
Jacobsen, R D et al 2017 Generalized Sampling in Julia. Journal of Open Research
Software, 5: 12, DOI: https://doi.org/10.5334/jors.157Journal of

open research software

SOFTWARE METAPAPER

Generalized Sampling in Julia
Robert Dahl Jacobsen, Morten Nielsen and Morten Grud Rasmussen
Department of Mathematical Sciences, Aalborg University, Fredrik Bajers Vej 7G, DK
Corresponding author: Robert Dahl Jacobsen
(robert@math.aau.dk)

Generalized sampling is a numerically stable framework for obtaining reconstructions of signals in differ-
ent bases and frames from their samples. For example, one can use wavelet bases for reconstruction given
frequency measurements.

In this paper, we will introduce a carefully documented toolbox for performing generalized sampling in
Julia. Julia is a new language for technical computing with focus on performance, which is ideally suited
to handle the large size problems often encountered in generalized sampling. The toolbox provides special-
ized solutions for the setup of Fourier bases and wavelets.

The performance of the toolbox is compared to existing implementations of generalized sampling in
MATLAB.

Keywords: Generalized Sampling; Julia; Fourier basis; Wavelets
Funding Statement: Supported by the Danish Council for Independent Research | Natural Sciences, grant
12-124675, “Mathematical and Statistical Analysis of Spatial Data”. RDJ is supported by the Centre for
Stochastic Geometry and Advanced Bioimaging, funded by a grant (8721) from the Villum Foundation.

(1) Overview
Introduction
Generalized sampling [1, 2] is a framework for estimating
representations of functions in different bases and frames
in a numerically stable manner. This can for example be
relevant in processing MRI images, where hardware often
enforces initial frequency measurements, but where
wavelets may be better suited for representing the final
image. Simply using a discrete inverse Fourier transform
often results in the well-known Gibbs phenomenon, with
unwanted oscillating behavior in the reconstructed image.
This paper documents a toolbox for performing general-
ized sampling in Julia [3].

The theory of generalized sampling does not restrict the
type of bases to consider, but the applications have focused
on Fourier bases and multiscale representations like wavelets.

Mathematically, samples of a function f in a Hilbert
space H with respect to a sample basis {sn}n∈N consists of
inner products {〈 f, sn〉}n∈N. In generalized sampling we
want to use these samples to estimate the inner products
{〈f, rn〉}n∈N, where {rn}n∈N is another basis for H. The basis
{rn}n∈N is used for reconstructing f. In practice we only
consider a finite number of sampling and reconstruction
functions, i.e., we have access to the samples ,s

m mw f s= ,
1 ≤ m ≤ M . From these samples we estimate the coeffi-
cients in the reconstruction basis, ,rr

n nnw w f r=≈ , 1 ≤ n ≤
N, which are used to compute an approximation of f,

,

1

.
N

r
N M n n

n

f w r
=

=∑

An especific example that will be used later is where
〈f, sm〉 represent frequency samples of f and the reconstruc-
tion basis { }

1

N
n n
r

=
 is given by translates of a Daubechies

scaling function φ yielding a system on the form

/2 1 1
, () 2 (2), 2 2 ,J J J J

J K x x k kφ φ − −= − − ≤ <

that has been adapted to the interval 1 1
2 2,⎡ ⎤−⎣ ⎦ following [4]).

The simplest Daubechies scaling function is the Haar scal-
ing function given by

1 1
,

2 2
1, []

()
0, otherwise.

x
xφ

∈ −
=
⎧⎪⎪⎨⎪⎪⎩

Other Daubechies scaling functions are at least continu-
ous, but cannot be written in closed form in terms of ele-
mentary functions.

The actual computation of the reconstruction coeffi-
cients 1{ }r r N

n nw ==w is performed by solving a least squares
problem. The infinite change of basis matrix between the
sampling and reconstruction subspaces has (i, j)’th entry
(rj, si). We consider a finite M × N section of this matrix,
denoted by T. The reconstruction coefficients are com-
puted as the least squares solution

https://doi.org/10.5334/jors.157
mailto:robert@math.aau.dk

Jacobsen et al: Generalized Sampling in JuliaArt. 12, p. 2 of 5

 { }2
arg min C .r s NT= − ∈w x w x (1)

For large M and N , e.g. of the size used in 2D examples
with images, T is not accessible as a stored matrix. Instead
we need to work with T as an operator, i.e., store a repre-
sentation that allow us to compute products with T and
T∗ and thereby solving (1) with e.g. a conjugate gradient
algorithm [6, p. 637].

