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As computational pipelines become a bigger part of science, it is important to ensure that the results are 
reproducible, a concern which has come to the fore in recent years. All developed software should be able 
to be run automatically without any user intervention.

In addition to being valuable to the wider community, which may wish to reproduce or extend a published 
analysis, reproducible research practices allow for better control over the project by the original authors 
themselves. For example, keeping a non-executable record of parameters and command line arguments 
leads to error-prone analysis and opens up the possibility that, when the results are to be written up 
for publication, the researcher will no longer be able to even completely describe the process that led to 
them.

For large projects, the use of multiple computational cores (either in a multi-core machine or distributed 
across a compute cluster) is necessary to obtain results in a useful time frame. Furthermore, it is often 
the case that, as the project evolves, it becomes necessary to save intermediate results while down-
stream analyses are designed (or re-designed) and implemented. Under many frameworks, this causes 
having a single point of entry for the computation becomes increasingly difficult.

Jug is a software framework which addresses these issues by caching intermediate results and 
distributing the computational work as tasks across a network.

Jug is written in Python without the use of compiled modules, is completely cross-platform, and 
available as free software under the liberal MIT license.

Jug is available from: http://github.com/luispedro/jug.
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1 Introduction
The value of reproducible research in computational fields 
has been recognized in several areas, including fields as 
different computational mathematics, signal processing 
[18, 59], neuronal network modeling [45], archeology 
[41], or climate science [20]. This has lead researchers to 
realize that computational reproducibility is an issue that 
spans across fields [19, 21, 23, 38].

Besides the benefits to the wider scientific community 
and society, reproducible practices can be advantageous to 
the individual researcher as the resulting research process 
is faster and less error prone [40].

Several implementations of reproducible papers (or 
executable papers) have been proposed towards the goal 
of reproducing published analyses [3, 36, 48, 64]. These 
solutions do not necessarily scale to large problems, those 
that take several days, months, or years of CPU time. For 
very large problems, specialized solutions are needed to 

fully leverage high performance computing platforms 
[15, 65]. Nonetheless, there is a range of medium-sized 
problems that can be successfully tackled on a computer 
cluster with a small number of nodes or even taking 
advantage of a single multicore machine. It is for these 
medium-sized problems that Jug is best suited.

A typical ad hoc approach to this problem is to save 
intermediate files on disk. A limitation of this approach 
is that often the design of the computation itself takes 
several iterations as intermediate steps are improved. 
Thus, some intermediate results need to be recomputed. 
This involves a large amount of human management of 
the state of the computation, breaking it up into pieces, 
and, when using a cluster, scheduling jobs on the batch 
computing system.

Jug is a task-based framework, which supports saving 
and sharing of intermediate results and parallelisation on 
computer clusters (or multi-core machines).
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Intermediate results are cached with a key which 
takes into consideration all input parameters of that 
computation. Thus, any change in the parameters 
immediately triggers a recomputation of all dependent 
results. The basic model is similar to Make, which has 
been used before for implementing reproducible research 
pipelines [53].

However, unlike Make, Jug is written in Python, a 
general purpose programming language which is widely 
used in scientific programming [49]. A Task in Jug can 
consist of any Python function and its arguments. The 
task can include running external commands and calling 
routines written in other languages as Python has many 
tools to interface with the rest of the system [4–6].

A Jugfile (the file which specifies which tasks need to 
be run—named by analogy to the Makefiles of Make) is a 
simple Python script with some added notations. Below, 
we show how the only a few small changes are needed to 
transform a conventional Python script into a Jugfile.

2 Implementation and architecture
2.1 Task-based architecture
Jug is designed around tasks. A task is defined as a Python 
function and a set of arguments, which may be Python 
values or the output of other tasks.

For example, consider the following toy problem: given 
a set of text files, count the number of lines in each, 
and report the average number of lines. Conceptually, 
we can already see that each input file can be processed 
independenly (to count the number of lines) with the 
results combined at the end.

