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Generalized sampling is a numerically stable framework for obtaining reconstructions of signals in differ-
ent bases and frames from their samples. For example, one can use wavelet bases for reconstruction given 
frequency measurements.

In this paper, we will introduce a carefully documented toolbox for performing generalized sampling in 
Julia. Julia is a new language for technical computing with focus on performance, which is ideally suited 
to handle the large size problems often encountered in generalized sampling. The toolbox provides special-
ized solutions for the setup of Fourier bases and wavelets.

The performance of the toolbox is compared to existing implementations of generalized sampling in 
MATLAB.
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(1) Overview
Introduction
Generalized sampling [1, 2] is a framework for estimating 
representations of functions in different bases and frames 
in a numerically stable manner. This can for example be 
relevant in processing MRI images, where hardware often 
enforces initial frequency measurements, but where 
wavelets may be better suited for representing the final 
image. Simply using a discrete inverse Fourier transform 
often results in the well-known Gibbs phenomenon, with 
unwanted oscillating behavior in the reconstructed image. 
This paper documents a toolbox for performing general-
ized sampling in Julia [3].

The theory of generalized sampling does not restrict the 
type of bases to consider, but the applications have focused 
on Fourier bases and multiscale representations like wavelets. 

Mathematically, samples of a function f in a Hilbert 
space H with respect to a sample basis {sn}n∈N consists of 
inner products {〈 f, sn〉}n∈N. In generalized sampling we 
want to use these samples to estimate the inner products 
{〈f, rn〉}n∈N, where {rn}n∈N is another basis for H. The basis 
{rn}n∈N is used for reconstructing f. In practice we only 
consider a finite number of sampling and reconstruction 
functions, i.e., we have access to the samples ,s

m mw f s= , 
1 ≤ m ≤ M . From these samples we estimate the coeffi-
cients in the reconstruction basis, ,rr

n nnw w f r=≈ , 1 ≤ n ≤ 
N, which are used to compute an approximation of f,
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An especific example that will be used later is where  
〈f, sm〉 represent frequency samples of f and the reconstruc-
tion basis { }
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 is given by translates of a Daubechies 

scaling function φ yielding a system on the form
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that has been adapted to the interval 1 1
2 2,⎡ ⎤−⎣ ⎦  following [4]). 

The simplest Daubechies scaling function is the Haar scal-
ing function given by
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Other Daubechies scaling functions are at least continu-
ous, but cannot be written in closed form in terms of ele-
mentary functions.

The actual computation of the reconstruction coeffi-
cients 1{ }r r N

n nw ==w  is performed by solving a least squares 
problem. The infinite change of basis matrix between the 
sampling and reconstruction subspaces has (i, j)’th entry 
(rj, si). We consider a finite M × N section of this matrix, 
denoted by T. The reconstruction coefficients are com-
puted as the least squares solution 
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 { }2
arg min C .r s NT= − ∈w x w x  (1)

For large M and N , e.g. of the size used in 2D examples 
with images, T is not accessible as a stored matrix. Instead 
we need to work with T as an operator, i.e., store a repre-
sentation that allow us to compute products with T and 
T∗ and thereby solving (1) with e.g. a conjugate gradient 
algorithm [6, p. 637].

Examples
We have two goals with the GeneralizedSampling package: It 
should be fast and easy to use. We have therefore put effort 
into providing only a few necessary high-level functions and 

hiding the lower level details. In essence, we need to compute 
a representation of a change of basis matrix T and solve least 
squares problems like (1) with this representation.

An example included in the package is the reconstruc-
tion of a truncated cosine (with inspiration from [5]). 
The results are seen in Fig. 1 using a different number of 
scaling functions to illustrate how this affects the recon-
struction. In this example the higher order, continuous 
Daubechies scaling functions are not well suited to repre-
sent the discontinuity.

