
Coelho, L P 2017 Jug: Software for Parallel Reproducible
Computation in Python. Journal of Open Research
Software, 5: 30. DOI: https://doi.org/10.5334/jors.161

Journal of
open research software

SOFTWARE METAPAPER

Jug: Software for Parallel Reproducible Computation in
Python
Luis Pedro Coelho
European Molecular Biology Laboratory (EMBL), DE
luis@luispedro.org

As computational pipelines become a bigger part of science, it is important to ensure that the results are
reproducible, a concern which has come to the fore in recent years. All developed software should be able
to be run automatically without any user intervention.

In addition to being valuable to the wider community, which may wish to reproduce or extend a published
analysis, reproducible research practices allow for better control over the project by the original authors
themselves. For example, keeping a non-executable record of parameters and command line arguments
leads to error-prone analysis and opens up the possibility that, when the results are to be written up
for publication, the researcher will no longer be able to even completely describe the process that led to
them.

For large projects, the use of multiple computational cores (either in a multi-core machine or distributed
across a compute cluster) is necessary to obtain results in a useful time frame. Furthermore, it is often
the case that, as the project evolves, it becomes necessary to save intermediate results while down-
stream analyses are designed (or re-designed) and implemented. Under many frameworks, this causes
having a single point of entry for the computation becomes increasingly difficult.

Jug is a software framework which addresses these issues by caching intermediate results and
distributing the computational work as tasks across a network.

Jug is written in Python without the use of compiled modules, is completely cross-platform, and
available as free software under the liberal MIT license.

Jug is available from: http://github.com/luispedro/jug.

Keywords: Parallel programming; Python; Memoization; Reproducible computation; High performance
computing; Data analysis; Computational science

1 Introduction
The value of reproducible research in computational fields
has been recognized in several areas, including fields as
different computational mathematics, signal processing
[18, 59], neuronal network modeling [45], archeology
[41], or climate science [20]. This has lead researchers to
realize that computational reproducibility is an issue that
spans across fields [19, 21, 23, 38].

Besides the benefits to the wider scientific community
and society, reproducible practices can be advantageous to
the individual researcher as the resulting research process
is faster and less error prone [40].

Several implementations of reproducible papers (or
executable papers) have been proposed towards the goal
of reproducing published analyses [3, 36, 48, 64]. These
solutions do not necessarily scale to large problems, those
that take several days, months, or years of CPU time. For
very large problems, specialized solutions are needed to

fully leverage high performance computing platforms
[15, 65]. Nonetheless, there is a range of medium-sized
problems that can be successfully tackled on a computer
cluster with a small number of nodes or even taking
advantage of a single multicore machine. It is for these
medium-sized problems that Jug is best suited.

A typical ad hoc approach to this problem is to save
intermediate files on disk. A limitation of this approach
is that often the design of the computation itself takes
several iterations as intermediate steps are improved.
Thus, some intermediate results need to be recomputed.
This involves a large amount of human management of
the state of the computation, breaking it up into pieces,
and, when using a cluster, scheduling jobs on the batch
computing system.

Jug is a task-based framework, which supports saving
and sharing of intermediate results and parallelisation on
computer clusters (or multi-core machines).

https://doi.org/10.5334/jors.161
mailto:luis@luispedro.org
http://github.com/luispedro/jug

Coelho: JugArt. 30, p. 2 of 10

Intermediate results are cached with a key which
takes into consideration all input parameters of that
computation. Thus, any change in the parameters
immediately triggers a recomputation of all dependent
results. The basic model is similar to Make, which has
been used before for implementing reproducible research
pipelines [53].

However, unlike Make, Jug is written in Python, a
general purpose programming language which is widely
used in scientific programming [49]. A Task in Jug can
consist of any Python function and its arguments. The
task can include running external commands and calling
routines written in other languages as Python has many
tools to interface with the rest of the system [4–6].

A Jugfile (the file which specifies which tasks need to
be run—named by analogy to the Makefiles of Make) is a
simple Python script with some added notations. Below,
we show how the only a few small changes are needed to
transform a conventional Python script into a Jugfile.

2 Implementation and architecture
2.1 Task-based architecture
Jug is designed around tasks. A task is defined as a Python
function and a set of arguments, which may be Python
values or the output of other tasks.

For example, consider the following toy problem: given
a set of text files, count the number of lines in each,
and report the average number of lines. Conceptually,
we can already see that each input file can be processed
independenly (to count the number of lines) with the
results combined at the end.

This can be implemented with Jug, using the following
code:

from jug import Task

def linecount(fname):
 ‘Return the number of lines in a file’
 n = 0
 for line in open(fname):
 n += 1
 return n

def mean(args):
 return sum(args)/float(len(args))

inputs = glob(‘*.txt’)
counts = []
for tf in inputs:
 counts.append(Task(linecount, tf))
final = Task(mean, counts)

This code defines the task dependency structure
represented in Figure 1. As we can see from the graph, all
of the linecount operations can potentially be run in
parallel, while the mean operation must wait the result of
all of the other computation. The dependency structure is
always a dag (directed acyclic graph). We will later see how
Jug exploits this structure to achieve parallelism.

The code above has the construct Task(f, args)
repeated several times. Using the TaskGenerator
decorator this can be simplified to a more natural syntax.

from jug import TaskGenerator

@TaskGenerator
def linecount(fname):
 ‘Return the number of lines in a file’
 n = 0
 for line in open(fname):
 n += 1
 return n

@TaskGenerator
def mean(args):
 return sum(args)/float(len(args))

inputs = glob(‘*.txt’)
counts = []
for tf in inputs:
 counts.append(linecount(tf))
final = mean(counts)

As the reader can appreciate, this is identical
to a traditional Python script, except for the
@TaskGenerator decorators. With a few limitations
(which unfortunately can give rise to complex error
messages), scripts can be written as if they were sequential
Python scripts.

By default, Jug looks for a file called jugfile.py, but
any filename can be used. Generically, we refer to the
script being run as the Jugfile.

2.2 Jug subcommands
Based on a Jugfile defining the computational structure,
Jug is invoked by calling the jug executable with a
subcommand. The most important subcommands are
execute, status, and shell.

Execution is used for actually running the tasks. It
performs a more complex version of the following
pseudo-code:

tasks = alltasks in topological sort order
while len(tasks) > 0:
 next = task.pop()
 if (not next.has_run and
 not next.is_running()):
 while not next.can_run():
 sleep(waiting_period)
 with locked(next):
 if not next.has_run():
 next.run()

Figure 1: Simple Dependency Structure for Example in
the Text. This assumes that the directory had a collection
of files named 0.txt, 1.txt,…

count('0.txt')

....

count('2.txt')

count('1.txt')
mean

Coelho: Jug Art. 30, p. 3 of 10

If run on a single processor, this will just run all of the
tasks in order. It is most interesting when it is run on
multiple processors. Because of the lock synchronisation,
tasks can be run in parallel to take advantage of the
multiple cores.