This can be implemented with Jug, using the following 
code:

from jug import Task

def linecount(fname):
    ‘Return the number of lines in a file’
    n = 0
    for line in open(fname):
        n += 1
    return n

def mean(args):
    return sum(args)/float(len(args))

inputs = glob(‘*.txt’)
counts = []
for tf in inputs:
    counts.append( Task(linecount, tf) )
final = Task(mean, counts)

This code defines the task dependency structure 
represented in Figure 1. As we can see from the graph, all 
of the linecount operations can potentially be run in 
parallel, while the mean operation must wait the result of 
all of the other computation. The dependency structure is 
always a dag (directed acyclic graph). We will later see how 
Jug exploits this structure to achieve parallelism.

The code above has the construct Task(f, args) 
repeated several times. Using the TaskGenerator 
decorator this can be simplified to a more natural syntax.

from jug import TaskGenerator

@TaskGenerator
def linecount(fname):
    ‘Return the number of lines in a file’
    n = 0
    for line in open(fname):
        n += 1
    return n

@TaskGenerator
def mean(args):
    return sum(args)/float(len(args))

inputs = glob(‘*.txt’)
counts = []
for tf in inputs:
    counts.append( linecount(tf) )
final = mean(counts)

As the reader can appreciate, this is identical 
to a traditional Python script, except for the 
@TaskGenerator decorators. With a few limitations 
(which unfortunately can give rise to complex error 
messages), scripts can be written as if they were sequential 
Python scripts.

By default, Jug looks for a file called jugfile.py, but 
any filename can be used. Generically, we refer to the 
script being run as the Jugfile.

2.2 Jug subcommands
Based on a Jugfile defining the computational structure, 
Jug is invoked by calling the jug executable with a 
subcommand. The most important subcommands are 
execute, status, and shell.

Execution is used for actually running the tasks. It 
performs a more complex version of the following 
pseudo-code:

tasks = alltasks in topological sort order 
while len(tasks) > 0:
    next = task.pop()
     if (not next.has_run and
        not next.is_running()):
        while not next.can_run():
            sleep(waiting_period)
        with locked(next):
            if not next.has_run():
                next.run()

Figure 1: Simple Dependency Structure for Example in 
the Text. This assumes that the directory had a collection 
of files named 0.txt, 1.txt,…

count('0.txt')

....

count('2.txt')

count('1.txt')
mean
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If run on a single processor, this will just run all of the 
tasks in order. It is most interesting when it is run on 
multiple processors. Because of the lock synchronisation, 
tasks can be run in parallel to take advantage of the 
multiple cores.

The actual code is more complex than what is shown 
above, particularly to ensure that the locking is performed 
correctly and that the waiting step eventually times out (in 
order to handle the situation where another process is hung).

The status subcommand prints out a summary of the 
status of all of the tasks. Figure 2 shows the output of this 
command using the example Jugfile above. We assume 
that the Jugfile was called jugfile.py  on disk and that 
there were 20 textfiles in the directory. We can see that 
there are 20 tasks ready to run, while the mean task is still 
waiting for the results of the other tasks.

2.3 Backends
A basic feature of Jug is its ability to save and load results 
so that values computed by one process can be loaded 
by another. Each task of the form Task(f, args) is 
represented by a hash of f and args. Jug assumes that the 
result of a function is uniquely defined by its arguments. 
Therefore, Jug does not work well with functions which are 
not pure or which access (non-constant) global variables.

A Jug backend must then support four basic operations:

save Saving a Python object by its hash name.
load Loading a Python object by its hash name.
lock Creating a lock by hash name. Naturally, this lock 
must be created atomically.
release Releasing the lock.

A few other operations, such as deletion and listing of 
names are also supported.

The filesystem can support all of the above operations 
if the backend is coded correctly to avoid race conditions. 
This is the default backend, identified simply by a directory 
name. Inside this directory, files named by a hexadecimal 
representation of their hashes. Objects are saved using 
Python’s pickle module with zlib compression. As a 
special case, numpy arrays [62] are saved to disk directly. 
This special case was introduced as numpy arrays are a very 
common data type in scientific programming and saving 
them directly allows for very fast saving and loading (they 

are represented on disk as a header followed by the binary 
information they contain).

Another backend currently included with Jug is a redis 
backend. Redis a name-key database system.1 Redis is 
particularly recommended for the case where there are 
many small objects being saved. In this case, keeping each 
as a separate file on disk would incur a large space penalty, 
while redis keeps them all in the same file.

