
Elnesr, M N and Alazba, A A 2017 NeuroCharter: A Neural Networks Software to Visually Discover
the Effects and Contributions between Interrelated Features. Journal of Open Research Software,
5: 19, DOI: https://doi.org/10.5334/jors.135

Journal of
open research software

SOFTWARE METAPAPER

NeuroCharter: A Neural Networks Software to Visually
Discover the Effects and Contributions between
Interrelated Features
Mohammad N. Elnesr and A. A. Alazba
Alamoudi chair for water research, King Saud University, SA
Corresponding author: Mohammad N. Elnesr, Assistant Professor
(drnesr@gmail.com, melnesr@ksu.edu.sa)

NeuroCharter is an open-source software that helps in prediction problems in scientific research through
artificial neural networks. The program is designed mainly for researchers who focus on details of the
neural-network’s parameters, in addition to easy reuse of the trained network. The program outputs
almost all the necessary graphs regarding the network and features contributions and relative outputs
for both numeric and categorical features. The program was implemented in Python 2.7.11 and is open
sourced for reuse and future development. The program consists of four main classes, one for the neural
networks calculation, one for data manipulation, one for plotting the neural network, and the main class
that manages and links the other classes. The source code and some experimental data are freely available
at the GitHub code repository http://j.mp/NeuroCharter.

Keywords: Artificial Neural Networks; Python; Backpropagation; predictions
Funding Statement: The project was financially supported by King Saud University, Vice Deanship of
Research Chairs.

(1) Overview
Introduction
Artificial Neural Networks (ANNs) have proven their reli-
ability in solving complex systems for pattern recognition
and multivariate regression [1, 2]. Although the backprop-
agation technique was developed 40 years back [3], the
interest in ANNs increased dramatically in the last dec-
ade because of the advances in hardware and the needs
of artificial intelligence applications in handheld devices.
Most of the uses of ANNs nowadays are for pattern rec-
ognition, either for handwriting recognition, image rec-
ognition, or more advanced applications like Self-driving
cars [4]. However, the regression analysis of ANNs plays
the most important role in scientific research especially
for economic, biological, and environmental research (e.g.
[5–7]). The primary function of the ANN software pack-
ages is to perform training, validating, and testing the
network, then use the trained network in prediction/
recognition of missing features/patterns. Most of the com-
mercial packages dealt with the ANNs as a black box, not
allowing the user to analyze/modify the resulted weights
and biases, or to make some studies on the effects of
some input features on output features, especially when
the feature is categorical. In scientific research, after find-
ing the suitable ANN, the researchers need to analyze the
inputs/outputs features and their relations to each other

and to plot these in order to discuss them in their publica-
tions, however, most of the existing packages just perform
the training and prediction roles, leaving the analysis and
studies for the researcher.

The aim of this work was to develop an open sourced
ANN package that can be used easily by researchers to
train the ANN, find its optimal structure, reuse the trained
ANN in prediction, and plots all the possible relation-
ships between inputs and outputs in a publication quality
charts.

Implementation and architecture
The program contains four main classes; the Study Class,
the NeuralNetwork Class, Data Class, and PlotNet Class,
Figure 1. The main class is the Study Class where we can
select one of five running modes;

1. To perform a full run, where the whole data is used
for training the network (no partitioning).

2. To perform a cross validation, where the given data
will be partitioned into three partitions; about 70%
for training, 20% for validation, and 10% for testing.
The mentioned partitioning ratios are the defaults,
but they can be specified by the user. In this mode,
we start by the training data set, but at the end of
each epoch, we check the errors of the validation

https://doi.org/10.5334/jors.135
mailto:drnesr@gmail.com
http://j.mp/NeuroCharter

Art. 19, p.  2 of 14 Elnesr and Alazba: NeuroCharter

•
•
•
•
•
•
•

•
•
•
•

•
•

•
•

•
•
•

•
•
•

•
•
•
•
•
•
•

•
•
•
•

•
•
•
•
•
•

•
•
•
•
•

•
•

•
•
•

•
•
•
•

•
•
•

•
•
•
•

•

•

•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

Figure 1: The architecture and workflow of the program.