The actual code is more complex than what is shown
above, particularly to ensure that the locking is performed
correctly and that the waiting step eventually times out (in
order to handle the situation where another process is hung).

The status subcommand prints out a summary of the
status of all of the tasks. Figure 2 shows the output of this
command using the example Jugfile above. We assume
that the Jugfile was called jugfile.py on disk and that
there were 20 textfiles in the directory. We can see that
there are 20 tasks ready to run, while the mean task is still
waiting for the results of the other tasks.

2.3 Backends
A basic feature of Jug is its ability to save and load results
so that values computed by one process can be loaded
by another. Each task of the form Task(f, args) is
represented by a hash of f and args. Jug assumes that the
result of a function is uniquely defined by its arguments.
Therefore, Jug does not work well with functions which are
not pure or which access (non-constant) global variables.

A Jug backend must then support four basic operations:

save Saving a Python object by its hash name.
load Loading a Python object by its hash name.
lock Creating a lock by hash name. Naturally, this lock
must be created atomically.
release Releasing the lock.

A few other operations, such as deletion and listing of
names are also supported.

The filesystem can support all of the above operations
if the backend is coded correctly to avoid race conditions.
This is the default backend, identified simply by a directory
name. Inside this directory, files named by a hexadecimal
representation of their hashes. Objects are saved using
Python’s pickle module with zlib compression. As a
special case, numpy arrays [62] are saved to disk directly.
This special case was introduced as numpy arrays are a very
common data type in scientific programming and saving
them directly allows for very fast saving and loading (they

are represented on disk as a header followed by the binary
information they contain).

Another backend currently included with Jug is a redis
backend. Redis a name-key database system.1 Redis is
particularly recommended for the case where there are
many small objects being saved. In this case, keeping each
as a separate file on disk would incur a large space penalty,
while redis keeps them all in the same file.

Finally, there is an in-memory backend. This was initially
developed for testing, but can be useful on its own.

2.4 Asynchronous function
Parallelisation is achieved by running more than one Jug
process simultaneously. All of the synchronisation is out-
sourced to the backend. As long as all of the processes
can access the backend, there is no need for them to com-
municate directly. It can even be the case that processors
start working on tasks in mid-processing. This makes Jug
usable in batch-based computer cluster environments,
which are quite common in research institutions.

2.5 Software development with Jug
The output of the computation can be obtained from Jug
in several ways. One can write a task that writes the output
to a file in the desired format. Alternatively, outputs can
be inspected interactively using the shell subcommand. It
is expected that the first option will be used for the final
version of the computation, whilst the second one is most
helpful during development.

The shell subcommand, invokes an IPython shell with
all the objects in the Jugfile loaded. The IPython console
is an enhanced interactive shell for Python [48]. A few
functions are added to the namespace, in particular,
value will load the results of a task object if it is
available.

Figure 3 shows a possible interaction session with the
jug shell subcommand. While having to explicitly
load all the results may be bothersome, it is both much
faster at start up and the user might not load more than
a few objects throughout their session. In some cases,
loading all of the objects simultaneously might even be
impossible due to memory constraints. Furthermore, this
allows exploration of the task structure for debugging.

Jug can also be loaded as a library from a Python script
and Jug computation outputs can serve as inputs for

Figure 2: Output of jug status. The $ sign shown is the command line prompt, and the status subcommand
was run. At this point, nothing has been run. The output has been edited for space reasons (spacing columns were
removed).

Coelho: JugArt. 30, p. 4 of 10

further computation. This can be performed from inside
a Jupyter notebook [33], for example, for interactive
exploration of the computational results.

2.6 Result invalidation
If a researcher improves an intermediate step in a
pipeline (e.g., fixes a bug) and wishes to obtain new
results of the computation, then all outputs from
that step and downstream must be recomputed, but
results from upstream and unrelated processes can be
reused. Formally, in the task DAG, affected tasks and
their descendants must be recomputed. Without tool
support, this can be a very error-prone operation: by
not removing all relevant intermediate files, it is easy to
generate an irreproducible state where different blocks of
the computation output were generated using different
versions of the code. Therefore, Jug adds support for result
invalidation. When a results from a task are invalidated,
all tasks which (directly or indirectly) depend on them are
also invalidated. In the case where the parameters of a
task have not changed, only the code implementing it, it
is still necessary to manually invalidate tasks. This can be
performed using the jug invalidate subcommand
which will invalidate all tasks with the given name as well
as other which directly or indirectly depend on them.
For finer control, within the jug shell environment,
individual tasks can be invalidated with the invalidate
function.

An alternative, would be to take code which implements
the task into account while computing the task hash.
This would mark any results computed with this code
as outdated if the code changed. While this would add
another layer of protection, it would still be possible
to make mistakes. If the function depended on other
functions, especially if this was done in a dynamic way, it
could be hard to discover all dependencies. Additionally,
even minute refactoring of the code would lead to over
eager recomputation. This could make the developer wary
of making improvements in their code, resulting in overall
worse code.

Therefore, as a design choice, Jug asks the user to
explicitly invalidate their results, while supporting
automatic dependency discovery. The recommendation is

still that the user run the full pipeline from start to finish
once they are satisfied with the state of the code and
before publication, but the pipeline development stage
can be more agile.

3 Example
This section presents an edited version of the code used in a
previously published study of computer vision techniques
for bioimage analysis [10].2 The code was edited to remove
superfluous details, however the overall logic is preserved
as the original version was already based on Jug. As part of
that paper, it was necessary to evaluate the classification
accuracy of a machine learning model.

To evaluate classification, the dataset is broken up
into 10 pieces and each of the pieces is held-out of the
analysis and then used to evaluate accuracy (the final
result is the average of all ten values). This is known as
cross-validation.

The image processing is done with mahotas [9], while
the machine learning aspects are handled with sckit-learn
[46].

The example starts with a simple Python function to
parse the data directory structure and return a list of input
files:

from jug import TaskGenerator, CachedFunction
import mahotas as mh
from sklearn.cross_validation import KFold

def load():
 ‘‘‘
 This function assumes that the images are

stored in data/ with filenames matching the
pattern label-protein-([0-9]).tiff

 ‘‘‘
 from os import listdir
 images = []
 base = ‘./data/’
 for path in listdir(base):
 if not ‘protein’ in path: continue
 label = path.split(‘-’)[0]
 # We only store paths and will load data

on demand
 # This saves memory.
 im = (base + path, label)
 images.append(im)
 return images

Figure 3: Interaction with jug shell. The value function loads and returns the result from any task. The final line
has been edited (marked with …) for presentation purposes.

Coelho: Jug Art. 30, p. 5 of 10

Now, we define as functions the core of the study. For
space reasons, the code presented here computes only a
simple set of features, namely Haralick features [29].

