
Bas, Y et al 2017 Tadarida: A Toolbox for Animal Detection on Acoustic Recordings. 
Journal of Open Research Software, 5: 6, DOI: https://doi.org/10.5334/jors.154Journal of

open research software

SOFTWARE METAPAPER

Tadarida: A Toolbox for Animal Detection on Acoustic 
Recordings
Yves Bas,1,2 Didier Bas3 and Jean-François Julien1

1 CESCO, MNHN, FR 
2 CEFE, CNRS, FR
3 none (volunteer), FR
Corresponding author: Yves Bas 
(ybas@mnhn.fr)

Passive Acoustic Monitoring (PAM) recently extended to a very wide range of animals, but no available 
open software has been sufficiently generic to automatically treat several taxonomic groups. Here we pre-
sent Tadarida, a software toolbox allowing for the detection and labelling of recorded sound events, and 
to classify any new acoustic data into known classes. It is made up of three modules handling Detection, 
Labelling and Classification and running on either Linux or Windows. This development resulted in the first 
open software (1) allowing generic sound event detection (multi-taxa), (2) providing graphical sound label-
ling at a single-instance level and (3) covering the whole process from sound detection to classification. 
This generic and modular design opens numerous reuse opportunities among (bio)acoustics researchers, 
especially for those managing and/or developing PAM schemes.

The whole toolbox is openly developed in C++ (Detection and Labelling) and R (Classification) and stored 
at https://github.com/YvesBas.

Keywords: Acoustic Recording Unit (ARU); bioacoustics; animal calls classification; ecoacoustic indices; 
environmental sound; machine learning; random forest; sound event detection; species monitoring
Funding Statement: This software has been partially funded by Holcim patronage of “Vigie-Chiro” moni-
toring scheme.

(1) Overview
Introduction
Reduced cost of acoustic recorders and increase in stor-
age capacity has resulted in an exponential develop-
ment of Passive Acoustic Monitoring (PAM) of a very 
wide range of animals in a few years [1, 2, 3], open-
ing up a new field of research [4] and responding to an 
urgent need for biodiversity monitoring [5]. However, 
data analysis of this emerging big data is now impeded 
by limited software development and availability  
[6, 7].

To date, no available software allows researchers to per-
form PAM on a wide range of taxonomic groups, though 
numerous classification methods of animal vocaliza-
tions have been developed in recent years [8]. Here we 
present a software toolbox that enables the building of 
an automatic classifier from available sound reference 
data, and then to classify recorded sound events into 
known classes. This toolbox was called Tadarida (which 
is incidentally a widespread bat genus), for Toolbox for 
Animal Detection on Acoustic Recordings Integrating 
Discriminant Analysis. Discriminant analysis is not 
defined here as Fisher’s LDA but rather any type of auto-
matic classification. 

This toolbox was initially developed to support the 
French bat monitoring scheme “Vigie-Chiro” launched 
in 2006 [9]. Like other PAM schemes during this period, 
Vigie-Chiro experienced an exponential increase in 
recording data. In addition, a large volume of acoustic 
data has been recorded for other taxa without being iden-
tified, especially for bush-crickets which did not benefit 
from any monitoring scheme [10, 11].

Until now, all available software for bat automatic iden-
tification were commercial and based on a very specific 
sound event detection process that prevented efficient 
bush-cricket detection. Tadarida development focused on 
detecting every sound event, even if they are structurally 
very different (e.g. bats and bush-crickets) and overlap-
ping in time or frequency. 

This generic detector enables complex delimitations of 
the sound events in time and frequency so that the least 
possible amount of noise, i.e. spectrogram elements that 
do not contain signal, are included. It then performs a 
broad range of feature extraction on all detected sound 
events (DSEs). This first part of the toolbox was named 
Tadarida-D (for Detection).