Elnesr and Alazba: NeuroCharter Art. 19, p.  3 of 14

dataset, if the error of the latter starts to increase
instead of decrease, the training will stop as it will
be considered an evidence of overfitting. This is the
default purpose.

3. To perform a progressive validation, where the
given data will be partitioned as specified before.
In this mode, we start by the validation dataset,
from which we specify the stopping epoch, then we
launch the training dataset for maximum epochs
equals to double the validation epochs. This mode
was proved to eliminate overfitting.

4. To perform an optimization run, which is similar to
the validation run, but involves searching for the
best ANN structure and best activation functions
before starts training.

5. To perform a query, i.e. to predict output features
depending on saved ANNs.

In the initiation of the Study class, the Data Class is called
to manipulate the data and to specify the suitable ANN
structure; then the NeuralNetwork Class is called to con-
struct the ANN accordingly.

The Data Class automatically analyses the given data,
determines the type of each variable (either numeric or
categorical), then it normalizes the data to be ready for
analysis by the NeuralNetwork Class. Additionally, in the
case of querying predictions of features, the Data Class
is used to check the suitability of each data line, and to
normalize or denormalizes outputs. This class contains
a sub class Variable, which uses mini-max normalization
for numeric features, and 1-of-C dummy encoding for
categorical features [8]. Additionally, it provides basic sta-
tistics of each feature/variable depending on its type; for
numeric features, it calculates minimum, maximum, aver-
age, variance, and standard deviation, while for the cat-
egorical features, it provides, the members of the category
and the percent each one as it appears in the given data.
The program allows optional variables’ titles as they are
placed at the data headers in one or two lines; the first line
is for full-captions and the second for brief-captions which
are used in graphs.

The NeuralNetwork Class creates and solves neural
networks. While creation, the structure of the network is
specified according to the normalized data. To ensure fast
learning rate, the ANN weights are initialized randomly
within the range of ± 1/ Number of inputs to the neuron
as suggested by [9, 10]. The class uses sequential (online)
learning mode to manipulate the data as it is more likely
to escape from local-minima than the batch mode [11, 12].
This means that the errors are updated after manipulating
each data line, not after manipulating the whole dataset
as in batch mode. The NeuralNetwork Class consists of
the Layer sub-class which specified the layer type (input,
hidden, or output), and manages the child neurons by
their sub class. The Neuron Class initiate neurons, each
with its specific weight, bias, and activation function. It
also calculates the deltas and the cost function of each
neuron. This helps in customizing neurons according to
variables types. As we described earlier, the training is

triggered from the Study Class depending on the mode
of the class. In the full run, validation run, and optimiza-
tion run the ANN training starts by feed forward opera-
tion, where the inputs of each neuron are calculated as
the summation of the product of weights and outputs of
the previous layer, while the outputs of the neurons are
calculated by smashing the inputs using the activation
function. The default activation function is the sigmoid
function. However, the program supports twelve different
activation functions, Table 1. After reaching the output
layer, the cost function for each neuron is calculated as

()2
0.5 Neuron target-Neuron output then we sum the cost
of all output neurons to find the cost that will be used in
the backpropagation process.

One of the features of the program is to plot the ANN
in an informative way; showing the weights and biases
with line thicknesses that reflect their values and sign,
Figure 2, The PlotNet Class uses the Matplotlib library
to draw the network through three sub classes. The core
algorithm of ANN plotting is based on Milo et al. [13]. The
main class is responsible for specifying the outlines of the
network, and the locations of the child components like
layers and neurons. The PlotLayer Class draws the synapsis
(lines) with thicknesses and colors that reflect the magni-
tude and sign of the weight where the heavier thickness of
the lines imitates higher magnitudes of weights, and the
line colors reflect the weight’s sign (blue and red for posi-
tive and negative). PlotLayer Class also initiates Neurons
and biases, sending their information to PlotNeuron and
PlotBias classes that are responsible for drawing either.
The main difference between the two child classes that
the latter is in charge of drawing the bias and its synapses
lines, while the former is in charge of drawing the neuron
only, while the weights are drawn by the PlotLayer Class
as mentioned.