TaskGenerator can be used with any function,
including builtins:
jug_sum = TaskGenerator(sum)

@TaskGenerator
def features(im):
 im = mh.imread(im)
 return mh.features.haralick(im)

@TaskGenerator
def fold(features, labels, train, test):
 from sklearn import linear_model
 from sklearn import metrics
 clf = linear_model.LogisticRegression()
 clf.fit(features[train], labels[train])
 preds = clf.predict(features[test])
 return metrics.confusion_matrix(labels[test],

preds)

@TaskGenerator
def output(cmatrix, oname):
 with open(oname, ‘w’) as output:
 output.write(cmatrix)
 output.write(‘\n’)

In this case, we defined a function, output which will
write the final results to a file. Finally, we call the above
generators to process all the data. The resulting code is
very readable for any programmer.

CachedFunction ensures that the load()
function is run just once for
efficiency:
images = CachedFunction(load)

allfeatures = []
labels = []
for im,label in images:
 labels.append(label)
 allfeatures.append(features(im))
partial_cmats = []
for train,test in KFold(len(features),
 n_folds=10):
 partial_cmats.append(
 fold(features, labels, train, test))
cmatrix = jug_sum(partial_cmats)
output(cmatrix, ‘cmatrix.txt’)

Figure 4 shows the dependency structure of this
examples. The main feature is the fan-out/fan-in which is

associated with map-reduce frameworks. A more compact
representation can be generated by Jug itself, using the
jug graph subcommand. Figure 5 shows an example
of such auto-generated graphs.

4 Quality control
Jug follows best practices in the field [60, 63] and includes
a full test suite (>100 tests) with continuous integration
using the Travis service.

The user can run the test suite using the test-jug
subcommand.

Jug is available under the MIT software license, which
grants the user right to use, copy, and modify the code
almost at will. It is developed using the git version control
tool, with the project being hosted on the github platform.
The Jug project is available at: https://www.github.com/
luispedro/jug and bug reports can be submitted using the
github issues system at: https://github.com/luispedro/jug/
issues. An open mailing-list (https://groups.google.com/
forum/#!forum/jug-users) provides discussion and support.

4.1 Dependencies
Basic usage of Jug requires no dependencies beyond
Python itself. Some specific subcommands or functionality,
however, have additional requirements: the jug shell

Figure 5: Dependency Structure for second example in
the Text generated by the jug graph command. The
numbers encode the number of tasks waiting (W), ready
to be run (E), running (R), or finished (F).

builtins.sum
1W 0E0R0F

jugfile.output
1W 0E0R0F

jugfile.fold
5W 0E0R0F

jugfile.features
0W 10E0R 0F

jugfile.load
0W 0E0R1F

Figure 4: Dependency Structure for second example in the Text. The fan-out/fan-in structure is typical (it is an instance
of the map-reduce framework).

Load

Features

Features

Features

Features

Features

Collect Sum

Fold

Fold

Fold

Fold

Fold

Fold

Output

https://www.github.com/luispedro/jug
https://www.github.com/luispedro/jug
https://github.com/luispedro/jug/issues
https://github.com/luispedro/jug/issues
https://groups.google.com/forum/#!forum/jug-users
https://groups.google.com/forum/#!forum/jug-users

Coelho: JugArt. 30, p. 6 of 10

subcommand relies on IPython, jug webstatus on the
bottle package; and writing out task completion metadata
in Yaml format requires the pyyaml library.

4.2 List of contributors
Luis Pedro Coelho designed and implemented Jug.

The following individuals have contributed patches
(alphabetically): Alex Ford, Andreas Sorge, Breanndán
Ó Nualláin, Christian Jauvin, Dominique Geffroy, Elliott
Sales de Andrade, Hamilton Turner, Renato Alves, and
Ulrich Dobramsyl; as well as the github users identified as
abingham, cgcgcg, and dsign.

4.3 Software location
4.3.1 Archive

Name: Zenodo
Persistent identifier: https://doi.org/10.5281/

zenodo.847794
Licence: MIT
Publisher: Luis Pedro Coelho
Version published: 1.6.0
Date published: 24 Aug 2017

4.3.2 Code repository
Name: Github
Persistent identifier: https://github.com/luispedro/jug
Licence: MIT

4.4 Language
Jug is written in Python, with support for Python 2
(versions 2.6 and 2.7) and 3 (versions 3.3 and above). Jug
is automatically tested on all these versions.

5 Reuse potential
Jug is a very generic framework for any computational
pipeline. It has been used by the author in several
projects [10, 11, 12, 57]. Others have used the framework
in other contexts, such as physics [2], machine learning
[30, 32, 52], metereology [60, 61], and it is used in
the pyfssa package for algorithmic finite-size scaling
analysis [55].

6 Discussion
6.1 Similar tools
Several pipeline tools have been used in scientific
computing (for a recent review, see the work of Leipzig
[35]).

The Make build system has a difficult syntax for any use
beyond the most basic, but it is conceptually simple and
widely available. Thus, it has been used as the basis of a set
of conventions for reproducible research by Schwab et al.
[53]. Fomel and Hennenfent [22] proposed a system built
on top of Scons which shared superficially similar design.
Scons, like Make, is a build system. It supports spawning
parallel jobs using multiple threads. In the original use
case, the tasks are delegated to other commands and the
operating system can take care of parallelism. If, however,
the tasks are computationally intensive in Python,
contention for the global interpreter lock will limit the
amount of real parallelism.3 As Make syntax does not

directly support complex operations, some researchers
have developed alternative domain-specific syntaxes for
for specifying a workflow graph [8, 44].

Ruffus is a Python-based solution which supports parallel
execution of pipelines [25]. Using the Ruby programming
language, Mishima et al. [42] proposed Pwrake, which
supports parallel execution of bioinformatics workflows
written (or accessible) in that language. Snakemake [34]
also improves over Make by providing more complex
rules and automatic interaction with a high performance
compute cluster, while providing a domain specific
language which can easily be extended with Python.
Similarly, Sadedin et al. [51] proposed Bpipe, a tool based
on a domain-specific language around shell scripting. One
large difference of Jug compared to these tools is that Jug
is tightly integrated with Python code. Thus, while it lacks
support for directly spawning external processes, it makes
it easier to call Python-based functions using a natural
syntax (calling external processes is naturally still possible
through standard Python code).

For large scale computation, there are several workflow
engines which have been used in science [56, 58], such as
Taverna [31], eHive [54], or Kepler [1, 39]. In general, these
are generic frameworks which allow the user to specify a
computational path, although domain specific solutions
also exist, such as Galaxy [24] for bioinformatics.