Finally, there is an in-memory backend. This was initially 
developed for testing, but can be useful on its own.

2.4 Asynchronous function
Parallelisation is achieved by running more than one Jug 
process simultaneously. All of the synchronisation is out-
sourced to the backend. As long as all of the processes 
can access the backend, there is no need for them to com-
municate directly. It can even be the case that processors 
start working on tasks in mid-processing. This makes Jug 
usable in batch-based computer cluster environments, 
which are quite common in research institutions.

2.5 Software development with Jug
The output of the computation can be obtained from Jug 
in several ways. One can write a task that writes the output 
to a file in the desired format. Alternatively, outputs can 
be inspected interactively using the shell subcommand. It 
is expected that the first option will be used for the final 
version of the computation, whilst the second one is most 
helpful during development.

The shell subcommand, invokes an IPython shell with 
all the objects in the Jugfile loaded. The IPython console 
is an enhanced interactive shell for Python [48]. A few 
functions are added to the namespace, in particular, 
value will load the results of a task object if it is 
available.

Figure 3 shows a possible interaction session with the 
jug shell subcommand. While having to explicitly 
load all the results may be bothersome, it is both much 
faster at start up and the user might not load more than 
a few objects throughout their session. In some cases, 
loading all of the objects simultaneously might even be 
impossible due to memory constraints. Furthermore, this 
allows exploration of the task structure for debugging.

Jug can also be loaded as a library from a Python script 
and Jug computation outputs can serve as inputs for 

Figure 2: Output of jug status. The $ sign shown is the command line prompt, and the status subcommand 
was run. At this point, nothing has been run. The output has been edited for space reasons (spacing columns were 
removed).
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further computation. This can be performed from inside 
a Jupyter notebook [33], for example, for interactive 
exploration of the computational results.

2.6 Result invalidation
If a researcher improves an intermediate step in a 
pipeline (e.g., fixes a bug) and wishes to obtain new 
results of the computation, then all outputs from 
that step and downstream must be recomputed, but 
results from upstream and unrelated processes can be 
reused. Formally, in the task DAG, affected tasks and 
their descendants must be recomputed. Without tool 
support, this can be a very error-prone operation: by 
not removing all relevant intermediate files, it is easy to 
generate an irreproducible state where different blocks of 
the computation output were generated using different 
versions of the code. Therefore, Jug adds support for result 
invalidation. When a results from a task are invalidated, 
all tasks which (directly or indirectly) depend on them are 
also invalidated. In the case where the parameters of a 
task have not changed, only the code implementing it, it 
is still necessary to manually invalidate tasks. This can be 
performed using the jug invalidate subcommand 
which will invalidate all tasks with the given name as well 
as other which directly or indirectly depend on them. 
For finer control, within the jug shell environment, 
individual tasks can be invalidated with the invalidate 
function.

An alternative, would be to take code which implements 
the task into account while computing the task hash. 
This would mark any results computed with this code 
as outdated if the code changed. While this would add 
another layer of protection, it would still be possible 
to make mistakes. If the function depended on other 
functions, especially if this was done in a dynamic way, it 
could be hard to discover all dependencies. Additionally, 
even minute refactoring of the code would lead to over 
eager recomputation. This could make the developer wary 
of making improvements in their code, resulting in overall 
worse code.

Therefore, as a design choice, Jug asks the user to 
explicitly invalidate their results, while supporting 
automatic dependency discovery. The recommendation is 

still that the user run the full pipeline from start to finish 
once they are satisfied with the state of the code and 
before publication, but the pipeline development stage 
can be more agile.

3 Example
This section presents an edited version of the code used in a 
previously published study of computer vision techniques 
for bioimage analysis [10].2 The code was edited to remove 
superfluous details, however the overall logic is preserved 
as the original version was already based on Jug. As part of 
that paper, it was necessary to evaluate the classification 
accuracy of a machine learning model.

To evaluate classification, the dataset is broken up 
into 10 pieces and each of the pieces is held-out of the 
analysis and then used to evaluate accuracy (the final 
result is the average of all ten values). This is known as 
cross-validation.