Because of a lack of sufficient available reference 
sound data on bats and bush-crickets, we needed to 

https://doi.org/10.5334/jors.154
mailto:ybas@mnhn.fr
https://github.com/YvesBas


Bas et al: TadaridaArt. 6, p. 2 of 8 

build our own training dataset for automatic identifica-
tion (machine learning). However, no available software 
allowed for sound annotation at the scale of our detected 
sound events. Massive sound annotation of animal vocali-
zations was limited to a larger time scale (several seconds) 
so that most sound reference data contained multiple 
species with sound events not attributed to a single label 
with certainty. Although recent developments have sig-
nificantly improved the machine learning process for 
multi-label multi-instance data [12], we circumvent such 
limitations by developing a Graphical User Interface called 
Tadarida-L (for Labelling) that allows a user to generate 
single-label single-instance training data.

The last part of the toolbox, Tadarida-C (for Classification), 
uses features extracted by Tadarida-D and labels gener-
ated through Tadarida-L to build and use a random forest 
automatic classification that handles strong unevenness 
in class sample size.

This modular toolbox has been designed for a commu-
nity of users sharing two interacting roles (e.g. PAM manag-
ers and participants). First, “PAM managers” go through the 
whole process: automatic detection and labelling to build 
automatic classification. Then, “PAM participants” can use 
the detection and classification processes to apply the auto-
matic classifier provided by PAM managers. This develop-
ment resulted in the first open software (1) allowing generic 
sound event detection (multi-taxa), (2) providing graphical 
sound labelling at a single-instance level and (3) covering 
the whole process from sound detection to classification.

Implementation and architecture
Tadarida toolbox consists of 3 software modules (see Fig. 1 
for the structure):

1)  Tadarida-D detecting sound events and extract-
ing their features.

2)  Tadarida-L facilitating the labelling of sound 
events and generating a sound reference data-
base.

3)  Tadarida-C building and using a supervised  
classifier to automatically sort sound events into 
defined classes (e.g. bat and bush-cricket species). 

Tadarida-D and Tadarida-L implementation
TADARIDA-D and TADARIDA-L have been developed in Qt 
C++, because it combines clean writing, based on the con-
cepts of object-oriented programming, and allows for fast 
processing.

TADARIDA-D runs faster than real time on recordings 
even with a basic configuration and under the most 
demanding conditions: 500 kHz sample rate .wav files, 
detecting 100 sound events per seconds and extracting 
269 features.

These constraints have sometimes led us to focus on 
solutions that save time at the expense of code readability. 
For example, we used pointers in a number of cases and 
tables instead of vectors. This applies to shapesDetects 
and detectsParameter2 (see below).

Qt 5.5 framework was chosen for its portability across 
different operating systems. Initially developed for 

Windows, Tadarida-D has also been successfully deployed 
on diverse Linux systems (see below).

Tadarida-D uses two external libraries:

– libsndfile to read .wav files.
– FFTW3f-3 to compute time-frequency matrices 

(spectrograms) from. wav files, through Fast Fourier 
Transformation.

To exploit the potential of multi-core computers, 
Tadarida-D uses parallel computing, launching one to 
eight threads according to user settings. These threads 
simultaneously process a fraction of the .wav files.

Tadarida-D architecture
TadaridaD is a non-graphical application that is executed 
from the command line in scripts, particularly on servers. 

This application handles the sound events detection and 
features extraction, and is structured around 4 classes:

1) DetecLaunch (main class)

DetecLaunch operates the input parameters: directories 
of .wav files to process, number of threads to be executed, 
etc.

The process first distributes .wav files among the threads. 
Next, variables that will be used by the threads are initial-
ized (to manage the variables that do not support multi-
threading) and the threads created (objects of Detec class) 
with the necessary settings, and then executed.

2) Detec (thread treatment)

Detec class retrieves provided settings and creates the 
object of DetecTreatment class that will handle the output 
processing (generating features tables).

The run() method (executed by pdetec [i] → start() ;) 
organizes treatment.

It calls for each .wav file to be processed, the treatOne-
File method, which launches CallTreatmentsForOneFile(...) 
method of DetecTreatment class (see below).