Also relevant is the IncPy implementation of a Python
interpreter with automatic persistent memorization
[26, 27] (unfortunately, no longer maintained). The
advantages of that system apply to Jug as well, with a
few differences. Their system implements automatic
memoization, while, using Jug, the user needs to manually
annotate functions to memoize using TaskGenerator.
This extra control can be necessary to avoid a proliferation
of intermediate results when these are very large (often a
very large intermediate output is not necessary, and only a
summary must be kept) at the cost of increased overhead
for the programmer. Additionally, Jug supports running
tasks in parallel, a functionality that is absent from IncPy.

Joblib (bundled with scikit-learn [46], but usable
independently of it) and memo [43] use mechanisms
similar to Jug for in-process and in-memory memoization
and parallelization. Joblib additionally supports
memoization to disk, which like Jug enables the reuse
of partial results in computations. Many of the design
choices are similar to Jug, but usage is different. While
Joblib is designed to speed an analysis that is run using a
traditional Python driver script, with Jug the user defines a
computational graph in Python, but this graph is executed
by the Jug machinery. This enables functionality such as
jug status and jug graph making the status of the
computation explicit.

Dask [13] provides a generic task execution framework,
similar to Jug in addition to a distributed numeric library
(which achieves high performance on a predefined
limited set of operations). Like Jug, dask can coordinate
computation on a dependency graph across compute
nodes on a cluster. Joblib (mentioned above) can also use
Dask as a computational backend. Dask uses a central
scheduler dispatching jobs to workers, unlike Jug where

https://doi.org/10.5281/zenodo.847794
https://doi.org/10.5281/zenodo.847794
https://github.com/luispedro/jug

Coelho: Jug Art. 30, p. 7 of 10

each node is independently running the Jugfile script with
only limited communication between the nodes through
the result storage backend. This enables dynamic control of
the workload as the scheduler can assign workers to tasks
so as to minimize the expected I/O burden. However, this
architecture requires extra setup on the part of the user
to ensure that communication between worker nodes and
the central scheduler is set up before computation can
proceed (while Jug was designed to work well in a shared
cluster where the number of available compute nodes may
vary throughout the process). Jug also supports saving
intermediate results between different runs of the process
so that intermediate results are available even if the code
for subsequent computations changes. This functionality
is not present in Dask.

Peng and Eckel [47] describe cacher, an R framework
which uses similar concepts to Jug to allow for results to
be distributed. In principle, a very similar system could be
built on top of Jug by sharing the backend between users
(either in the same research unit or after publication).
For simple reproducibility, it would be sufficient for the
researcher to share their database upon publication.

To be able ensure complete reproducibility of a
computational result, it is necessary to capture all
dependencies in the environment. Sumatra [14] tracks
execution of a process and captures all dependencies.
Reprozip [50] uses a similar approach to build a single
archive with all dependencies which can be used by other
users to exactly reproduce the original computational
environment. These can be used in combination with Jug
to achieve perfect reproducibility.

6.2 Conclusions
Jug focuses on the development of the computation as
much as its communication. In fact, when it comes to
communication other tools might be better suited as
they combine written exposition with computer code.
They can be used in combination with Jug as they do not
often provide caching and distribution, needed for large
projects. While the simplest Jug use employs a single
single Jugfile, a Jugfile can import the results of another.
For example, a first Jugfile might perform all heavy-duty
computation and be run on a computing cluster. A second
script could be embedded inside an executable paper to
generate tables and plots [16]. This faster script could be
run as part of building the paper.

Jug improves the pipeline development experience and
makes the programming researcher more productive and
less error-prone. As many scientists now spend a significant
fraction of their time performing computational work
[28, 49], increasing their productivity in this task can have
significant effects. Jug is based on Python, a programming
language which is widely used for scientific computation.
Thus, it can be used in a known environment without a
high learning curve.

Jug does not address the issue of how to build a
reproducible analysis environment. However, it can be
used in combination with other tools which ensure a
reproducible environment, such as container based
tools [7, 37] or package managers which emphasize

reproducibility such as Nix [17] (Jug is available as a nix
package in the main nixpkgs repository).

Jug was also not designed to compete with large scale
frameworks such as Hadoop or Spark, which scale better
to very large projects. However, those frameworks have
much higher costs in terms of development time (code
must be written especially for the framework) and
overhead. They also require that the user learn a new
framework. For scientists who want to quickly adapt
pre-existing code to run on a cluster or even a multi-
core machine, Jug provides a better trade-off than those
higher-powered alternatives in a familiar programming
language.

Notes
 1 See the redis webpage, at redis.io, for detailed

information about redis.
 2 The original code to reproduce the full study is

available online at: https://github.com/luispedro/
Coelho2013_Bioinformatics.

 3 In the most commonly used Python interpreters, there
is a lock that prevents more than one thread from
simultaneously executing interpreted code, although
they can execute non-interpreted code, as calling an
external programme or certain external libraries.

Acknowledgements
The author thanks Sven Augustin for helpful comments
on a previous version of this manuscript.

Competing Interests
The author has no competing interests to declare.

References
1. Altintas, I, Berkley, C, Jaeger, E, Jones, M, Ludascher,

B and Mock, S 2004 “Kepler: an extensible system
for design and execution of scientific workflows”.
In: Scientific and Statistical Database Management,
Proceedings. 16th International Conference on (Apr.
2004) URL: https://scholar.google.com/scholar?clust
er=17284613261601846997 (cit. on p.).

2. Augustin, S and Müller, C 2013 “Interference effects
in Bethe-Heitler pair creation in a bichromatic laser
field”. Physical Review A, 88(2): 022109. ISSN: 2469-
9934. (cit. on p.). DOI: https://doi.org/10.1103/
PhysRevA.88.022109

3. Baumer, B, Cetinkaya-Rundel, M, Bray, A, Loi, L
and Horton, N J 2014 “R Markdown: Integrating A
Reproducible Analysis Tool into Introductory Statistics”.
Technological Innovations in Statistics Education, 8. (cit.
on p.).