Examples
We have two goals with the GeneralizedSampling package: It
should be fast and easy to use. We have therefore put effort
into providing only a few necessary high-level functions and

hiding the lower level details. In essence, we need to compute
a representation of a change of basis matrix T and solve least
squares problems like (1) with this representation.

An example included in the package is the reconstruc-
tion of a truncated cosine (with inspiration from [5]).
The results are seen in Fig. 1 using a different number of
scaling functions to illustrate how this affects the recon-
struction. In this example the higher order, continuous
Daubechies scaling functions are not well suited to repre-
sent the discontinuity.

A reconstruction like this can be computed in only a
few lines of code once the frequency measurements are
available. For the truncated cosine we have a closed-form
expression for the Fourier transform:

Figure 1: A truncated cosine and approximations with Haar and Daubechies 4 scaling functions using different scales.
It may be difficult to see the graph of the original truncated cosine.

Jacobsen et al: Generalized Sampling in Julia Art. 12, p. 3 of 5

1
2

1
2

2

0, 0,
()

cos(2) 0 ,

(1 exp())
, 1,

2 (1)ˆ()
1
, 1.

4

x
f x

x x

i i

f

π

ξ π ξ
ξ

π ξξ

ξ

⎧ − ≤ <⎪⎪=⎨⎪ ≤ ≤⎪⎩
⎧ + −⎪⎪ ≠⎪⎪ −⎪=⎨⎪⎪⎪ =⎪⎪⎩

In Julia this can be implemented in the following way with a ter-
nary operator (the line break is only for typographical purposes):
julia > ftcos (xi) = (abs(xi) == 1 ? 0.25 :
im*xi *(1 + exp (-pi*xi*im))/(2* pi *(1 - xi ^2)))
julia > @vectorize_1arg Float64 ftcos

With the Fourier transform defined the reconstruction
can be computed as follows:
julia > using GeneralizedSampling
julia > xi = grid (128 , 0.5)
julia > fhat = ftcos (xi)
julia > T = Freq2Wave (xi , " haar ", 6)
julia > wcoef = T \ fhat
julia > using IntervalWavelets
julia > x, y = weval (real (wcoef), " haar ", 10)

To compute the reconstruction with the Daubechies 4 scal-
ing functions, one simply has to replace “haar” with “db4”.

As an example of reconstruction of 2D functions/
images, consider reconstruction of a simulated brain
made with the Matlab [8] software released along with [7]
(available at http://bigwww.epfl.ch/algorithms/mriphan-
tom). Here we do not have access to a “ground truth”, but
only the frequency measurements. From 5122 frequency
measurements we reconstruct 2562 Daubechies 4 scaling
functions and the result is seen in Fig. 2.

Runtime and technical comparison
Julia is a dynamic language with a fast JIT compiler. A con-
sequence is that a function is compiled the first time it is
called, causing an overhead in terms of time and memory.
All subsequent calls are, however, without this compiling
overhead. The runtimes reported in this section are not for
the first run.

The examples were carried out on a normal laptop
(2.60 GHz Intel Core i7, 8 GB RAM) running GNU/
Linux and are summarized in Table 1. The background

Figure 2: From 512 × 512 frequency measurements (not shown) 256 × 256 Daubechies 4 scaling functions are com-
puted and used to produce this image. The image is evaluated at scale 10, i.e., in 1024 × 1024 points.

http://bigwww.epfl.ch/algorithms/mriphantom
http://bigwww.epfl.ch/algorithms/mriphantom

