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Radial Basis Function (RBF) methods are important tools for scattered data interpolation and for the solu-
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(1) Overview
Introduction
Radial Basis Function (RBF) methods are important tools 
for scattered data interpolation and for the solution of 
PDEs in complexly shaped domains. The most straight for-
ward approach that is used to evaluate the method while 
incorporating the “standard basis functions” involves solving 
a linear system which is typically poorly conditioned. Two 
variations of a method, dubbed the RBF-QR approach, use 
a different basis that spans the same space as the standard 
basis but which in some cases results in a better conditioned 
linear system. Software packages which implement the two 
RBF-QR approaches are freely available ([11] and [13]). 

Extended precision floating point arithmetic can be 
used to accurately evaluate the ill-conditioned problem 
in the standard basis. This approach has been used and 
implemented in several different software environments 
that include: Mathematica [7], the Matlab Symbolic 
Toolbox [21], C++ [16], and Fortran [5]. The extended pre-
cision approach is attractive because it retains one of the 
great strengths of the RBF method – simplicity. Whereas 
the RBF-QR approaches, as can be ascertained by brows-
ing the software that implements the methods, is far 
more complex. A software package that implements the 
RBF method in extended precision is not currently avail-
able. A detailed comparison of the RBF-QR and extended 
precision with the standard basis approaches is made in 
[20].

In this work a Matlab [12] toolbox is described that fea-
tures a regularization method for the ill-conditioned lin-
ear system, extended precision floating point arithmetic, 
and symmetry exploitation for the purpose of reducing 
flop counts. The toolbox is called the Matlab Radial Basis 

Function Toolbox (MRBFT). The toolbox uses an object ori-
ented approach to organize its functionality via three main 
classes. Static methods in the class rbfx are used to imple-
ment functionality associated with RBF methods in gen-
eral, while class methods are used to implement methods 
in subclasses of rbfx which apply to a particular RBF. The 
superclass rbfx has abstract methods which every subclass 
must implement. These include a definition of the RBF 
itself as well as a variety of derivative operators applied to 
the RBF. The complete list of abstract methods is as follows:
methods(Abstract = true)
 v = rbf(obj, r, s);  % RBF definition
 d = D1(obj, r,s, x);  % first derivative wrt x
 d = D2(obj, r, s, x); % second derivative wrt x
 d = D3(obj, r, s, x); % third derivative wrt x
 d = D4(obj, r, s, x); % fourth derivative wrt x
 d = G(obj, r, s, x, y); % Gradient
 d = L(obj, r, s);   % Laplacian
 d = B(obj, r, s, x, y); % Biharmonic operator
 d = D12(obj, r, s, x, y);% mixed partial derivative
 d = D22(obj, r, s, x, y);% mixed partial derivative
end

The rbfx class is subclassed by the gax and iqx 
classes which implement methods that are respectively 
particular to the Inverse Quadratic and Gaussian RBF. 
The class rbfCenters implements methods associated 
with scattered center locations and the class rbfCentro 
implements methods associated with algorithms that 
accurately and efficiently operate on structured matrices.

Radial Basis Function Methods
RBF interpolation uses a set of N distinct points 

{ }1 , ,c c
NX x x= …  in Rd called centers. No restrictions are 

placed on the shape of problem domains or on the loca-
tion of the centers. A RBF
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is an infinitely differentiable (compactly supported and 
global RBFs without a shape parameter and with less 
smoothness exist but are not considered here) function 
of one variable 2

c
kr x x= −  that is centered at c

kx  and that 
contains a free parameter ε called the shape parameter. 
The RBF interpolant assumes the form

 
2

1

( ) ( , )
N

c
N k k k

k

I f x a x xφ ε
=

= −∑
 

(2)

where a is a vector of expansion coefficients. The Gaussian 
(GA) RBF

  (3)

and the inverse quadratic (IQ) RBF
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are representative members of the class of global, infi-
nitely differently RBFs containing a shape parameter that 
interpolate with exponential accuracy. The two RBFs and 
their various derivative are defined respectively in the 
classes gax and iqx. A particular RBF, for example the 
GA, is instantiated via

>> phi = iqx(); % phi is an instance of the 
inverse quadratic RBF class

Many other RBFs exist and may be added by the user to 
the toolbox by extending rbfx and using gax and iqx as 
examples.