4. Beazley, D M “Automated scientific software scripting
with SWIG”. In: Future Generation Computer Systems,
19 (Mar. 2003). URL: https://scholar.google.com/scho
lar?cluster=14166776132178739884 (cit. on p.). DOI:
https://doi.org/10.1016/S0167-739X(02)00171-1

5. Beazley, D M 1996 “SWIG: An Easy to Use Tool for
Integrating Scripting Languages with C and C++.” In:
Tcl/Tk Workshop. URL: https://scholar.google.com/sc
holar?cluster=2768773569829356266 (cit. on p.).

http://redis.io
https://github.com/luispedro/Coelho2013_Bioinformatics
https://github.com/luispedro/Coelho2013_Bioinformatics
https://scholar.google.com/scholar?cluster=17284613261601846997
https://scholar.google.com/scholar?cluster=17284613261601846997
https://doi.org/10.1103/PhysRevA.88.022109
https://doi.org/10.1103/PhysRevA.88.022109
https://scholar.google.com/scholar?cluster=14166776132178739884
https://scholar.google.com/scholar?cluster=14166776132178739884
https://doi.org/10.1016/S0167-739X(02)00171-1
https://scholar.google.com/scholar?cluster=2768773569829356266
https://scholar.google.com/scholar?cluster=2768773569829356266

Coelho: JugArt. 30, p. 8 of 10

6. Behnel, S, Bradshaw, R, Citro, C, Dalcin, L,
Seljebotn, D S and Smith, K “Cython: The Best of
Both Worlds”. In: Computing in Science & Engineering,
13(2): 31–39. (Nov. 2011). ISSN: 1521-9615. (cit. on p.).
DOI: https://doi.org/10.1109/MCSE.2010.118

7. Boettiger, C 2015 “An introduction to Docker for
reproducible research”. In: ACM SIGOPS Operating
Systems Review, 49(1): 71–79. ISSN: 0163-5980.
(cit. on p.). DOI: https://doi.org/10.1145/2723872.
2723882

8. Cingolani, P, Sladek, R and Blanchette, M 2015
“BigDataScript: a scripting language for data pipelines”.
In: Bioinformatics, 31(1): 10–16. ISSN: 1367-4803. (cit.
on p.). DOI: https://doi.org/10.1093/bioinformatics/
btu595

9. Coelho, L P 2013 “Mahotas: Open source software
for scriptable computer vision”. In: Journal of Open
Research Software 1(1): e3. ISSN: 2049-9647. (cit. on
p.) DOI: https://doi.org/10.5334/jors.ac

10. Coelho, L P, Kangas, J D, Naik, A W, Osuna-Highley,
E, Glory-Afshar, E, Fuhrman, M, Simha, R, Berget, P
B, Jarvik, J W and Murphy, R F 2013 “Determining the
subcellular location of new proteins from microscope
images using local features.” In: Bioinformatics (Oxford,
England), 29(18): 2343–9. ISSN: 1367-4803. (cit. on p.).
DOI: https://doi.org/10.1093/bioinformatics/btt392

11. Coelho, L P, Pato, C, Friães, A, Neumann, A, von
Köckritz-Blickwede, M, Ramirez, M and Carriço, J
A 2015 “Automatic determination of NET (neutrophil
extracellular traps) coverage in fluorescent microscopy
images.” In: Bioinformatics (Oxford, England), 31(14):
2364–70. ISSN: 1367-4803. (cit. on p.). DOI: https://
doi.org/10.1093/bioinformatics/btv156

12. Coelho, L P, Peng, T and Murphy, R F “Quantifying
the distribution of probes between subcellular
locations using unsupervised pattern unmixing”.
In: Bioinformatics, 26(12): i7–i12. (Oct. 2010). ISSN:
1367-4803. (cit. on p.). DOI: https://doi.org/10.1093/
bioinformatics/btq220

13. Dask Development Team 2016 Dask: Library for
dynamic task scheduling. URL: http://dask.pydata.org
(cit. on p.).

14. Davison, A “Automated Capture of Experiment
Context for Easier Reproducibility in Computational
Research”. In: Computing in Science & Engineering
14(4): 48–56. (Dec. 2012). ISSN: 1521-9615. (cit. on p.).
DOI: https://doi.org/10.1109/MCSE.2012.41

15. Dean, J and Ghemawat, S “MapReduce: simplified
data processing on large clusters”. In: Commun. ACM,
51(1): 107—113. (Aug. 2008). ISSN: 0001-0782. (cit. on
p.). DOI: https://doi.org/10.1145/1327452.1327492

16. Delescluse, M, Franconville, R, Joucla, S, Lieury,
T and Pouzat, C “Making neurophysiological data
analysis reproducible: Why and how?” In: Journal of
Physiology-Paris, (Nov. 2011). ISSN: 0928-4257. URL:
http://www.sciencedirect.com/science/article/pii/
S0928425711000374 (cit. on p.)

17. Devresse, A, Delalondre, F and Schürmann, F 2015
“Nix Based Fully Automated Workflows and Ecosystem
to Guarantee Scientific Result Reproducibility Across

Software Environments and Systems”. In: Proceedings of
the 3rd International Workshop on Software Engineering
for High Performance Computing in Computational
Science and Engineering, 25–31. SE-HPCCSE ’15.
Austin, Texas: ACM, ISBN: 978-1-4503-4012-0. (cit. on
p.) DOI: https://doi.org/10.1145/2830168.2830172

18. Donoho, D L, Maleki, A, Rahman, I Ur, Shahram,
M and Stodden, V “Reproducible Research in
Computational Harmonic Analysis”. In: Computing in
Science & Engineering, 11(1): 8–18. (Sept. 2009). ISSN:
1521-9615. (cit. on p.). DOI: https://doi.org/10.1109/
MCSE.2009.15

19. Dudley, J T and Butte, A J “Reproducible in
silico research in the era of cloud computing”.
In: Nature biotechnology, 28. (Oct. 2010). URL:
h t t p s : / / s c h o l a r . g o o g l e . c o m / s c h o l a r ? c l u s t
er=14329535853377349322 (cit. on p.). DOI: https://
doi.org/10.1038/nbt1110-1181

20. Feulner, G 2016 Reproducibility: Principles, Problems,
Practices, and Prospects: Principles, Problems, Practices,
and Prospects, 269–285. (cit. on p.). DOI: https://doi.
org/10.1002/9781118865064.ch12

21. Fomel, S 2015 “Reproducible Research as a
Community Effort: Lessons from the Madagascar
Project”. In: Computing in Science & Engineering, 17(1):
20–26. ISSN: 1521-9615. (cit. on p.). DOI: https://doi.
org/10.1109/MCSE.2014.94

22. Fomel, S and Hennenfent, G “Reproducible
Computational Experiments using Scons”. (July
2007). (cit. on p.). DOI: https://doi.org/10.1109/
ICASSP.2007.367305

23. Goble, C 2014 “Better Software, Better Research”. In:
IEEE Internet Computing, 18(5): 4–8. ISSN: 1089-7801.
(cit. on p.). DOI: https://doi.org/10.1109/MIC.2014.88

24. Goecks, J, Nekrutenko, A, Taylor, J and The
Galaxy Team “Galaxy: a comprehensive approach for
supporting accessible, reproducible, and transparent
computational research in the life sciences”. In:
Genome Biology, 11(8): 1–13. (Oct. 2010). ISSN: 1474-
760X. (cit. on p.). DOI: https://doi.org/10.1186/gb-
2010-11-8-r86

25. Goodstadt, L “Ruffus: A Lightweight Python Library
for Computational Pipelines”. In: Bioinformatics (Oct.
2010). URL: http://bioinformatics.oxfordjournals.org/
content/early/2010/09/16/bioinformatics.btq524.
abstract (cit. p.).