Note that the division of tasks between the Detec and 
Detectreatment classes avoids a duplication of code in the 
DetectTreatment class between Tadarida-D and Tadarida-L 
projects (see below).

3) Classe DetecTreatment

After initialization, the CallTreatmentsForOneFile method 
handles the processing of each .wav file by successively 
calling the following methods:

– openWavFile and ComputeFFT which produces a spec-
trogram (time-frequency matrix) for each.wav file.

– CorrectNoise skipping silence and equalizing fre-
quency bands (Note that this operation has strong 
consequences for sound event detection and several 
advantages: reducing bias generated by heteroge-
neity in recorders output, suppressing narrowband 
electronical noise and separating sound events even 



Bas et al: Tadarida Art. 6, p. 3 of 8 

when a chorus of individuals produce constantly a 
large amount of amplitude on a frequency band).

– shapesDetects detecting sound events, defined as a 
set of elements of the frequency-time matrix isolat-
ing an acoustic signal in both frequency and time 
coming from a single acoustic source (this detec-
tion algorithm follows an hysteresis function, see 
https://github.com/YvesBas/Tadarida-D/blob/mas-
ter/Manual_Tadarida-D.odt for details).

– detectsParameter2 and saveParameters computing 
and saving the 269 numerical features on each DSE 
in tables within .ta files (tab separated text format, 
Fig. 2). See https://github.com/YvesBas/Tadarida-
D/blob/master/Manual_Tadarida-D.odt for the 
description of each numerical features. 

Note that shapesDetects defines the master point of each 
DSE as its element with the highest amplitude value, then 
DSE are filtered according to the frequency of this master 
point: 8–250 kHz in HF mode and 0.8–25 kHz in LF mode. 
Note that the HF range covers every known vocalization of 
bats and bush-crickets and the LF range covers most other 
animal vocalization.

Tadarida-L architecture
Tadarida-L is an extended version of Tadarida-D to 
handle sound events labelling and reference sound 
database (RSDB) constitution (in addition to sound 

events detection and features extraction as done by 
Tadarida-D).

This application is structured around 4 classes (corre-
sponding to each .cpp file):

1) TadaridaMainWindow

This class generates the main window of the software and 
displays main user settings.

The left half of the window contains all the input set-
tings of the detection process: the directory path of the 
.wav files to be processed, and optional settings (Fig. 3). 
It calls threads of the Detec class for .wav files treatment.

The right half of the window displays the labelling inter-
face. It calls the following Fenim class.

2) Detec and Detectreatment

Both Detec and Detectreatement classes have the same 
purpose in Tadarida-L as they have in Tadarida-D (see 
above). Detectreatment class is strictly identical. Detec 
class here has one additional function: it handles the 
generation of supplementary output files (in extended 
mode): spectrogram images (.jpg) and DSEs data (.da2). 
These files are used by Fenim class as input information 
(see Fig. 2).

3) Fenim

Figure 1: Overview of Tadarida functionalities. Left half corresponds to end use, whereas expert users go through the 
whole process.

https://github.com/YvesBas/Tadarida-D/blob/master/Manual_Tadarida-D.odt
https://github.com/YvesBas/Tadarida-D/blob/master/Manual_Tadarida-D.odt
https://github.com/YvesBas/Tadarida-D/blob/master/Manual_Tadarida-D.odt
https://github.com/YvesBas/Tadarida-D/blob/master/Manual_Tadarida-D.odt


Bas et al: TadaridaArt. 6, p. 4 of 8 

Fenim class handles the labelling man-machine interface 
(Fig. 4), involving:

– spectrogram display that can be zoomed in and out 
on two separate Windows.

– graphical multiple selection of DSEs.
– label data entry (11 fields: species, confidence, loca-

tion, etc. see https://github.com/YvesBas/Tadarida-
L/blob/master/Manual_Tadarida-L.odt for details).

– saving data in standard tables (.eti) linked to 
extracted features.

This labelling process allows the user to quickly generate 
a standardized RSDB that can be shared with other users, 
and/or used to build their own classifier (Fig. 2).