The entire list of functions associated with an object is 
available as follows:

> methods(iqx)

Methods for class iqx:

B  D2  D4  iqx
D1  D22  G  rbf
D12  D3  L  

Static methods:

distanceMatrix1d     distanceMatrix3d  solve 
distanceMatrix2d  dm  variableShape

First the methods that the class must define are listed and 
then the static methods inherited from the superclass are 
listed.

The RBF expansion coefficients are determined by 
enforcing the interpolation conditions
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which result in a N × N linear system

 .Ba f=  (6)

The matrix B with entries

 2( , ), , 1, ,c c
jk j k kb x x j k Nφ ε= − =  (7)

is called the system matrix. The solve method which is 
a static method of the rbfx class can be used to find the 
expansion coefficients. Static methods can be called in 
two ways. Either through the class
>> a = iqx.solve(B,f);   % or a = rbfx.solve(B,f);

or from instances of the class
>> a = phi.solve(B,f);

Matlab is optimized for operations involving matrices and 
vectors. The process of revising loop-based, scalar-oriented 
code to use Matlab matrix and vector operations is called 
vectorization. At every opportunity, functions have been 
vectorized so that they execute as efficiently as possible.

The functions that define RBFs and their derivative 
matrices take distance matrices as their arguments. 
Taking

 
for example 2d where ( )1 2,c c cx x x=  the signed dis-

tance matrices

1 1 2 2( ) ( ) ( )  and ( ) ( ) ( )

where , 1,...,

c c c c
jk j k jk j krx x x ry x x

j k N

= − = −

=  (8)

respectively contain the signed distance between the x 
and y coordinates of centers j and k. The distance matrix
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stores the distance between centers j and k. With the x and 
y coordinates of the centers located in arrays xc and yc the 
distance matrices are formed via

>> [r, rx, ry] = rbfx.distanceMatrix2d(xc,yc);

and the RBF system matrix is constructed as

>> B = phi.rbf(r,s);

The evaluation of the interpolant (2) at M points xj can be 
accomplished by multiplying the expansion coefficients 
by the M × N evaluation matrix H that has entries entries
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Continuing the 2d example, consider evaluation points  
x = (x1, x2). The distance matrices containing the distances 
between the centers and evaluation points
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respectively contain the signed distances between the 
x and y coordinates of evaluation point j and center k. 
Then

2 2
( ) rr e εφ −=
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With the x and y coordinates located in arrays x and y the 
distance matrices are formed via

>> [re, rxe, rye] = rbfx.distanceMatrix2d(xc,yc,x,y);

and the evaluation matrix is constructed via
>> H = phi.rbf(re,s);

The interpolant is then evaluated as
>> fa = H*a;

Derivatives are approximated by differentiating the RBF 
interpolant as
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where D is a linear differential operator. The operator D 
may be a single differential operator or a linear differen-
tial operator such as the Laplacian. Evaluating (13) at the 
centers X can be accomplished by multiplying the expan-
sion coefficients by the evaluation matrix HD with entries

 2( , ), , 1, , .c c
jk j k kh x x j k Nφ ε= − = …D  (14)

That is, Df ≈ HDa. For example, to approximate the first 
derivative with respect to x of a function of two variables 
using the MRBFT

>> Hd = phi.D1(r,s,rx);
>> fa = Hd*a;

Alternatively, derivatives can be approximated by mutiply-
ing the grid function values 1{ ( )}c N

k kf x =  by the differentia-
tion matrix D = HDB–1 since

 
1 1( ) ( ) .f H a H B f H B f− −≈ = =D D DD  (15)

This is accomplished as

>> D = phi.dm(B,Hd);
>> fa = D*f;