Program outputs
The main output of NeuroCharter is a set of hi-res charts
representing almost all that researchers need in publish-
ing their papers. However, NeuroCharter outputs detailed
text outputs in CSV formats to help researchers to analyze
the results their way. Furthermore, while training, a step
by step progress of the program is printed to the console
along with execution times which helps to diagnose errors
if any. Some of the outputs of NeuroCharter are the fol-
lowing, detailed outputs description in the tutorial file
listed at the ‘Quality control’ section of this paper:

1. ‘NrCh_NormData_????.csv’ a list of inputs
and output data in normalized form., where the????
is an encrypted timestamp of the execution time.

2. ‘NrCh_Weights_????.csv’ a list of weights
and biases of the network after training.

3. ‘NrCh_Outputs_????.txt’ a continuous
file handling all the studied ANNs information
including structure, weights, activation functions,
and other variables.

4. ‘NrCh_StoredANN_????.nsr’ A Neural
Structured Repository (*.nsr) file (encrypted)

Elnesr and Alazba: NeuroCharterArt. 19, p.  4 of 14

Table 1: Different activation functions available in the NeuroCharter program.

Name Formula Derivative

Sigmoid () 1 1 xf x e -= + () () ()()1f x f x f x¢ = ´ -

Softmax

()

1max()

1

n
i ix x

n

i

i

s e

f x s s

=-

=

=

= å

() () ()()1f x f x f x¢ = ´ -

Binary
()

0 0

1 0

x
f x

x

ì <ïï=íï ³ïî
()

0 0

0

x
f x

x

ì ¹ïï¢ =íï¥ =ïî

Soft sign () ()1f x x x= + () ()2
1 1f x x¢ = +

Bent identity
() ()20.5 1 1f x x x= + + - () 21 0.5 1f x x x¢ = + +

Gaussian ()
2xf x e -= ()

2
2 xf x xe -¢ =-

Tanh () 22 1 1xf x e -= + - () ()2
1f x f x¢ = -

Linear ()f x x= () 1f x¢ =

Arctan () ()Atnf x x= () ()21 1f x x¢ = +

Sinusoid () ()sinf x x= () ()cosf x x¢ =

Soft plus () ()ln 1 xf x e= + () ()1 1 xf x e¢ = +

Sinc
() ()sin 0

1 0

x x x
f x

x

ìï ¹ï=íï =ïî
()

() ()()cos sin 0

0 0

x x x x x
f x

x

ìï - ¹ïï¢ =íï =ïïî

where the whole study is saved including the
ANN structure, weights, and data limits, thus it
can be recalled by NeuroCharter for later predic-
tions.

5. ‘NrCh_Clouds_????.csv’ a set of given vs.
predicted data by the ANN.

6. ‘DataFile_Output.txt’ a list of predicted
values of the output features in de-normalized for-
mat, where ‘DataFile’ is the name of the original
data file name.

7. ‘NrCh_OutputCharts_????.pdf’ all the
output charts from NeuroCharter. where the ‘?’
characters are replaced by the current date and
time where the study performed. The pdf file basi-
cally consists of 6 pages, in addition to 1 page per
output variable. The basic pages are:

 a. The cost function development during differ-
ent stages (training, validation, and testing)
Figure 3

 b. The full ANN structure diagram, Figure 2.
 c. A brief ANN structure where the categorical

neurons of each variable are consolidated to

one neuron for a better understanding of vari-
ables contribution, Figure 4.

 d. The relative importance of inputs to outputs,
one bar chart with +ve and –ve contributions
of each variable, and one pie chart for each
output variable, Figure 5.

 e. Prediction function and data cloud, the pre-
dicted curve vs. the original data for each out-
put variable, Figure 6.

 f. Real vs. predicted data, plotting given data vs.
predictions on 45° line curve, Figure 7.

 g. Effect of each input feature on all output fea-
tures, one page per output feature. Within each
page, there is one chart per output feature. Each
chart contains three curves, at 25, 50, 75% of
data. Figure 8 and Figure 9 for numeric and
categorical input features respectively.

Quality control
To understand how the program works, we provide some
examples below. However, we provided full docstrings for
all functions and classes in addition to informative com-
ments before the key routines.

