The pv_atmos package is written in Python and does not 
need any packages not included with the standard instal-
lation of ParaView. It is based on basic ParaView com-
mands, and can be expected to be working without any 
issues in the future and on any platform. Potential users 
therefore won’t have to worry about the package becom-
ing dysfunctional.

Visualisation of atmospheric data is a growing field, and 
requires very repetitive treatment of data. In particular, 
conversion of pressure coordinates into something more 
easily visualised is a big hindrance to a more wide spread 
use of visualization software in atmospheric research. 
Visualisation of atmospheric data is a growing field, and 
requires very repetitive treatment of data. In particular, 
conversion of pressure coordinates into something more 
easily visualised is a big hindrance to a more wide spread 
use of visualization software in atmospheric research.

A general hindrance of visualisation software to be useful 
for scientists is a poor representation of coordinate axes.

The pv_atmos package addresses those two main 
obstacles for more scientists to use ParaView, while still 
being very general. In addition, the atmos_grids.py func-
tionality, i.e. the addition of 3D grid lines and labels, can 
be used even without input data. These functions can 
therefore be of use to the complete scientific community 
using ParaView.

As mentioned above, it is the intention of this publi-
cation to attract a developer community, such that the 
package can grow and profit from the needs and skills of a 
variety of scientists and developers.

References
1.	 Portal of ParaView. Available at: www.paraview.org
2.	 Climate and Forecast (FC) conventions. Available 

at: http://cf-pcmdi.llnl.gov/documents/cf-conven-
tions/1.6/cf-conventions.html

3.	 Art of Science, Princeton University. Available at: www.
princeton.edu/artofscience

www.paraview.org
https://github.com/mjucker/pv_atmos.git 
www.paraview.org
http://cf-pcmdi.llnl.gov/documents/cf-conventions/1.6/cf-conventions.html
http://cf-pcmdi.llnl.gov/documents/cf-conventions/1.6/cf-conventions.html
www.princeton.edu/artofscience
www.princeton.edu/artofscience


JuckerArt. e4, p.  4 of 4 

How to cite this article: Jucker, M 2014 Scientific Visualisation of Atmospheric Data with ParaView. Journal of Open Research 
Software, 2(1): e4, DOI: http://dx.doi.org/10.5334/jors.al 

Published: 3 June 2014

Copyright: © 2014 The Author(s). This is an open-access article distributed under the terms of the Creative Commons 
Attribution 3.0 Unported License (CC-BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original author and source are credited. See http://creativecommons.org/licenses/by/3.0/.

The Journal of Open Research Software is a peer-reviewed open access journal published by 
Ubiquity Press OPEN ACCESS