The shape parameter εk may take on different values at 
each center c

Kx  (or equivalently in each column of the 
system or evaluation matrix). Such an approach is called 
a variable shape parameter strategy. Numerical evidence 
exists [8, 10, 22] that indicates that the use of a variable 
shape parameter may improve the conditioning of the 
system matrix as well as improve accuracy. A drawback 
of variable shape parameter strategies is that they cause 
the RBF system matrix to be non-symmetric. Reference [8] 
suggested the exponentially varying shape parameter
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and well as the linearly varying shape parameter
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Reference [22] gives examples of the benefits of using a 
random variable shape parameter

 ( ) N+  × rand(1, )j min max minε ε ε ε= −  (18)

All three variable shape strategies are available in the 
MRBFT via
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Figure 1: Interpolation of a smooth function using both double (F64) and quadruple (F128) precision. The script 
condVaccury.m produces the plots. Left: accuracy versus the shape parameter. Right: condition number of the 
system matrix versus the shape parameter.
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>> Bs, Hs = phi.variableShape(sMin,sMax,opt,N,M);

Both equations (6) for the expansion coefficients and 
(15) for the differentiation matrix assume that the system 
matrix is invertible. Both the GA and IQ system matrices 
are symmetric positive definite (SPD) if a constant shape 
parameter is used and therefore they are invertible. While 
it is invertible, the system matrix is typically very poorly 
conditioned and it may cease to be numerically SPD and 
the standard algorithm to factorize a SPD matrix may fail. 
The eigenvalues of B satisfy 0 < 𝜆min = 𝜆1 ≤ 𝜆2 ≤ … ≤ 𝜆N = 𝜆max 
and the matrix condition number in the 2-norm is κ(B) = 
𝜆min/𝜆max. For a fixed set of centers, the shape parameter 
affects both the accuracy of the method and the condi-
tioning of the system matrix. The RBF method is most 
accurate for smaller values of the shape parameter where 
the system matrix is ill-conditioned. Figure 1 illustrates 
a typical result. For fixed N, the error is reduced as the 
shape parameter is made smaller until the condition num-
ber of the system matrix reaches O(1018) in double preci-
sion and O(1036) in quadruple precision. A regularization 
technique to mitigate the effects of the ill-conditioning is 
discussed in the next section.

Recent monographs [2, 4, 21, 23] on RBF methods can 
be consulted for more information on RBF methods in 
general.

Regularization
Reference [17] demonstrated that a simple regularization 
technique can mitigate the effects of the poor condition-
ing of RBF system matrices and in most cases ensure that 
the RBF system matrix remains numerically SPD so that 
Cholesky factorization can be used. Instead of solving the 
system

 Ba f=  (19)

the regularized system

 Cy f=  (20)

where C = B + µI is solved. The parameter µ is a small 
positive constant called the regularization parameter and 
I is the identity matrix. The technique is called the method 
of diagonal increments (MDI) and its first use dates back 
to the 1940’s [15]. Matrix C is better conditioned than B as

 

( ) ( ) .max max

min min

C B
λ μ λ

κ κ
λ μ λ

+
= < =

+  (21)

For small µ, (B + µI)−1 is close to B−1 and MDI simply 
replaces B with (B + µI) in computing the solution of a 
system. Equation

 
1 1 2 1 1( ) ( / )B B I B I B Bμ μ μ− − − −− + = +  (22)

quantifies how close that (B + µI)–1 and B–1 are [6]. For very 
small µ the difference is negligible. A good choice of the 
parameter is µ = 5εM where εM is machine epsilon in the 
floating point number system being used.