A reconstruction like this can be computed in only a 
few lines of code once the frequency measurements are 
available. For the truncated cosine we have a closed-form 
expression for the Fourier transform:

Figure 1: A truncated cosine and approximations with Haar and Daubechies 4 scaling functions using different scales. 
It may be difficult to see the graph of the original truncated cosine.
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In Julia this can be implemented in the following way with a ter-
nary operator (the line break is only for typographical purposes):
julia > ftcos (xi) = ( abs(xi) == 1 ? 0.25 :
im*xi *(1 + exp (-pi*xi*im ))/(2* pi *(1 - xi ^2)) )
julia > @vectorize_1arg Float64 ftcos

With the Fourier transform defined the reconstruction 
can be computed as follows:
julia > using GeneralizedSampling
julia > xi = grid (128 , 0.5)
julia > fhat = ftcos (xi)
julia > T = Freq2Wave (xi , " haar ", 6)
julia > wcoef = T \ fhat
julia > using IntervalWavelets
julia > x, y = weval ( real ( wcoef ), " haar ", 10)

To compute the reconstruction with the Daubechies 4 scal-
ing functions, one simply has to replace “haar” with “db4”.

As an example of reconstruction of 2D functions/
images, consider reconstruction of a simulated brain 
made with the Matlab [8] software released along with [7] 
(available at http://bigwww.epfl.ch/algorithms/mriphan-
tom). Here we do not have access to a “ground truth”, but 
only the frequency measurements. From 5122 frequency 
measurements we reconstruct 2562 Daubechies 4 scaling 
functions and the result is seen in Fig. 2.

Runtime and technical comparison
Julia is a dynamic language with a fast JIT compiler. A con-
sequence is that a function is compiled the first time it is 
called, causing an overhead in terms of time and memory. 
All subsequent calls are, however, without this compiling 
overhead. The runtimes reported in this section are not for 
the first run.

The examples were carried out on a normal laptop 
(2.60 GHz Intel Core i7, 8 GB RAM) running GNU/
Linux and are summarized in Table 1. The background 

Figure 2: From 512 × 512 frequency measurements (not shown) 256 × 256 Daubechies 4 scaling functions are com-
puted and used to produce this image. The image is evaluated at scale 10, i.e., in 1024 × 1024 points.

http://bigwww.epfl.ch/algorithms/mriphantom
http://bigwww.epfl.ch/algorithms/mriphantom
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init sol Iter

Problem Size Program time mem time mem n t/n

Uniform 1D 8192 × 4096 Matlab
Julia

15.0
0.34

901
6.8

0.13
0.04

37
0.7

9
12

0.01
0.003

Jitter 1D 5463 × 2048 Matlab
Julia

10.0
0.23

627
4.0

0.28
0.08

59
0.4

20
20

0.13
0.004

Uniform 2D 5122 × 2562 Matlab
Julia

0.96
0.15

59
146

5.2
17.6

1507
17

9
16

0.58
1.10

Jitter 2D 26 244 × 322 Matlab
Julia

104.8
2.4

6377
165

8.3
2.4

1270
1.3

50
18

0.17
0.13

Spiral 27 681 × 322 Matlab
Julia

107.1
2.8

6670
261

3.7
2.2

479
1.4

17
16

0.21
0.14

for the experiments are as follows: We compare the 
GeneralizedSampling package with the Matlab code 
released with [5] (available at http://www.damtp.cam. 
ac.uk/research/afha/code). To the best of our knowl-
edge this is the only other publicly available software 
for generalized sampling. In this connection two 
comparisons are relevant: Computing the representa-
tion of the change of matrix (initialization/“init”) and 
using this representation to compute the least squares 
solution (solution/“sol”). In both cases the initializa-
tion step is fast for Haar scaling functions: All Fourier 
transforms have simple, closed-form expressions that 
are easily vectorized. For higher order Daubechies 
scaling functions all computations rely on iterative 
procedures.

In both packages the solution step is based on a con-
jugate gradient-like algorithm, where the computational 
cost is dominated by multiplication with the change of 
basis matrix and its adjoint. In Matlab the built-in lsqr 
function is used and in Julia a custom implementation of 
the conjugate gradient algorithm is used.

In GeneralizedSampling we have relied on Julia’s ability 
to write functions that modify their arguments in-place to 
drastically reduce the memory consumption in an itera-
tive algorithm like conjugate gradients. Julia’s @time 
macro and the benchmarking mentioned below makes it 
easy to estimate the memory allocation of a function. In 
Matlab we have used an undocumented feature for the 
profiler, namely profile -memory on to measure the 
allocated memory.