26. Guo, P J and Engler, D 2010 “Towards Practical
Incremental Recomputation for Scientists: An
Implementation for the Python Language”. In:
Proceedings of the 2nd Conference on Theory and
Practice of Provenance, 6–6. TAPP’10. San Jose,
California: USENIX Association. URL: http://dl.acm.
org/citation.cfm?id=1855795.1855801 (cit. on p.).

27. Guo, P J and Engler, D Using automatic persistent
memoization to facilitate data analysis scripting
287—297. Nov. 2011. (cit. on p.). DOI: https://doi.
org/10.1145/2001420.2001455

28. Hannay, J E, MacLeod, C, Singer, J, Langtangen, H
P, Pfahl, D and Wilson, G “How do scientists develop
and use scientific software?” (Sept. 2009), 1–8. (cit.

https://doi.org/10.1109/MCSE.2010.118
https://doi.org/10.1145/2723872.2723882
https://doi.org/10.1145/2723872.2723882
https://doi.org/10.1093/bioinformatics/btu595
https://doi.org/10.1093/bioinformatics/btu595
https://doi.org/10.5334/jors.ac
https://doi.org/10.1093/bioinformatics/btt392
https://doi.org/10.1093/bioinformatics/btv156
https://doi.org/10.1093/bioinformatics/btv156
https://doi.org/10.1093/bioinformatics/btq220
https://doi.org/10.1093/bioinformatics/btq220
http://dask.pydata.org
https://doi.org/10.1109/MCSE.2012.41
https://doi.org/10.1145/1327452.1327492
http://www.sciencedirect.com/science/article/pii/S0928425711000374
http://www.sciencedirect.com/science/article/pii/S0928425711000374
https://doi.org/10.1145/2830168.2830172
https://doi.org/10.1109/MCSE.2009.15
https://doi.org/10.1109/MCSE.2009.15
https://scholar.google.com/scholar?cluster=14329535853377349322
https://scholar.google.com/scholar?cluster=14329535853377349322
https://doi.org/10.1038/nbt1110-1181
https://doi.org/10.1038/nbt1110-1181
https://doi.org/10.1002/9781118865064.ch12
https://doi.org/10.1002/9781118865064.ch12
https://doi.org/10.1109/MCSE.2014.94
https://doi.org/10.1109/MCSE.2014.94
https://doi.org/10.1109/ICASSP.2007.367305
https://doi.org/10.1109/ICASSP.2007.367305
https://doi.org/10.1109/MIC.2014.88
https://doi.org/10.1186/gb-2010-11-8-r86
https://doi.org/10.1186/gb-2010-11-8-r86
http://bioinformatics.oxfordjournals.org/content/early/2010/09/16/bioinformatics.btq524.abstract
http://bioinformatics.oxfordjournals.org/content/early/2010/09/16/bioinformatics.btq524.abstract
http://bioinformatics.oxfordjournals.org/content/early/2010/09/16/bioinformatics.btq524.abstract
http://dl.acm.org/citation.cfm?id=1855795.1855801
http://dl.acm.org/citation.cfm?id=1855795.1855801
https://doi.org/10.1145/2001420.2001455
https://doi.org/10.1145/2001420.2001455

Coelho: Jug Art. 30, p. 9 of 10

on p.). DOI: https://doi.org/10.1109/SECSE.2009.
5069155

29. Haralick, R M, Shanmugam, K and Dinstein, I 1973
“Textural Features for Image Classification.” In: IEEE
Transactions on Systems, Man, and Cybernetics, 3(6):
610–621. ISSN: 0018-9472. (cit. on p.). DOI: https://
doi.org/10.1109/TSMC.1973.4309314

30. Hensman, J, Matthews, A, Filippone, M and
Ghahramani, Z 2015 “MCMC for Variationally Sparse
Gaussian Processes”. In: (cit. on p.).

31. Hull, D, Wolstencroft, K, Stevens, R, Goble, C,
Pocock, M R, Li, P and Oinn, T “Taverna: a tool for
building and running workflows of services”. In:
Nucleic Acids Research, 34(suppl2): W729–W732.
(June 2006). ISSN: 0305-1048. (cit. on p.). DOI: https://
doi.org/10.1093/nar/gkl320

32. Ilyas, A 2014 “MicroFilters: Harnessing twitter for
disaster management”. 417–424. (cit. on p.). DOI:
https://doi.org/10.1109/GHTC.2014.6970316

33. Kluyver, T, Ragan-Kelley, B, Pérez, F, Granger, B E,
Bussonnier, M, Frederic, J, Kelley, K, Hamrick, J
B, Grout, J, Corlay, S, Ivanov, P, Avila, D, Abdalla,
S, Willing, C, et al. 2016 “Jupyter Notebooks – a
publishing format for reproducible computational
workflows”. In: Positioning and Power in Academic
Publishing: Players, Agents and Agendas, 20th
International Conference on Electronic Publishing,
87–90. Göttingen, Germany, June 7–9, (cit. on p.). DOI:
https://doi.org/10.3233/978-1-61499-649-1-87

34. Köster, J and Rahmann, S “Snakemake–a scalable
bioinformatics workflow engine.” In: Bioinformatics
(Oxford, England), 28(19): 2520–2. (Dec. 2012). URL:
http://www.ncbi.nlm.nih.gov/pubmed/22908215
(cit. on p.).

35. Leipzig, J 2016 “A review of bioinformatic pipeline
frameworks”. In: Briefings in Bioinformatics, bbw020.
ISSN: 1467-5463. (cit. on p.). DOI: https://doi.
org/10.1093/bib/bbw020

36. Leisch, F Sweave: Dynamic Generation of Statistical
Reports Using Literate Data Analysis, 575–580. Feb.
2002. (cit. on p.). DOI: https://doi.org/10.1007/978-
3-642-57489-4_89

37. da Veiga Leprevost, F, Grüning, B A, Aflitos, S A,
Röst, H L, Uszkoreit, J, Barsnes, H, Vaudel, M,
Moreno, P, Gatto, L, Weber, J, Bai, M, Jimenez,
R C, Sachsenberg, T, Pfeuffer, J, Alvarez, R V,
Griss, J, Nesvizhskii, A I and Perez-Riverol, Y
“BioContainers: An open-source and community-
driven framework for software standardization”. In:
Bioinformatics, 33(16): btx192, ISSN: 1460-2059. (cit.
on p.). DOI: https://doi.org/10.1093/bioinformatics/
btx192

38. LeVeque, R J, Mitchell, I M and Stodden, V
“Reproducible research for scientific computing:
Tools and strategies for changing the culture”. In:
Computing in Science & Engineering, 14(4): 13–17.
(Dec. 2012). ISSN: 1521-9615. (cit. on p.). DOI: https://
doi.org/10.1109/MCSE.2012.38