The image processing is done with mahotas [9], while 
the machine learning aspects are handled with sckit-learn 
[46].

The example starts with a simple Python function to 
parse the data directory structure and return a list of input 
files:

from jug import TaskGenerator, CachedFunction 
import mahotas as mh
from sklearn.cross_validation import KFold

def load():
    ‘‘‘
     This function assumes that the images are 

stored in data/ with filenames matching the 
pattern label-protein-([0-9]).tiff

    ‘‘‘
    from os import listdir
    images = []
    base = ‘./data/’
    for path in listdir(base):
        if not ‘protein’ in path: continue
        label = path.split(‘-’)[0]
         # We only store paths and will load data 

on demand
        # This saves memory.
        im = (base + path, label)
        images.append(im)
    return images

Figure 3: Interaction with jug shell. The value function loads and returns the result from any task. The final line 
has been edited (marked with …) for presentation purposes.
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Now, we define as functions the core of the study. For 
space reasons, the code presented here computes only a 
simple set of features, namely Haralick features [29].

# TaskGenerator can be used with any function, 
# including builtins:
jug_sum = TaskGenerator(sum)

@TaskGenerator
def features(im):
    im = mh.imread(im)
    return mh.features.haralick(im)

@TaskGenerator
def fold(features, labels, train, test):
    from sklearn import linear_model
    from sklearn import metrics
    clf = linear_model.LogisticRegression()
    clf.fit(features[train], labels[train])
    preds = clf.predict(features[test])
     return metrics.confusion_matrix(labels[test], 

preds)

@TaskGenerator
def output(cmatrix, oname):
    with open(oname, ‘w’) as output:
        output.write(cmatrix)
        output.write(‘\n’)

In this case, we defined a function, output which will 
write the final results to a file. Finally, we call the above 
generators to process all the data. The resulting code is 
very readable for any programmer.

# CachedFunction ensures that the load() 
function is run just once for
# efficiency:
images = CachedFunction(load)

allfeatures = []
labels = []
for im,label in images:
    labels.append(label)
    allfeatures.append(features(im))
partial_cmats = []
for train,test in KFold(len(features), 
                          n_folds=10):
    partial_cmats.append(
        fold(features, labels, train, test))
cmatrix = jug_sum(partial_cmats)
output(cmatrix, ‘cmatrix.txt’)

Figure 4 shows the dependency structure of this 
examples. The main feature is the fan-out/fan-in which is 

associated with map-reduce frameworks. A more compact 
representation can be generated by Jug itself, using the 
jug graph subcommand. Figure 5 shows an example 
of such auto-generated graphs.

4 Quality control
Jug follows best practices in the field [60, 63] and includes 
a full test suite (>100 tests) with continuous integration 
using the Travis service.

The user can run the test suite using the test-jug 
subcommand.

Jug is available under the MIT software license, which 
grants the user right to use, copy, and modify the code 
almost at will. It is developed using the git version control 
tool, with the project being hosted on the github platform. 
The Jug project is available at: https://www.github.com/
luispedro/jug and bug reports can be submitted using the 
github issues system at: https://github.com/luispedro/jug/
issues. An open mailing-list (https://groups.google.com/
forum/#!forum/jug-users) provides discussion and support.

4.1 Dependencies
Basic usage of Jug requires no dependencies beyond 
Python itself. Some specific subcommands or functionality, 
however, have additional requirements: the jug shell 

Figure 5: Dependency Structure for second example in 
the Text generated by the jug graph command. The 
numbers encode the number of tasks waiting (W), ready 
to be run (E), running (R), or finished (F).

builtins.sum
1W 0E0R0F

jugfile.output
1W 0E0R0F

jugfile.fold
5W 0E0R0F

jugfile.features
0W 10E0R 0F

jugfile.load
0W 0E0R1F

Figure 4: Dependency Structure for second example in the Text. The fan-out/fan-in structure is typical (it is an instance 
of the map-reduce framework).
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subcommand relies on IPython, jug webstatus on the 
bottle package; and writing out task completion metadata 
in Yaml format requires the pyyaml library.