All MRBFT functions that involve the factorization 
of a SPD matrix take two optional arguments: a regu-
larization parameter µ and a logical variable safe. The 
default value of µ is 5e–15 which is the suggested value 
for double precision. The standard linear equation 
solver in Matlab is the mldivide function which may be 
evoked via the backslash operator. If a matrix is sym-
metric, Cholesky factorization is attempted. If Cholesky 
factorization fails, then the matrix is factorized with LU 
factorization. The default value of safe is true which 
causes all MRBFT routines to use the mldivide function. 
Setting safe to false forces the routines to use Cholesky 
factorization. The danger in directly calling Cholesky 
factorization is that if the regularization parameter is 
not large enough a matrix may fail to be numerically 
SPD and Choleksy factorization will fail due to taking 
the square root of a negative number if the matrix is 
severely ill-conditioned.
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Figure 2: Interpolation with (green solid) and without (blue dashed) regularization. The script 
mdiRegularization.m produces the plots. Left: accuracy versus the shape parameter. Right: system matrix 
condition versus the shape parameter.
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Figure 2 shows the results of a 2d interpolation problem 
with scattered centers with and without MDI regularization 
in double precision. Both the accuracy and condition num-
ber of the two approaches are virtually the same when the 
condition number of the system matrix can be accurately 
calculated in double precision which is for κ(B) ≈ O(1016) 
and smaller. When the condition number of the unregu-
larized method reaches beyond that threshold the regulari-
zation keeps the condition number in the approximately 
O(1016) range and the regularized solution is approximately 
two decimal places more accurate in this example.

Extended precision
The MRBFT uses the Multiprecision Computing Toolbox 
for Matlab (MCT) [1] for its extended precision func-
tionality. The MCT enables extended precision data 
types to be seamlessly used in place of the standard 
double type. As a result, existing Matlab programs can 
be converted to run with arbitrary precision with mini-
mal changes. IEEE 754-2008 compliant quadruple pre-
cision is supported and the MCT is highly optimized for 
this case. Note that the MRBFT is in no way dependent 
on the MCT. The installation of the MCT is not neces-
sary. However, without the MCT, the MRBFT is limited 
to double precision.

The following code that calculates the RBF expansion 
coefficients gives an example of how to change double 
precision computations to extended precision:

1 phi = iqx();
2 mp.Digits(34);   % digits of decimal precision
3 N = mp('30');   % replace with N = 30 to
       convert to double precision
4 xc = linspace(0,1,N);
5 r = phi.distanceMatrix1d(xc);
6 B = phi.rbf(r,2.5);
7 f = sin(xc);
8 a = phi.solve(B,f,0);

The only coding difference in the above code between 
double and extended precision is on lines 2 and 3. 
Once the number of digits is specified and N is changed

 

to a mp object, all other operations involving the 
object are then done in extended precision. The script 
interpBenchExtended.m compares the execution 
speed of a 2d interpolation problem over a range of the 
shape parameter in both double and quadruple precision. 
In this particular example the quadruple precision calcula-
tion takes approximately 52 times longer to execute which 
is a typical result. In benchmarks, the MCT has been shown 
to be much more efficient in implementing extended preci-
sion than other available options. Additional comparisons 
of execution times can be found in reference [20].

Center locations
The second major class of the MRBFT is rbfCenters. 
The methods of the class are the following:
>> methods(rbfCenters) 

Static methods:

Halton2d   circleCenters    squareCenters
Hammersley2d circleUniformCenters

RBF methods place no restriction on the location of cent-
ers. However, randomly locating centers is unlikely to 
lead to good results. Theory dictates [2, 23] that centers 
should well-cover a domain in the sense that the centers 
are somewhat uniformly distributed with no large holes 
in their coverage and no centers clumped extremely close 
together. Centers located too close together hurt condi-
tioning while large holes in the center coverage negatively 
affect convergence rates. Computational experience indi-
cates that it is beneficial to locate centers more densely in 
boundary regions than in the interior of domains.

Quasirandom sequences [14] have become popu-
lar choices of centers for RBF methods. A quasirandom 
sequence is a n-tuples that fills n-space more uni-
formly than uncorrelated random points. Quasirandom 
sequences are also called low-discrepancy sequences. 
Halton points [24] are probably the most used quasir-
andom sequence in RBF methods due to the sequences 
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Figure 3: 1000 centers on the unit circle. Left: Hammersley points. Right: clustered Hamersley points.
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being featured in the book [4]. However, it is our experi-
ence that the Hammersley points [24] provide a superior 
coverage in many cases. The MRBFT implements functions 
that produce both Halton and Hammersley center distri-
bution for circular and square domains. The functions