39. Ludäscher, B, Altintas, I, Berkley, C, Higgins,
D, Jaeger, E, Jones, M, Lee, E A, Tao, T and

Zhao, Y “Scientific workflow management and the
Kepler system”. In: Concurrency and Computation:
Practice and Experience, 18(10): 1039–1065. (June
2006). ISSN: 1532-0634. (cit. on p.). DOI: https://doi.
org/10.1002/cpe.994

40. Markowetz, F 2015 “Five selfish reasons to work
reproducibly”. In: Genome Biology, 16(1): 274. ISSN:
1465-6906. (cit. on p.). DOI: https://doi.org/10.1186/
s13059-015-0850-7

41. Marwick, B 2016 “Computational Reproducibility
in Archaeological Research: Basic Principles and a
Case Study of Their Implementation”. In: Journal of
Archaeological Method and Theory, 1–27. ISSN: 1072-
5369. (cit. on p.). DOI: https://doi.org/10.1007/
s10816-015-9272-9

42. Mishima, H, Sasaki, K, Tanaka, M, Tatebe, O and
Yoshiura, K-I “Agile parallel bioinformatics workflow
management using Pwrake”. In: BMC Research Notes,
4(1): 331. (Nov. 2011). ISSN: 1756-0500. URL: https://
www.biomedcentral.com/1756-0500/4/331 (cit. on p.).

43. Moreno, A and Balch, T 2016 “Improving financial
computation speed with full and subproblem
memorization”. In: Concurrency and Computation:
Practice and Experience, 28(3): 905–915. ISSN: 1532-
0634. (cit. on p.). DOI: https://doi.org/10.1002/
cpe.3693

44. Napolitano, F, Mariani-Costantini, R and Tagliaferri,
R 2013 “Bioinformatic pipelines in Python with Leaf”.
In: BMC Bioinformatics, 14(1): 1–14. ISSN: 1471-2105.
(cit. on p.). DOI: https://doi.org/10.1186/1471-2105-
14-201

45. Nordlie, E, Gewaltig, M-O and Plesser, H E “Towards
Reproducible Descriptions of Neuronal Network
Models”. In: PLoS Comput Biol, 5(8): e1000456. (Sept.
2009). (cit. on p.). DOI: https://doi.org/10.1371/
journal.pcbi.1000456

46. Pedregosa, F, Varoquaux, G, Gramfort, A, Michel,
V, Thirion, B, Grisel, O, Blondel, M, Prettenhofer,
P, Weiss, R, Dubourg, V, Vanderplas, J, Passos,
A, Cournapeau, D, Brucher, M, Perrot, M and
Duchesnay, E “Scikit-learn: Machine Learning in
Python”. (Dec. 2012) (cit. on p.).

47. Peng, R D and Eckel, S P “Distributed Reproducible
Research Using Cached Computations”. In: Computing
in Science & Engineering, 11(1): 28–34. (Sept. 2009).
ISSN: 1521-9615. (cit. on p.). DOI: https://doi.
org/10.1109/MCSE.2009.6

48. Perez, F and Granger, B E “IPython: A System for
Interactive Scientific Computing”. In: Computing in
Science & Engineering, 9(3): 21—29. (July 2007). ISSN:
1521-9615. URL: http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=4160251 (cit. on p.).

49. Prabhu, P, Zhang, Y, Ghosh, S, August, D I,
Huang, J, Beard, S, Kim, H, Oh, T, Jablin, T B,
Johnson, N P, Zoufaly, M, Raman, A, Liu, F and
Walker, D A survey of the practice of computational
science. 19. Nov. 2011. (cit. on p.). DOI: https://doi.
org/10.1145/2063348.2063374

50. Rampin, R, Chirigati, F, Shasha, D, Freire, J and
Steeves, V “ReproZip: The Reproducibility Packer”.

https://doi.org/10.1109/SECSE.2009.5069155
https://doi.org/10.1109/SECSE.2009.5069155
https://doi.org/10.1109/TSMC.1973.4309314
https://doi.org/10.1109/TSMC.1973.4309314
https://doi.org/10.1093/nar/gkl320
https://doi.org/10.1093/nar/gkl320
https://doi.org/10.1109/GHTC.2014.6970316
https://doi.org/10.3233/978-1-61499-649-1-87
http://www.ncbi.nlm.nih.gov/pubmed/22908215
https://doi.org/10.1093/bib/bbw020
https://doi.org/10.1093/bib/bbw020
https://doi.org/10.1007/978-3-642-57489-4_89
https://doi.org/10.1007/978-3-642-57489-4_89
https://doi.org/10.1093/bioinformatics/btx192
https://doi.org/10.1093/bioinformatics/btx192
https://doi.org/10.1109/MCSE.2012.38
https://doi.org/10.1109/MCSE.2012.38
https://doi.org/10.1002/cpe.994
https://doi.org/10.1002/cpe.994
https://doi.org/10.1186/s13059-015-0850-7
https://doi.org/10.1186/s13059-015-0850-7
https://doi.org/10.1007/s10816-015-9272-9
https://doi.org/10.1007/s10816-015-9272-9
http://www.biomedcentral.com/1756-0500/4/331
http://www.biomedcentral.com/1756-0500/4/331
https://doi.org/10.1002/cpe.3693
https://doi.org/10.1002/cpe.3693
https://doi.org/10.1186/1471-2105-14-201
https://doi.org/10.1186/1471-2105-14-201
https://doi.org/10.1371/journal.pcbi.1000456
https://doi.org/10.1371/journal.pcbi.1000456
https://doi.org/10.1109/MCSE.2009.6
https://doi.org/10.1109/MCSE.2009.6
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4160251
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4160251
https://doi.org/10.1145/2063348.2063374
https://doi.org/10.1145/2063348.2063374

Coelho: JugArt. 30, p. 10 of 10

In: The Journal of Open Source Software, 1(8): (Dec.
2016). (cit. on p.). DOI: https://doi.org/10.21105/
joss.00107

51. Sadedin, S P, Pope, B and Oshlack, A “Bpipe: a tool for
running and managing bioinformatics pipelines”. In:
Bioinformatics, 28(11): 1525–1526. (Dec. 2012). ISSN:
1367-4803. (cit. on p.). DOI: https://doi.org/10.1093/
bioinformatics/bts167

52. Saul, A D, Hensman, J, Vehtari, A and Lawrence,
N D 2016 “Chained Gaussian Processes”. In: BMC
Bioinformatics, 14(1): 1431–1440. ISSN: 1471-2105.
(cit. on p.). DOI: https://doi.org/10.1186/1471-2105-
14-252

53. Schwab, M, Karrenbach, M and Claerbout, J 2000
“Making scientific computations reproducible”. In:
Computing in Science & Engineering, 2(6): 61–67.
ISSN: 1521-9615. (cit. on p.). DOI: https://doi.
org/10.1109/5992.881708

54. Severin, J, Beal, K, Vilella, A, Fitzgerald, S,
Schuster, M, Gordon, L, Ureta-Vidal, A, Flicek,
P and Herrero, J “eHive: An Artificial Intelligence
workflow system for genomic analysis”. In: BMC
Bioinformatics, 11(1): 240. ISSN: 1471-2105. (cit.
on p.). URL: http://www.biomedcentral.com/1471-
2105/11/240 (Oct. 2010).