Elnesr and Alazba: NeuroCharter Art. 19, p.  5 of 14

r eyal st upni dezil a mr o N

Normalized outputs layer

Hi
dd

en
 la

ye
r

Ca
teg

or
ica

l in
pu

t fe
atu

re
s

(lig
ht

ye
llo

w)
Ca

teg
or

ica
l o

utp
ut

fea
tur

es
(lig

ht
gr

ee
n)

Nu
me

ric
 in

pu
t fe

atu
re

s
(b

rig
ht

ye
llo

w)

Nu
me

ric
 ou

tpu
t fe

atu
re

s
(b

rig
ht

gr
ee

n)

Ne
tw

or
k S

tru
ctu

re
(6

:7:
5)

Fi
gu

re
 2

: A
 fu

ll
A

N
N

 d
ia

gr
am

 s
ho

w
in

g
w

ei
gh

ts
 a

nd
 b

ia
se

s.
 T

he
 h

ea
vi

er
 th

ic
kn

es
s

of
 th

e
lin

es
 r

ef
le

ct
s

hi
gh

er
 m

ag
ni

tu
de

s
of

 w
ei

gh
ts

; t
he

 li
ne

 c
ol

or
s

re
fle

ct
 th

e
w

ei
gh

t’s
 s

ig
n

(b
lu

e
an

d
re

d
fo

r p
os

it
iv

e
an

d
ne

ga
ti

ve
).

Ca
te

go
ri

ca
l f

ea
tu

re
s’

 n
eu

ro
ns

 a
re

 li
gh

te
r i

n
co

lo
r f

or
 n

or
m

al
iz

ed
 la

yo
ut

.

Elnesr and Alazba: NeuroCharterArt. 19, p.  6 of 14

Fi
gu

re
 3

: C
os

t d
ev

el
op

m
en

t t
hr

ou
gh

 d
ef

er
en

t s
ta

ge
s.

Elnesr and Alazba: NeuroCharter Art. 19, p.  7 of 14

De-r eyal st upni dezil a mr on

De-normalized outputs layer

Hi
dd

en
 la

ye
r

Co
ns

oli
da

ted
 ca

teg
or

ica
l in

pu
ts

(d
ar

k y
ell

ow
)

Co
ns

oli
da

ted
 ca

teg
or

ica
lo

utp
uts

(d
ar

k g
re

en
)

Nu
me

ric
 in

pu
t fe

atu
re

s
(b

rig
ht

ye
llo

w)

Nu
me

ric
 ou

tpu
t fe

atu
re

s
(b

rig
ht

gr
ee

n)

De
-N

or
ma

liz
ed

 S
tru

ctu
re

(4
:7:

4)

Fi
gu

re
 4

: B
ri

ef
 A

N
N

 d
ia

gr
am

 s
ho

w
in

g
w

ei
gh

ts
 a

nd
 b

ia
se

s.
 L

in
es

 a
nd

 c
ol

or
s

ar
e

si
m

ila
r

to
 t

he
 fu

ll
A

N
N

 d
ia

gr
am

, e
xc

ep
t

th
at

 c
at

eg
or

ic
al

 fe
at

ur
es

’ n
eu

ro
ns

 a
re

 h
ea

vi
er

 in
 c

ol
or

 t
o

re
fle

ct
 c

on
so

lid
at

io
n.

Elnesr and Alazba: NeuroCharterArt. 19, p.  8 of 14

Figure 5: Sample relative importance charts.

Program tutorial
A simple tutorial is located at the GIT page, here: https://
goo.gl/TGop2p. Please read it before proceeding to the
next examples.

Example for creating and training an ANN
If you have data in CSV file format (say its name is dataNT.
csv), to start a Study that involves normalizing data, build-
ing an ANN, train it, and visualize results in pdf format, so
please consider adding the following code at the end of
the program, or you can import the program as is, and add
this code after the import statement (the program and the
testing file should be in the same folder, please refer to the
instructions at the simple tutorial above):

from NeuroCharter import Study

The basic line code that can do this job with the default
parameters is:

Study(‘dataNT.csv’, num_outputs=4)

While for more control of the study’s parameters, the
user can specify more parameters’ values such as the
following:

Study(‘dataNT.csv’, ‘cross validation’,
num_outputs=4, data_partition=(65, 15),
tolerance=0.001, learning_rate=0.4,
maximum_epochs=3000, adapt_learn-
ing_rate=False, annealing_value=2000,
display_graph_windows=False, display_
graph_pdf=True, data_file_has_titles=True,
data_file_has_brief_titles=True)