Note that Tadarida-L has been built in an evolutive way so 
that both detection and feature extraction process can be dras-
tically changed with no loss of information in users RSDBs.

Tadarida will indeed propose an entire base reprocessing 
to upgrade and homogenize the database, if the defined 
RSDB corresponds to an anterior version of the software. 
New DSEs will be matched according to their previous and 
new structural data (.da2), see https://github.com/YvesBas/
Tadarida-L/blob/master/Manual_Tadarida-L.odt for details.

Tadarida-C implementation and architecture
Tadarida-C handles the classification of DSE, based on 
features extracted by Tadarida-D and RSDB collected 
by Tadarida-L, and thus provides the final output of the 
Tadarida toolbox.

It contains two R-scripts: one for building a classifier (for 
expert users) and another using it (for end users, see Fig. 
2). Tadarida-C has been developed in R because it allows 
the use and optimisation of the Random Forests (RF) algo-
rithm [13], with numerous built-in statistical tools (sum-
maries, graphs, etc). Both scripts use randomForest and 
data.table packages [14, 15]. This latter package is only 
used through its “rbindlist” function that allows for fast 
aggregation of large data frames.

1) Building a classifier

The “buildClassif.r” script should be run each time user’s 
RSDB has been significantly improved or when there is 
any need for a new classifier (different species list, set-
tings, etc). It first aggregates and merges label data (.eti 
files, see Tadarida-L) and features data (.ta files) from a 
specified RSDB (Fig. 2).

This data frame may then be filtered on a species list (if 
provided) and is finally used to build a series of 50 RFs [13] 
of 10 classification trees each. The authors found out that 
combining trees with different subsampling levels better 
handled the trade-off between classification error rates 
on common species (i.e. species with a large number of 
labelled DSEs in the RSDB) and error rates on rare species. 
Thus, a gradient of subsampling is set so that the first trees 
of the series use most of the available DSEs in the RSDB, 
whereas last trees use an equal number of DSEs for most 
species. The strength of the subsampling can be tuned 
through two input settings (see https://github.com/

Figure 2: Overview of the data process in both end and expert use modes, detailing input and output file formats of 
the three modules.

https://github.com/YvesBas/Tadarida-L/blob/master/Manual_Tadarida-L.odt
https://github.com/YvesBas/Tadarida-L/blob/master/Manual_Tadarida-L.odt
https://github.com/YvesBas/Tadarida-L/blob/master/Manual_Tadarida-L.odt
https://github.com/YvesBas/Tadarida-L/blob/master/Manual_Tadarida-L.odt
https://github.com/YvesBas/Tadarida-C/blob/master/Manual_Tadarida-C.odt


Bas et al: Tadarida Art. 6, p. 5 of 8 

YvesBas/Tadarida-C/blob/master/Manual_Tadarida-C.odt 
for details on all RF parameters).

The “site” field of the label data is also used for subsam-
pling, each RF using 63% of available sites. This makes the 
training and testing independent for each tree. To imple-
ment this subsampling, authors have modified the ran-
domForest function so that size of sample class (sampsize) 
could be equal to 0.

The output file is named “ClassifEspHF3.learner” to be 
used as input in the following script (Fig. 2).

2) Using the classifier

The “TadaridaC.r” script aims to return to the user the 
list of species present within each treated .wav file, and 
a confidence index of each automatic identification. For 
that purpose, it applies the previously built RF classifier 
(ClassifEspHF3.learner) to any list of .ta files (output from 
Tadarida-D or Tadarida-L, see Fig. 2). 

With the “predict” function from randomForest R package 
[14], it first converts features values extracted on each DSE to a 
matrix of class probabilities named “ProbEsp0” (i.e. the prob-
abilities for each DSE to belong to each potential species).

Most users will not be interested to an identification on 
such a small scale since many DSEs within a .wav file could 
come from the same source. Thus, the next commands 
aim at (1) summarizing this information within a .wav file 
and (2) defining the number of species that are present 
within the recording.