4.2 List of contributors
Luis Pedro Coelho designed and implemented Jug.

The following individuals have contributed patches 
(alphabetically): Alex Ford, Andreas Sorge, Breanndán 
Ó Nualláin, Christian Jauvin, Dominique Geffroy, Elliott 
Sales de Andrade, Hamilton Turner, Renato Alves, and 
Ulrich Dobramsyl; as well as the github users identified as 
abingham, cgcgcg, and dsign.

4.3 Software location
4.3.1 Archive

Name: Zenodo
Persistent identifier: https://doi.org/10.5281/

zenodo.847794
Licence: MIT
Publisher: Luis Pedro Coelho
Version published: 1.6.0
Date published: 24 Aug 2017

4.3.2 Code repository
Name: Github
Persistent identifier: https://github.com/luispedro/jug
Licence: MIT

4.4 Language
Jug is written in Python, with support for Python 2 
(versions 2.6 and 2.7) and 3 (versions 3.3 and above). Jug 
is automatically tested on all these versions.

5 Reuse potential
Jug is a very generic framework for any computational 
pipeline. It has been used by the author in several 
projects [10, 11, 12, 57]. Others have used the framework 
in other contexts, such as physics [2], machine learning 
[30, 32, 52], metereology [60, 61], and it is used in 
the pyfssa package for algorithmic finite-size scaling 
analysis [55].

6 Discussion
6.1 Similar tools
Several pipeline tools have been used in scientific 
computing (for a recent review, see the work of Leipzig 
[35]).

The Make build system has a difficult syntax for any use 
beyond the most basic, but it is conceptually simple and 
widely available. Thus, it has been used as the basis of a set 
of conventions for reproducible research by Schwab et al. 
[53]. Fomel and Hennenfent [22] proposed a system built 
on top of Scons which shared superficially similar design. 
Scons, like Make, is a build system. It supports spawning 
parallel jobs using multiple threads. In the original use 
case, the tasks are delegated to other commands and the 
operating system can take care of parallelism. If, however, 
the tasks are computationally intensive in Python, 
contention for the global interpreter lock will limit the 
amount of real parallelism.3 As Make syntax does not 

directly support complex operations, some researchers 
have developed alternative domain-specific syntaxes for 
for specifying a workflow graph [8, 44].

Ruffus is a Python-based solution which supports parallel 
execution of pipelines [25]. Using the Ruby programming 
language, Mishima et al. [42] proposed Pwrake, which 
supports parallel execution of bioinformatics workflows 
written (or accessible) in that language. Snakemake [34] 
also improves over Make by providing more complex 
rules and automatic interaction with a high performance 
compute cluster, while providing a domain specific 
language which can easily be extended with Python. 
Similarly, Sadedin et al. [51] proposed Bpipe, a tool based 
on a domain-specific language around shell scripting. One 
large difference of Jug compared to these tools is that Jug 
is tightly integrated with Python code. Thus, while it lacks 
support for directly spawning external processes, it makes 
it easier to call Python-based functions using a natural 
syntax (calling external processes is naturally still possible 
through standard Python code).

For large scale computation, there are several workflow 
engines which have been used in science [56, 58], such as 
Taverna [31], eHive [54], or Kepler [1, 39]. In general, these 
are generic frameworks which allow the user to specify a 
computational path, although domain specific solutions 
also exist, such as Galaxy [24] for bioinformatics.

Also relevant is the IncPy implementation of a Python 
interpreter with automatic persistent memorization 
[26, 27] (unfortunately, no longer maintained). The 
advantages of that system apply to Jug as well, with a 
few differences. Their system implements automatic 
memoization, while, using Jug, the user needs to manually 
annotate functions to memoize using TaskGenerator. 
This extra control can be necessary to avoid a proliferation 
of intermediate results when these are very large (often a 
very large intermediate output is not necessary, and only a 
summary must be kept) at the cost of increased overhead 
for the programmer. Additionally, Jug supports running 
tasks in parallel, a functionality that is absent from IncPy.