Example for using trained ANN for prediction
If you have data in csv file format (say its name is QueryN.
csv), to start a Study that involves normalizing data, retriev-
ing the ANN, and predict the output features, so please
consider adding the following code at the end of the pro-
gram, or you can import the program as is, and add this
code after the import statement: either to simple query:

Study(‘QueryN.csv’, ‘query’, previous_study_
data_file=‘NrChNet.nsr’)

Or, alternatively with advanced query:

Study(purpose= “advanced query”, Previous_study_
data_file= ‘NrChNet.nsr’,
start_time=time.time(),input_parameters_
suggested_values= ([10, 45, 5], 7.5, (0.5,
0.8), (‘A’, ‘C’)))

https://goo.gl/TGop2p
https://goo.gl/TGop2p

Elnesr and Alazba: NeuroCharter Art. 19, p.  9 of 14

Fi
gu

re
 6

: P
re

di
ct

io
n

fu
nc

ti
on

 a
nd

 d
at

a
cl

ou
d.

Elnesr and Alazba: NeuroCharterArt. 19, p.  10 of 14

Fi
gu

re
 7

: G
iv

en
 v

s.
 p

re
di

ct
ed

 d
at

a
on

 4
5-

de
gr

ee
 li

ne
.

Elnesr and Alazba: NeuroCharter Art. 19, p.  11 of 14

Fi
gu

re
 8

: S
am

pl
e

re
la

ti
on

al
 c

ha
rt

s
of

 n
um

er
ic

 in
pu

t f
ea

tu
re

.

Elnesr and Alazba: NeuroCharterArt. 19, p.  12 of 14

Fi
gu

re
 9

: S
am

pl
e

re
la

ti
on

al
 c

ha
rt

s
of

 c
at

eg
or

ic
al

 in
pu

t f
ea

tu
re

.

Elnesr and Alazba: NeuroCharter Art. 19, p.  13 of 14

Validation of results
The results of the program were validated by comparing
to the results of Statistica v13 academic edition running
the same problems. All of the tested cases match very well
with the results of NeuroCharter. However, Statistica deals
only with one type of outputs at a time (either numeric or
categorical through the regression and classification mod-
ules respectively), while the proposed software can deal
with both types at the same time. The results of Statistica
show faster performance and a small increase in the
accuracy measures like the correlation coefficient, which
may be attributed to that they use more advanced algo-
rithms in training than that we employed in this software.
However, the sensitivity analysis of the variables and the
predictions match very well with our software.

(2) Availability
Operating system
Windows, (Tested only on Windows 10 64bits).

Programming language
The program was programmed in Python 2.7.12. It is not
suitable to run with Python 3.* without modifications.

Additional system requirements
No special requirements of hardware, the faster the better.

Dependencies
The program requires Microsoft Windows OS and Adobe
Acrobat to be installed. Additionally, as the program has no
graphical user interface in its current version, it requires
Jet Brains PyCharm and Anaconda (for python 2.7.*) to be
preinstalled as well. All the dependencies and the require-
ments installation steps are listed in the attached tuto-
rial (https://goo.gl/TGop2p). The program requires some
of the built-in libraries (collections, copy, CSV,
datetime, math, itertools, random, shelve,
subprocess, and time). Additionally, it requires the
following external libraries to be installed: matplot-
lib 1.5.1, prettytable 0.72, reportlab 2.7,
scipy 0.19, and numpy 1.11.0. (Please refer to the
installation tutorial for details.)

List of contributors
Authors only.

Software location
Archive: FigShare

 Name: NeuroCharter, software for artificial neural
networks
 Persistent identifier: DOI: 10.6084/m9.figshare.
5293453
License: MIT
Publisher: Mohammad Elnesr
Version published: 1.0.79
Date published: 08-08-17

Code repository: GitHub
Name: NeuroCharter
Identifier: https://github.com/drnesr/NeuroCharter

Licence: MIT
Date published: 08/08/17

Language
English.

(3) Reuse potential
NeuroCharter can be used to perform regression analy-
sis for systems in many fields including but not limited
to environmental systems, bio systems, soil and water
systems.