This latter objective is accomplished through a simple 
and robust algorithm functioning in a loop:

1)  The maximum score within the class probability 
matrix gives the identity of the first species auto-
matically identified (species A).

2)  DSE returning a probability lower than 0.02 
for species A are considered as not being from 
this species and this subset goes through step 1 
again. If this condition is not met for any DSE, the 
loop is ended.

Some ancillary data is also computed for end users to 
get summary information on the species likely to be pre-
sent in their recordings, where in time and frequency 
the identified vocalizations occur and how confident 
the identification is (see https://github.com/YvesBas/
Tadarida-C/blob/master/Manual_Tadarida-C.odt for 
details).

Quality control
The detection, feature extraction and classification pro-
cesses have been extensively tested by its automated use 
on French Bat Monitoring data since October 2015. 296 
participants uploaded 12 952 016 wave files on a web 
portal (www.vigiechiro.herokuapp.com; see [16, 17] for 
source code), and all files were successfully processed by 
Tadarida-D and Tadarida-C to get species identification on 
all sound events recorded. The few bugs that remained 
after the development phase were then quickly discovered 
and fixed.

Moreover, Tadarida toolbox has been used to build a spe-
cific classifier for the Norfolk Bat Survey, then to process 
the whole data, i.e. 1.1 million .wav files. Newson et al. [11] 

Figure 3: The graphical user interface of Tadarida-L.

https://github.com/YvesBas/Tadarida-C/blob/master/Manual_Tadarida-C.odt
https://github.com/YvesBas/Tadarida-C/blob/master/Manual_Tadarida-C.odt
https://github.com/YvesBas/Tadarida-C/blob/master/Manual_Tadarida-C.odt
www.vigiechiro.herokuapp.com


Bas et al: TadaridaArt. 6, p. 6 of 8 

manually checked 328 291 of these files to evaluate clas-
sifier performance on bush-crickets, showing variable but 
sufficient performance to perform large-scale monitoring. 
Appendix S1 of this latter paper further shows the relative 
importance of features extracted by Tadarida in species 
classification. Therefore, both Vigie-Chiro and Norfolk Bat 
Survey provide valuable proofs of concept that Tadarida 
fulfils its purpose.

Any upgrade in detection and/or feature extraction pro-
cesses resulted in the reprocessing of authors’ RSDB (today 
counting 17,773 .wav files and 863,730 labelled DSEs) 
that constituted each time a robust test able to detect any 
new bugs before a release to the users. This reprocessing 
happened 8 times since the start of the authors’ RSDB 
constitution (01/08/2014). 

All three modules (Tadarida-D, -L and -C) have thus 
been intensively tested through this production phase. 
Moreover, use cases of Tadarida HMI are relatively few and 
then easily tested before each release to the users. For that 
purpose, each code repository contains a test plan docu-
ment describing manual test scenarios, and their associ-
ated input and output files.

(2) Availability
Operating system
Tadarida-D and -C have been successfully tested on various 
versions of Windows (both 32- and 64-bit, and from XP to 
8.1) and Linux (Ubuntu 14.04LTS and 14.6, Debian 8.0 and 
Scientific Linux 6.8).

Code sources are the same for both OS, except for one 
line which is disabled in the Windows version (“typedef 
int64_t__int64;” in detec.h).

Tadarida-L have been successfully tested on various ver-
sions of Windows (from Windows XP to Windows 8.1). It 
has not been built on Linux yet.

Programming language
C++ Qt (5.4 and 5.5) for Tadarida-D and Tadarida-L.
Both have been successfully built from Qt 4.8.5 to Qt 5.7.
R 3.3.0 for Tadarida-C.

Additional system requirements
Memory consumption is approximately 150 MB for 
threads of Tadarida-D, but is much higher for Tadarida-C. 
Memory consumption of the “builder” script depends on 
the RSDB size and the number of defined species. With 
more than 800 000 DSEs and 91 defined species in cur-
rent authors’ RSDB, the builder script consumes approxi-
mately 15 GB of memory. “TadaridaC” script consumes a 
lower amount of memory unless a very large number of 
DSEs is provided in the input (more than 1 million).