55. Sorge, A pyfssa 0.7.6. Dec. 2015. (cit. on p.). DOI:
https://doi.org/10.5281/zenodo.35293

56. Spjuth, O, Bongcam-Rudloff, E, Hernández, G C,
Forer, L, Giovacchini, M, Guimera, R V, Kallio, A,
Korpelainen, E, Kańduła, M M, Krachunov, M,
Kreil, D P, Kulev, O, Łabaj, P P, Lampa, S, Pireddu,
L, Schönherr, S, Siretskiy, A and Vassilev, D 2015
“Experiences with workflows for automating data-
intensive bioinformatics”. In: Biology Direct, 10(1). ISSN:
1745-6150. (cit. on p.). DOI: https://doi.org/10.1186/
s13062-015-0071-8

57. Sunagawa, S, et al. 2015 “Structure and function of
the global ocean microbiome”. In: Science, 348(6237):
1261359. ISSN: 0036-8075. (cit. on p.). DOI: https://
doi.org/10.1126/science.1261359

58. Taylor, I J, Deelman, E, Gannon, D B and Shields,
M 2014 “Workflows for e-Science: scientific workflows
for grids”. URL: https://scholar.google.com/scholar?cl
uster=704055550438545383 (cit. on p.).

59. Vandewalle, P, Kovacevic, J and Vetterli, M
“Reproducible research in signal processing”. In:
Signal Processing Magazine, IEEE, 26(3): 37–47. (Sept.
2009), ISSN: 1053-5888. (cit. on p.). DOI: https://doi.
org/10.1109/MSP.2009.932122

60. Vasilescu, B, Yu, Y, Wang, H, Devanbu, P and Filkov,
V 2015 Quality and productivity outcomes relating to
continuous integration in GitHub, 805–816. (cit. on p.).
DOI: https://doi.org/10.1145/2786805.2786850

61. Vuollekoski, H, Vogt, M, Sinclair, V A, Duplissy,
J, Järvinen, H, Kyrö, E-M, Makkonen, R, Petäjä,
T, Prisle, N L, Räisänen, P, Sipilä, M, Ylhäisi, J and
Kulmala, M 2015 “Estimates of global dew collection
potential on artificial surfaces”. In: Hydrology and Earth
System Sciences, 19(1): 601–613. ISSN: 1027-5606. (cit.
on p.). DOI: https://doi.org/10.5194/hess-19-601-2015

62. Van Der Walt, S, Colbert, S C and Varoquaux, G
“The NumPy array: a structure for efficient numerical
computation”. In: Computing in Science & Engineering
13(2): 22–30. (Nov. 2011). ISSN: 1521-9615. (cit. on p.).
DOI: https://doi.org/10.1109/MCSE.2011.37

63. Wilson, G, Aruliah, D A, Brown, C T, Hong, N P
C, Davis, M, Guy, R T, Haddock, S H D, Huff, K D,
Mitchell, I M, Plumbley, M D, Waugh, B, White,
E P and Wilson, P 2014 “Best Practices for Scientific
Computing” In: PLoS Biology, 12(1): e1001745. ISSN:
1544-9173. (cit. on p.). DOI: https://doi.org/10.1371/
journal.pbio.1001745

64. Xie, Y 2015 “Dynamic Documents with R and knitr”.
29 (2015). URL: https://scholar.google.com/scholar?cl
uster=1723118227528908006 (cit. on p.).

65. Zaharia, M, Chowdhury, M, Franklin, M J,
Shenker, S and Stoica, I “Spark: cluster computing
with working sets.” In: HotCloud, 10 (Oct. 2010).
h t t p s : / / s c h o l a r . g o o g l e . c o m / s c h o l a r ? c l u s t
er=14934743972440878947 (cit. on p.).

How to cite this article: Coelho, L P 2017 Jug: Software for Parallel Reproducible Computation in Python Data. Journal of
Open Research Software, 5: 30. DOI: https://doi.org/10.5334/jors.161

Submitted: 08 January 2017 Accepted: 06 October 2017 Published: 27 October 2017

Copyright: © 2017 The Author(s). This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

Journal of Open Research Software is a peer-reviewed open access journal published by
Ubiquity Press OPEN ACCESS

https://doi.org/10.21105/joss.00107
https://doi.org/10.21105/joss.00107
https://doi.org/10.1093/bioinformatics/bts167
https://doi.org/10.1093/bioinformatics/bts167
https://doi.org/10.1186/1471-2105-14-252
https://doi.org/10.1186/1471-2105-14-252
https://doi.org/10.1109/5992.881708
https://doi.org/10.1109/5992.881708
http://www.biomedcentral.com/1471-2105/11/240
http://www.biomedcentral.com/1471-2105/11/240
https://doi.org/10.5281/zenodo.35293
https://doi.org/10.1186/s13062-015-0071-8
https://doi.org/10.1186/s13062-015-0071-8
https://doi.org/10.1126/science.1261359
https://doi.org/10.1126/science.1261359
https://scholar.google.com/scholar?cluster=704055550438545383
https://scholar.google.com/scholar?cluster=704055550438545383
https://doi.org/10.1109/MSP.2009.932122
https://doi.org/10.1109/MSP.2009.932122
https://doi.org/10.1145/2786805.2786850
https://doi.org/10.5194/hess-19-601-2015
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.1371/journal.pbio.1001745
https://doi.org/10.1371/journal.pbio.1001745
https://scholar.google.com/scholar?cluster=1723118227528908006
https://scholar.google.com/scholar?cluster=1723118227528908006
https://scholar.google.com/scholar?cluster=14934743972440878947
https://scholar.google.com/scholar?cluster=14934743972440878947
https://doi.org/10.5334/jors.161
http://creativecommons.org/licenses/by/4.0/

	1 Introduction
	2 Implementation and architecture
	2.1 Task-based architecture
	2.2 Jug subcommands
	2.3 Backends
	2.4 Asynchronous function
	2.5 Software development with Jug
	2.6 Result invalidation

	3 Example
	4 Quality control
	4.1 Dependencies
	4.2 List of contributors
	4.3 Software location
	4.3.1 Archive
	4.3.2 Code repository

	4.4 Language

	5 Reuse potential
	6 Discussion
	6.1 Similar tools
	6.2 Conclusions

	Notes
	Acknowledgements
	Competing Interests
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5