If a researcher has any system of independent inputs,
and their corresponding outputs, this software can nor-
malize the data, build an artificial neural network, train it,
and save it for future use in querying regression data. The
researcher can benefit from the publication-quality graphs
the program provides, in addition to the detailed reports
about the trained network. Through the saved network,
the program can easily predict the output features of any
query dataset. The program is free-to-use according to the
MIT license agreement. Contributions to add more features
to NeuroCharter are most welcomed. Technical support to
the software is provided in a limited scope, by direct email
to the corresponding author, or to the GIT repository.

Important: To reuse this software easily, please follow
the instructions at the tutorial file mentioned above.

Competing Interests
The authors have no competing interests to declare.

References
1. Leon, M A and Keller, J 1997 Toward implementation

of artificial neural networks that “really work”. Proc
AMIA Annu Fall Symp.: 183–7.

2. Ragsdale, C T and Zobel, C W 2010 (Jan 1) A Simple
Approach to Implementing and Training Neural Net-
works in Excel. Decis Sci J Innov Educ., 8(1): 143–9. DOI:
https://doi.org/10.1111/j.1540-4609.2009.00249.x

3. Werbos, P J 1975 Beyond Regression: New Tools for
Prediction and Analysis in the Behavioral Sciences.
Harvard University (Dept. of Defense contract).

4. Bourzac, K 2016 Bringing Big Neural Networks to
Self-Driving Cars, Smartphones, and Drones (Inter-
net). IEEE Spectrum: Technology, Engineering, and Sci-
ence News. Available from: http://spectrum.ieee.org/
computing/embedded-systems/bringing-big-neural-
networks-to-selfdriving-cars-smartphones-and-drones
(cited 2016 Jun 2).

5. Moustris, K P, Nastos, P T, Larissi, I K, Paliatsos,
A G, Moustris, K P, Nastos, P T, et al. 2012 (Jul 18)
Application of Multiple Linear Regression Models and
Artificial Neural Networks on the Surface Ozone Fore-
cast in the Greater Athens Area, Greece, Application
of Multiple Linear Regression Models and Artificial
Neural Networks on the Surface Ozone Forecast in the
Greater Athens Area, Greece. Adv Meteorol Adv Mete-
orol.: e894714.

6. Jaimes, F, Farbiarz, J, Alvarez, D and Martínez, C
2005 Comparison between logistic regression and
neural networks to predict death in patients with sus-

https://goo.gl/TGop2p
https://doi.org/10.6084/m9.figshare.5293453
https://doi.org/10.6084/m9.figshare.5293453
https://github.com/drnesr/NeuroCharter
https://doi.org/10.1111/j.1540-4609.2009.00249.x
http://spectrum.ieee.org/computing/embedded-systems/bringing-big-neural-networks-to-selfdriving-cars-smartphones-and-drones
http://spectrum.ieee.org/computing/embedded-systems/bringing-big-neural-networks-to-selfdriving-cars-smartphones-and-drones
http://spectrum.ieee.org/computing/embedded-systems/bringing-big-neural-networks-to-selfdriving-cars-smartphones-and-drones

Elnesr and Alazba: NeuroCharterArt. 19, p.  14 of 14

How to cite this article: Elnesr, M N and Alazba, A A 2017 NeuroCharter: A Neural Networks Software to Visually Discover
the Effects and Contributions between Interrelated Features. Journal of Open Research Software, 5: 19, DOI: https://doi.
org/10.5334/jors.135

Submitted: 11 June 2016 Aceepted: 11 August 2017 Published: 04 September 2017

Copyright: © 2017 The Author(s). This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

Journal of Open Research Software is a peer-reviewed open access journal published by
Ubiquity Press OPEN ACCESS

pected sepsis in the emergency room. Crit Care, 9(2):
R150–6. DOI: https://doi.org/10.1186/cc3054

7. Izadifar, Z and Elshorbagy, A 2010 (Nov 15) Predic-
tion of hourly actual evapotranspiration using neural
networks, genetic programming, and statistical mod-
els. Hydrol Process, 24(23): 3413–25. DOI: https://doi.
org/10.1002/hyp.7771

8. McCaffrey, B J 2013 (Jul 22) Neural Network Data
Normalization and Encoding. Visual Studio Magazine
(Internet), 2013(7). Available from: https://visual
studiomagazine.com/articles/2013/07/01/neural-
network-data-normalization-and-encoding.aspx (cited
2016 Jun 5).