All modules have a dedicated manual that details the 
install procedure and the requirements.

Dependencies
Tadarida-D and Tadarida-L use the “sndfile” and “fftw3” 
libraries while Tadarida-C use “randomForest” and “data.
table” libraries.

List of contributors
–   Yves Bas (contributed to Tadarida-D, -L and -C).
– Didier Bas (main developer of Tadarida-D and Tadarida-L).
– Jean-François Julien (contributed to Tadarida-C).
– Emmanuel Leblond (helped to first implementation 

of Tadarida-D and -C on Linux).

Software location
Archive

Name: Figshare
Persistent identifier: https://doi.org/10.6084/

m9.figshare.4212837.v1

Figure 4: The graphical user interface of the labelling mode of Tadarida-L.

https://doi.org/10.6084/m9.figshare.4212837.v1
https://doi.org/10.6084/m9.figshare.4212837.v1


Bas et al: Tadarida Art. 6, p. 7 of 8 

Licence: CC-BY
Publisher: Yves Bas
Date published: 07/11/16

Code repository
Name: Github
Identifier: github.com/YvesBas
Licence: LGPL-3.0 – GNU for Tadarida-D and Tadarida-L, 

GPL-3.0 – GNU for Tadarida-C
Date published: 07/11/16

Language
English

(3) Reuse potential
Tadarida toolbox has been first designed for the specific 
need of the monitoring of French common bats and 
bush-crickets (243 end users so far), and is also used to 
analyse Norfolk Bat Survey data [11, 18]. Both schemes 
have a longer term objective to monitor a wide range 
of other acoustically active taxa (birds, frogs, other 
insects…). Thus, this very generic design makes it useful 
to any researchers involved in PAM by saving time at sev-
eral stages of the process (sound event detection, RSDB 
constitution, etc) and potentially broadening their range 
of monitored species.

Tadarida may even be used in other intensive research 
topics in acoustics such as multi-source acoustic detection 
in urban environments [19].

Tadarida is made up of three different software pack-
ages: Tadarida-D, -L and -C. This modular architecture fur-
ther broadens the community of researchers likely to be 
interested in Tadarida toolbox because each package can 
be used independently. For example, the prolific develop-
ment of acoustic indices in ecoacoustics can benefit from 
Tadarida-D by the way it detects and extract numerous fea-
tures on every animal vocalization in a soundscape, thus 
allowing measures of alpha and beta diversity [5, 20]. 

Tadarida is not only modular but also interoperable 
with other software. For example, since sound events 
detected by Tadarida-D are precisely located in time 
and frequency (stored in .ta files), they can easily be 
linked to sound events detected by other software (e.g. 
SonoBat™). Thus, a researcher willing to use the feature 
extraction of such software can nonetheless benefit from 
the functionalities of Tadarida-L (sound event labelling 
and RSDB constitution) and/or Tadarida-C (building and 
using a classifier). To integrate Tadarida-L with other 
sound detection softwares, all that is needed is to link 
output tables of both softwares thanks to frequency and 
time variables, namely Fmin, Fmax, StTime and Dur for 
Tadarida-L features. To integrate Tadarida-C with exter-
nal sound detection softwares, all that is needed is (1) to 
take external software’s feature tables as input (object 
param3) and (2) to adapt FormulCrit object to external 
software’s features list.

Tadarida code is built and documented so that third-
party developers can also modify or improve it accord-
ing to their needs. The detectsparameter2 method is 

especially designed in such a way that other features can 
easily be added.

Support is not guaranteed for this code, but users are 
encouraged to contact the authors to discuss specific 
application possibilities and issues.

Acknowledgements
The authors would like to thank an anonymous reviewer 
for useful comments, Christian Kerbiriou and Grégoire 
Loïs for advices and help in the project management, 
Stuart Newson, Emmanuel Leblond, Jérôme Landieth 
and the 251 Vigie-Chiro participants for extensive test-
ing, and finally Stuart Newson for careful rereading of 
the article.