Jacobsen et al: Generalized Sampling in JuliaArt. 12, p. 4 of 5

init sol Iter

Problem Size Program time mem time mem n t/n

Uniform 1D 8192 × 4096 Matlab
Julia

15.0
0.34

901
6.8

0.13
0.04

37
0.7

9
12

0.01
0.003

Jitter 1D 5463 × 2048 Matlab
Julia

10.0
0.23

627
4.0

0.28
0.08

59
0.4

20
20

0.13
0.004

Uniform 2D 5122 × 2562 Matlab
Julia

0.96
0.15

59
146

5.2
17.6

1507
17

9
16

0.58
1.10

Jitter 2D 26 244 × 322 Matlab
Julia

104.8
2.4

6377
165

8.3
2.4

1270
1.3

50
18

0.17
0.13

Spiral 27 681 × 322 Matlab
Julia

107.1
2.8

6670
261

3.7
2.2

479
1.4

17
16

0.21
0.14

for the experiments are as follows: We compare the
GeneralizedSampling package with the Matlab code
released with [5] (available at http://www.damtp.cam.
ac.uk/research/afha/code). To the best of our knowl-
edge this is the only other publicly available software
for generalized sampling. In this connection two
comparisons are relevant: Computing the representa-
tion of the change of matrix (initialization/“init”) and
using this representation to compute the least squares
solution (solution/“sol”). In both cases the initializa-
tion step is fast for Haar scaling functions: All Fourier
transforms have simple, closed-form expressions that
are easily vectorized. For higher order Daubechies
scaling functions all computations rely on iterative
procedures.

In both packages the solution step is based on a con-
jugate gradient-like algorithm, where the computational
cost is dominated by multiplication with the change of
basis matrix and its adjoint. In Matlab the built-in lsqr
function is used and in Julia a custom implementation of
the conjugate gradient algorithm is used.

In GeneralizedSampling we have relied on Julia’s ability
to write functions that modify their arguments in-place to
drastically reduce the memory consumption in an itera-
tive algorithm like conjugate gradients. Julia’s @time
macro and the benchmarking mentioned below makes it
easy to estimate the memory allocation of a function. In
Matlab we have used an undocumented feature for the
profiler, namely profile -memory on to measure the
allocated memory.

Especially for fast runtimes it is not accurate to rely
on timing a single run of a function (using e.g. tic
and toc in Matlab). In Matlab the times are obtained
with the built-in timeit function and in Julia we use
the benchmark package BenchmarkTools available
at https://github.com/JuliaCI/BenchmarkTools.jl.
For small problems the speed of the Julia and Matlab
code are comparable, but for large problems the Julia

code is significantly faster. The one exception is for
the “Uniform 2D” example: The Julia package is using
a more general algorithm for non-equidistant fast
Fourier transforms, whereas the Matlab package is con-
sidering a special case where the standard fast Fourier
transform is applicable.

The total memory allocation of the solver is much smaller
in the Julia code than in the Matlab code. In most cases, the
memory allocation of the initialization code is smaller the
Julia code than in the Matlab code, although this is prob-
ably not as important since it is only performed once.

Note that the “sol” times and number of iterations
are not directly comparable, since the stopping crite-
ria for the least squares solver may be different and
[5] use L2([0, 1]d) as the reconstruction space, whereas
we use 2 1 1

2 2
,([])dL − . But the time per iteration (“t/n”) is

comparable.

Quality control
An extensive automated test suite has been developed
along with the main code and is tested with Travis CI and
AppVeyor, allowing tests to be performed on both Unix-
like platforms and Windows. All public functions have doc-
strings and a detailed documentation is included with the
package in reStructuredText that can be exported to a mul-
titude of formats. An HTML version of the documentation is
hosted on Read the Docs. All details and links are available
on the Generalized-Sampling package’s GitHub page.

Furthermore, all examples have been tested by all
authors for bugs and readability.

(2) Availability
Operating system
Any system capable of running Julia version 0.4 or higher.

Programming language
The GeneralizedSampling package has been tested with
Julia version 0.4 and 0.5.

Table 1: Runtime comparisons with the Matlab implementation from [5] for reconstruction with the Daubechies 4
scaling functions. “Size” refers to the change of basis matrix; “init” is the computation of the change of basis matrix;
“sol” is the computation of the solution; “Iter.” is the number of iterations by the iterative solver; t/n is the time per
iteration in the solver. Time is measured in seconds and “mem” is the memory allocation in megabytes.

http://www.damtp.cam. ac.uk
http://www.damtp.cam. ac.uk
https://github.com/JuliaCI/BenchmarkTools.jl

Jacobsen et al: Generalized Sampling in Julia Art. 12, p. 5 of 5

Additional system requirements
None.

Dependencies
The GeneralizedSampling package depends on the follow-
ing Julia packages:

• NFFT (version 0.1.4)
• Wavelets (version 0.5.1)
• ArrayViews (version 0.6.4)
• VoronoiCells (version 0.1.3)
• IntervalWavelets (version 0.0.4)

List of contributors
• Jacobsen, Robert Dahl (Aalborg University) – Develop-

ment.
• Nielsen, Morten (Aalborg University) – Testing and

theoretical discussions.
• Rasmussen, Morten Grud (Aalborg University) – Test-

ing and theoretical discussions.