9. Orr, G B and Müller, K-R 2003 Neural networks:
tricks of the trade (Internet). Springer. Available from:
http://j.mp/1TPUfhV (cited 2016 Jun 5).

10. Bengio, Y 2012 (Jun 24) Practical recommendations
for gradient-based training of deep architectures. ArX-

iv12065533 Cs (Internet). Available from: http://arxiv.
org/abs/1206.5533 (cited 2016 Jun 5).

11. Bishop, C M 1995 Neural networks for pattern recog-
nition (Internet). 1st ed. Oxford university press (Ad-
vanced Texts in Econometrics; vol. 1). Available from:
https://books.google.com/books?hl=en&lr=&id=T0S
0BgAAQBAJ&oi=fnd&pg=PP1&dq=Bishop,+C.M.,+199
5a.+Neural+Networks+for+Pattern+Recognition&ots
=jL8YrE8Cne&sig=9tUiUpDH0HkEERhWj0DedEQbKTI
(cited 2016 Jun 5).

12. Leverington, D 2009 A Basic Introduction to Feed-
forward Backpropagation Neural Networks (Internet).
Texas Tech University. Available from: http://www.
webpages.ttu.edu/dleverin/neural_network/neural_
networks.html (cited 2016 Jun 5).

13. Milo, B O and Denis, F 2015 python - How to visualize
a neural network (Internet). Stack Overflow. Available
from: http://j.mp/219xGJ9 (cited 2016 Jun 9).

https://doi.org/10.5334/jors.135
https://doi.org/10.5334/jors.135
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1186/cc3054
https://doi.org/10.1002/hyp.7771
https://doi.org/10.1002/hyp.7771
https://visualstudiomagazine.com/articles/2013/07/01/neural-network-data-normalization-and-encoding.aspx
https://visualstudiomagazine.com/articles/2013/07/01/neural-network-data-normalization-and-encoding.aspx
https://visualstudiomagazine.com/articles/2013/07/01/neural-network-data-normalization-and-encoding.aspx
http://j.mp/1TPUfhV
http://arxiv.org/abs/1206.5533
http://arxiv.org/abs/1206.5533
https://books.google.com/books?hl=en&lr=&id=T0S0BgAAQBAJ&oi=fnd&pg=PP1&dq=Bishop,+C.M.,+1995a.+Neural+Networks+for+Pattern+Recognition&ots=jL8YrE8Cne&sig=9tUiUpDH0HkEERhWj0DedEQbKTI
https://books.google.com/books?hl=en&lr=&id=T0S0BgAAQBAJ&oi=fnd&pg=PP1&dq=Bishop,+C.M.,+1995a.+Neural+Networks+for+Pattern+Recognition&ots=jL8YrE8Cne&sig=9tUiUpDH0HkEERhWj0DedEQbKTI
https://books.google.com/books?hl=en&lr=&id=T0S0BgAAQBAJ&oi=fnd&pg=PP1&dq=Bishop,+C.M.,+1995a.+Neural+Networks+for+Pattern+Recognition&ots=jL8YrE8Cne&sig=9tUiUpDH0HkEERhWj0DedEQbKTI
https://books.google.com/books?hl=en&lr=&id=T0S0BgAAQBAJ&oi=fnd&pg=PP1&dq=Bishop,+C.M.,+1995a.+Neural+Networks+for+Pattern+Recognition&ots=jL8YrE8Cne&sig=9tUiUpDH0HkEERhWj0DedEQbKTI
http://www.webpages.ttu.edu/dleverin/neural_network/neural_networks.html
http://www.webpages.ttu.edu/dleverin/neural_network/neural_networks.html
http://www.webpages.ttu.edu/dleverin/neural_network/neural_networks.html
http://j.mp/219xGJ9

	(1) Overview
	Introduction
	Implementation and architecture
	Program outputs
	Quality control
	Program tutorial
	Example for creating and training an ANN

	Validation of results

	(2) Availability
	Operating system
	Programming language
	Additional system requirements
	Dependencies
	List of contributors
	Software location
	Language

	(3) Reuse potential
	Competing Interests
	References
	Figures
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9

	Tables
	Table 1