Competing Interests
The authors have no competing interests to declare.

References
1. Selby, T H, Hart, K M, Fujisaki, I, Smith, B J,  

Pollock, C J and Hillis-Starr, Z et al 2016 Can you hear 
me now? Range-testing a submerged passive acoustic 
receiver array in a Caribbean coral reef habitat. Ecol 
Evol; 6: 4823–35. DOI: https://doi.org/10.1002/
ece3.2228

2. Kalan, A K, Mundry, R, Wagner, O J J, Heinicke, S, 
Boesch, C and Kuehl, H S 2015 Towards the automated 
detection and occupancy estimation of primates using 
passive acoustic monitoring. Ecol Indic; 54: 217–26. 
DOI: https://doi.org/10.1016/j.ecolind.2015.02.023

3. Froidevaux, J S P, Zellweger, F, Bollmann, K, 
and Obrist, M K 2014 Optimizing passive acoustic 
sampling of bats in forests. Ecol Evol; 4: 4690–700. 
DOI: https://doi.org/10.1002/ece3.1296

4. Sueur, J and Farina, A 2015 Ecoacoustics: the 
Ecological Investigation and Interpretation of 
Environmental Sound. Biosemiotics; 8: 493–502. DOI: 
https://doi.org/10.1007/s12304-015-9248-x

5. Harris, S A, Shears, N T and Radford, C A 2016 
Ecoacoustic indices as proxies for biodiversity on 
temperate reefs. Methods Ecol Evol; 7: 713–24. DOI: 
https://doi.org/10.1111/2041-210X.12527

6. Roch, M A, Batchelor, H, Baumann-Pickering 
S, Berchok, C L, Cholewiak, D and Fujioka, E 
et al 2016 Management of acoustic metadata for 
bioacoustics. Ecol Inform; 31: 122–36. DOI: https://
doi.org/10.1016/j.ecoinf.2015.12.002

7. Merchant, N D, Fristrup, K M, Johnson, M P, Tyack, 
P L, Witt, M J and Blondel, P et al 2015 Measuring 
acoustic habitats. Methods Ecol Evol; 6: 257–65. DOI: 
https://doi.org/10.1111/2041-210X.12330

8. Stowell, D and Plumbley, M D 2014 Automatic large-
scale classification of bird sounds is strongly improved 
by unsupervised feature learning. Peerj; 2: E488. DOI: 
https://doi.org/10.7717/peerj.488

9. Azam, C, Le Viol, I, Julien, J-F, Bas, Y and 
Kerbiriou, C 2016 Disentangling the relative effect 
of light pollution, impervious surfaces and intensive 
agriculture on bat activity with a national-scale 

https://github.com/YvesBas
https://doi.org/10.1002/ece3.2228
https://doi.org/10.1002/ece3.2228
https://doi.org/10.1016/j.ecolind.2015.02.023
https://doi.org/10.1002/ece3.1296
https://doi.org/10.1007/s12304-015-9248-x
https://doi.org/10.1111/2041-210X.12527
https://doi.org/10.1016/j.ecoinf.2015.12.002
https://doi.org/10.1016/j.ecoinf.2015.12.002
https://doi.org/10.1111/2041-210X.12330
https://doi.org/10.7717/peerj.488


Bas et al: TadaridaArt. 6, p. 8 of 8 

monitoring program. Landsc Ecol: 1–13. DOI: https://
doi.org/10.1007/s10980-016-0417-3

10. Jeliazkov, A, Bas, Y, Kerbiriou, C, Julien, J-F, Penone, C 
and Le Viol, I 2016 Large-scale semi-automated 
acoustic monitoring allows to detect temporal decline 
of bush-crickets. Glob Ecol Conserv; 6: 208–218. DOI: 
https://doi.org/10.1016/j.gecco.2016.02.008

11. Newson, S, Bas, Y, Murray, A and Gillings, S 2017 
Potential for coupling the monitoring of bush-crickets 
with established large-scale acoustic monitoring of 
bats. Meth Ecol Evol; 27 JAN 2017. DOI: https://doi.
org/10.1111/2041-210X.12720