Joblib (bundled with scikit-learn [46], but usable 
independently of it) and memo [43] use mechanisms 
similar to Jug for in-process and in-memory memoization 
and parallelization. Joblib additionally supports 
memoization to disk, which like Jug enables the reuse 
of partial results in computations. Many of the design 
choices are similar to Jug, but usage is different. While 
Joblib is designed to speed an analysis that is run using a 
traditional Python driver script, with Jug the user defines a 
computational graph in Python, but this graph is executed 
by the Jug machinery. This enables functionality such as 
jug status and jug graph making the status of the 
computation explicit.

Dask [13] provides a generic task execution framework, 
similar to Jug in addition to a distributed numeric library 
(which achieves high performance on a predefined 
limited set of operations). Like Jug, dask can coordinate 
computation on a dependency graph across compute 
nodes on a cluster. Joblib (mentioned above) can also use 
Dask as a computational backend. Dask uses a central 
scheduler dispatching jobs to workers, unlike Jug where 
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each node is independently running the Jugfile script with 
only limited communication between the nodes through 
the result storage backend. This enables dynamic control of 
the workload as the scheduler can assign workers to tasks 
so as to minimize the expected I/O burden. However, this 
architecture requires extra setup on the part of the user 
to ensure that communication between worker nodes and 
the central scheduler is set up before computation can 
proceed (while Jug was designed to work well in a shared 
cluster where the number of available compute nodes may 
vary throughout the process). Jug also supports saving 
intermediate results between different runs of the process 
so that intermediate results are available even if the code 
for subsequent computations changes. This functionality 
is not present in Dask.

Peng and Eckel [47] describe cacher, an R framework 
which uses similar concepts to Jug to allow for results to 
be distributed. In principle, a very similar system could be 
built on top of Jug by sharing the backend between users 
(either in the same research unit or after publication). 
For simple reproducibility, it would be sufficient for the 
researcher to share their database upon publication.

To be able ensure complete reproducibility of a 
computational result, it is necessary to capture all 
dependencies in the environment. Sumatra [14] tracks 
execution of a process and captures all dependencies. 
Reprozip [50] uses a similar approach to build a single 
archive with all dependencies which can be used by other 
users to exactly reproduce the original computational 
environment. These can be used in combination with Jug 
to achieve perfect reproducibility.

6.2 Conclusions
Jug focuses on the development of the computation as 
much as its communication. In fact, when it comes to 
communication other tools might be better suited as 
they combine written exposition with computer code. 
They can be used in combination with Jug as they do not 
often provide caching and distribution, needed for large 
projects. While the simplest Jug use employs a single 
single Jugfile, a Jugfile can import the results of another. 
For example, a first Jugfile might perform all heavy-duty 
computation and be run on a computing cluster. A second 
script could be embedded inside an executable paper to 
generate tables and plots [16]. This faster script could be 
run as part of building the paper.

Jug improves the pipeline development experience and 
makes the programming researcher more productive and 
less error-prone. As many scientists now spend a significant 
fraction of their time performing computational work 
[28, 49], increasing their productivity in this task can have 
significant effects. Jug is based on Python, a programming 
language which is widely used for scientific computation. 
Thus, it can be used in a known environment without a 
high learning curve.

Jug does not address the issue of how to build a 
reproducible analysis environment. However, it can be 
used in combination with other tools which ensure a 
reproducible environment, such as container based 
tools [7, 37] or package managers which emphasize 

reproducibility such as Nix [17] (Jug is available as a nix 
package in the main nixpkgs repository).

Jug was also not designed to compete with large scale 
frameworks such as Hadoop or Spark, which scale better 
to very large projects. However, those frameworks have 
much higher costs in terms of development time (code 
must be written especially for the framework) and 
overhead. They also require that the user learn a new 
framework. For scientists who want to quickly adapt 
pre-existing code to run on a cluster or even a multi-
core machine, Jug provides a better trade-off than those 
higher-powered alternatives in a familiar programming 
language.

Notes
 1 See the redis webpage, at redis.io, for detailed 

information about redis.
 2 The original code to reproduce the full study is 

available online at: https://github.com/luispedro/
Coelho2013_Bioinformatics.

 3 In the most commonly used Python interpreters, there 
is a lock that prevents more than one thread from 
simultaneously executing interpreted code, although 
they can execute non-interpreted code, as calling an 
external programme or certain external libraries.
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