Software location
Archive

Name: Zenodo
Persistent identifier: https://doi.org/10.5281/

zenodo.168555
Licence: MIT “Expat”
Publisher: Robert Dahl Jacobsen
Version published: 0.0.5
Date published: 22/12/2016

Code repository
Name: GitHub
Persistent identifier: https://github.com/robertdj/

GeneralizedSampling.jl
Licence: MIT “Expat”
Date published: 22/12/2016

Language
English.

(3) Reuse potential
The theory of generalized sampling is very generic with
possible applications in many different fields, e.g. where
the aquisition of samples are fixed by physical restrictions.
The GeneralizedSampling package is easy to use and and
does not require users to purchase additional software.

Some parts of the software are easily extended: If one
wishes to change representation between a pair other
than the Fourier and wavelet bases, this can easily be
achieved by adding appropriate functions for computing
representations of the appropriate change of basis matrix
and for performing multiplication with this matrix. It is
possible to contribute to the package through the GitHub
interface.

Competing Interests
The authors have no competing interests to declare.

References
1. Adcock, B and Hansen, A C 2012 “A Generalized

Sampling Theorem for Stable Reconstructions
in Arbitrary Bases”. In: Journal of Fourier Analysis
and Applications, pp. 685–716. DOI: https://doi.
org/10.1007/s00041-012-9221-x

2. Adcock, B, Hansen, A C and Poon C 2014 “On
optimal wavelet reconstructions from Fourier samples:
Linearity and universality of the stable sampling rate”.
In: Applied and Computational Harmonic Analysis 36.3
(May), pp. 387–415. DOI: https://doi.org/10.1016/j.
acha.2013.07.001

3. Bezanson, J, Edelman, A, Karpinski, S and Shah, V B
2014 Julia: A fresh approach to numerical computing.
SIAM Review, 59:65–98, doi:10.1137/141000671

4. Cohen, A, Daubechies, I and Vial, P 1993 “Wavelets
on the Interval and Fast Wavelet Transforms”. In:
Applied and Computational Harmonic Analysis 1.1
(Dec), pp. 54–81. DOI: https://doi.org/10.1006/
acha.1993.1005

5. Gataric, M and Poon, C 2016 “A practical
guide to the recovery of wavelet coefficients
from Fourier measurements”. In: SIAM Journal
on Scientific Computing 38.2, A1075–A1099.
DOI: https://doi.org/10.1137/15M1018630

6. Gene, H 2013 Golub and Charles F. Van Loan. Matrix
Computations. 4th ed. Baltimore: Johns Hopkins
University Press,

7. Guerquin-Kern, M, Lejeune, L Pruessmann, K P
and Unser, M 2012 “Realistic Analytical Phantoms
for Parallel Magnetic Resonance Imaging.” In: IEEE
Transactions on Medical Imaging 31 (Mar), pp. 626–
636. DOI: https://doi.org/10.1109/TMI.2011.2174158

8. MATLAB Version R 2016a (9.0.0.341360). Natick,
Massachusetts, United States: The MathWorks Inc., 2016.

How to cite this article: Jacobsen, R D, Nielsen, M and Rasmussen, M G 2017 Generalized Sampling in Julia. Journal of Open
Research Software, 5: 12, DOI: https://doi.org/10.5334/jors.157

Submitted: 29 November 2016 Accepted: 23 March 2017 Published: 20 April 2017

Copyright: © 2017 The Author(s). This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

Journal of Open Research Software is a peer-reviewed open access journal published by
Ubiquity Press OPEN ACCESS

https://doi.org/10.5281/zenodo.168555
https://doi.org/10.5281/zenodo.168555
https://github.com/robertdj/GeneralizedSampling.jl
https://github.com/robertdj/GeneralizedSampling.jl
https://doi.org/10.1007/s00041-012-9221-x
https://doi.org/10.1007/s00041-012-9221-x
https://doi.org/10.1016/j.acha.2013.07.001
https://doi.org/10.1016/j.acha.2013.07.001
https://doi.org/10.1006/acha.1993.1005
https://doi.org/10.1006/acha.1993.1005
https://doi.org/10.1137/15M1018630
https://doi.org/10.1109/TMI.2011.2174158

	(1) Overview
	Introduction
	Examples
	Runtime and technical comparison
	Quality control

	(2) Availability
	Operating system
	Programming language
	Additional system requirements
	Dependencies
	List of contributors
	Software location
	Code repository
	Language

	(3) Reuse potential
	Competing Interests
	References
	Figure 1
	Figure 2