12. Briggs, F, Lakshminarayanan, B, Neal, L, Fern, X Z, 
Raich, R and Hadley, S J K et al 2012 Acoustic 
classification of multiple simultaneous bird 
species: A multi-instance multi-label approach. J 
Acoust Soc Am; 131: 4640–50. DOI: https://doi.
org/10.1121/1.4707424

13. Breiman, L 2001 Random Forests. Mach Learn; 45: 5–32. 
DOI: https://doi.org/10.1023/A:1010933404324

14. Liaw, A and Wiener, M 2002 Classification and 
regression by randomForest. R News; 2:18–22.

15. Dowle, M, Short, T, Lianoglou, S, Saporta, R and 
Srinivasan, A and Antonyan, E 2014 data.table: 
Extension of data.frame.

16. Leblond, E and Landieth, J 2014–2017 vigiechiro-api. 
URL https://github.com/Scille/vigiechiro-api.

17. Landieth, J and Leblond, E 2014–2017 vigiechiro-
front. URL: https://github.com/Scille/vigiechiro-front.

18. Newson, S E, Evans, H E and Gillings, S 2015 
A novel citizen science approach for large-
scale standardised monitoring of bat activity 
and distribution, evaluated in eastern England. 
Biol Conserv; 191: 38–49. DOI: https://doi.
org/10.1016/j.biocon.2015.06.009.

19. Mesaros, A, Heittola, T, Eronen, A and Virtanen, 
T 2010 Acoustic event detection in real life 
recordings. Signal Process. Conf. 2010 18th Eur., IEEE; 
p. 1267–1271. 

20. Depraetere, M, Pavoine, S, Jiguet, F, Gasc, A,  
Duvail, S and Sueur, J 2012 Monitoring animal 
diversity using acoustic indices: implementation in 
a temperate woodland. Ecol Indic; 13: 46–54. DOI: 
https://doi.org/10.1016/j.ecolind.2011.05.006

How to cite this article: Bas, Y, Bas, D and Julien, F J 2017 Tadarida: A Toolbox for Animal Detection on Acoustic Recordings. 
Journal of Open Research Software, 5: 6, DOI: https://doi.org/10.5334/jors.154

Submitted: 08 November 2016      Accepted: 10 February 2017      Published: 21 February 2017

Copyright: © 2017 The Author(s). This is an open-access article distributed under the terms of the Creative Commons 
Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

Journal of Open Research Software is a peer-reviewed open access journal published by 
Ubiquity Press OPEN ACCESS

https://doi.org/10.1007/s10980-016-0417-3
https://doi.org/10.1007/s10980-016-0417-3
https://doi.org/10.1016/j.gecco.2016.02.008
https://doi.org/10.1111/2041-210X.12720
https://doi.org/10.1111/2041-210X.12720
https://doi.org/10.1121/1.4707424
https://doi.org/10.1121/1.4707424
https://doi.org/10.1023/A:1010933404324
https://github.com/Scille/vigiechiro-api
https://github.com/Scille/vigiechiro-front
https://doi.org/10.1016/j.biocon.2015.06.009
https://doi.org/10.1016/j.biocon.2015.06.009
https://doi.org/10.1016/j.ecolind.2011.05.006
https://doi.org/10.5334/jors.154
http://creativecommons.org/licenses/by/4.0/

	(1) Overview 
	Introduction 
	Implementation and architecture 
	Tadarida-D and Tadarida-L implementation 
	Tadarida-D architecture 
	Tadarida-L architecture 
	Tadarida-C implementation and architecture 

	Quality control 

	(2) Availability 
	Operating system 
	Programming language 
	Additional system requirements 
	Dependencies 
	List of contributors 
	Software location 
	Code repository 
	Language 

	(3) Reuse potential 
	Acknowledgements 
	Competing Interests 
	References 
	Figure 1
	Figure 2
	Figure 3
	Figure 4