Especially for fast runtimes it is not accurate to rely 
on timing a single run of a function (using e.g. tic 
and toc in Matlab). In Matlab the times are obtained 
with the built-in timeit function and in Julia we use 
the benchmark package BenchmarkTools available 
at https://github.com/JuliaCI/BenchmarkTools.jl. 
For small problems the speed of the Julia and Matlab 
code are comparable, but for large problems the Julia 

code is significantly faster. The one exception is for 
the “Uniform 2D” example: The Julia package is using 
a more general algorithm for non-equidistant fast 
Fourier transforms, whereas the Matlab package is con-
sidering a special case where the standard fast Fourier 
transform is applicable.

The total memory allocation of the solver is much smaller 
in the Julia code than in the Matlab code. In most cases, the 
memory allocation of the initialization code is smaller the 
Julia code than in the Matlab code, although this is prob-
ably not as important since it is only performed once.

Note that the “sol” times and number of iterations 
are not directly comparable, since the stopping crite-
ria for the least squares solver may be different and 
[5] use L2([0, 1]d) as the reconstruction space, whereas 
we use 2 1 1

2 2
,([ ] )dL − . But the time per iteration (“t/n”) is 

comparable.

Quality control
An extensive automated test suite has been developed 
along with the main code and is tested with Travis CI and 
AppVeyor, allowing tests to be performed on both Unix-
like platforms and Windows. All public functions have doc-
strings and a detailed documentation is included with the 
package in reStructuredText that can be exported to a mul-
titude of formats. An HTML version of the documentation is 
hosted on Read the Docs. All details and links are available 
on the Generalized-Sampling package’s GitHub page.

Furthermore, all examples have been tested by all 
authors for bugs and readability.

(2) Availability
Operating system
Any system capable of running Julia version 0.4 or higher.

Programming language
The GeneralizedSampling package has been tested with 
Julia version 0.4 and 0.5.

Table 1: Runtime comparisons with the Matlab implementation from [5] for reconstruction with the Daubechies 4 
scaling functions. “Size” refers to the change of basis matrix; “init” is the computation of the change of basis matrix; 
“sol” is the computation of the solution; “Iter.” is the number of iterations by the iterative solver; t/n is the time per 
iteration in the solver. Time is measured in seconds and “mem” is the memory allocation in megabytes.

http://www.damtp.cam. ac.uk
http://www.damtp.cam. ac.uk
https://github.com/JuliaCI/BenchmarkTools.jl
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Additional system requirements
None.

Dependencies
The GeneralizedSampling package depends on the follow-
ing Julia packages:

• NFFT (version 0.1.4)
• Wavelets (version 0.5.1)
• ArrayViews (version 0.6.4)
• VoronoiCells (version 0.1.3)
• IntervalWavelets (version 0.0.4)

List of contributors
• Jacobsen, Robert Dahl (Aalborg University) – Develop-

ment.
• Nielsen, Morten (Aalborg University) – Testing and 

theoretical discussions.
• Rasmussen, Morten Grud (Aalborg University) – Test-

ing and theoretical discussions.

Software location
Archive

Name: Zenodo
Persistent identifier: https://doi.org/10.5281/

zenodo.168555
Licence: MIT “Expat”
Publisher: Robert Dahl Jacobsen
Version published: 0.0.5
Date published: 22/12/2016

Code repository
Name: GitHub
Persistent identifier: https://github.com/robertdj/

GeneralizedSampling.jl
Licence: MIT “Expat”
Date published: 22/12/2016

Language
English.

(3) Reuse potential
The theory of generalized sampling is very generic with 
possible applications in many different fields, e.g. where 
the aquisition of samples are fixed by physical restrictions. 
The GeneralizedSampling package is easy to use and and 
does not require users to purchase additional software.

Some parts of the software are easily extended: If one 
wishes to change representation between a pair other 
than the Fourier and wavelet bases, this can easily be 
achieved by adding appropriate functions for computing 
representations of the appropriate change of basis matrix 
and for performing multiplication with this matrix. It is 
possible to contribute to the package through the GitHub 
interface.

Competing Interests
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