>> [x, y] = rbfCenters.squareCenters(N,a,b,clust
   er,ch,plt); % square [a,b] x [a,b]

>> [x, y] = rbfCenters.circleCenters (N,cluster,
   ch,R,plt); % circle of radius R

provide the option to cluster the centers more densely 
around the boundaries of the domains. Figure 3 shows 
a set of Hammersley points and a set of clustered 
Hammersley points on the unit circle. An example of how 
the MRBFT can be used to distribute boundary clustered 
quasirandom centers in a more complexly shaped domain 
can be found in the script complexCentroCenters.m 
in the examples directory of the MRBFT.

Symmetry
The third major class of the MRBFT is rbfCentro which 
takes advantage of symmetry to reduce the computational 
expense and storage requirements of RBF methods. The 
methods of the class are:

>> methods(rbfCentro)

Static methods:

centroCenters  centroDecomposeMatrix hasSymmetry
centroCircle centroEig               isCentro
centroCondition-    centroMult  isSkewCentro
Number
centroDM fullCentroMatrix solveCentro

A matrix B is centrosymmetric if B = JBJ and is skew-cen-
trosymmetric if B = −JBJ where J, the contra-identity matrix, 
is a square matrix whose elements are all zero except those 
on its southwest-northeast diagonal which are all 1’s. RBF 
system and differentiation matrices (details in [18]) are (skew) 
centrosymmetric if the signed distance matrices (11) are 

(skew) centrosymmetric. Centrosymmetry does not depend 
on the location of centers, but rather on the distance between 
centers. Any center distribution in one dimension that is sym-
metrical about its mid-point causes the signed distance matrix 
to be skew-centrosymmetric. Center distributions in two 
dimensions that cause the signed distance matrix to be skew-
centrosymmetric are easily generated in domains that are sym-
metric with respect to either the x-axis, y-axis, or the origin, 
or that can be made so by a linear transformation or rotation. 
Figure 4 shows two center distributions that result in cen-
trosymmetric distance matrices. Centrosymmetry allows for 
significant flop count reductions in numerical linear algebra 
routines associated with RBF methods as well as reductions 
in computer memory requirements [18]. The efficiency gains 
when working with centrosymmetric matrices come from the 
fact that a N × N (where N is even and M = N/2) centrosym-
metric matrix has the block structure

 

11 21

21 11

B JB J
B

B JB J

⎡ ⎤
⎢ ⎥= ⎢ ⎥⎣ ⎦  

(23)

where B11, B21, and J are M × M. The block structure allows 
many linear algebra operations to be performed while only 
forming and operating on half of the matrix. Additionally, 
the matrix (22) and

 

11 21

11 21

0

0

L B JB
D

M B JB

⎡ ⎤= −⎢ ⎥= ⎢ ⎥= +⎣ ⎦
 (24)

are orthogonally similar which allows for efficient eigen-
value calculation. Similar decompositions are possible for 
odd N as well.

The MRBFT functions for centrosymmetry include the 
following. Centrosymmetric center distributions in circu-
lar domains are produced by

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

-2 0 2 4
-4

-3

-2

-1

0

1

2

3

4

Figure 4: Center distributions that result in centrosymmetric distance matrices. Left: 2000 centers based on clustered 
Hammersley points that have been extended centro symmetrically about the x axis. Right: 2524 centers on a domain 

enclosed by the curve ( )
1
32( ) 3 cos(3 ) 4 sin(3 )f t tθ = + −

 
that result in centrosymmetric distance matrices.
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>> [xc,yc] = rbfCentro.centroCircle
     (N,cluster,ch,R,plt);

and in domains with either x, y, or origin symmetry the 
function

>> [xc,yc] = rbfCentro.
     centroCenters(x,y,symType,plt);

uses half of the centers given as an argument to return a 
centrosymmetric center distribution.

Only half of the matrix needs to be formed and stored 
and then subsequently operated on in centrosymmetric 
linear algebra routines. The half-sized distance matrices 
are formed via calling the distanceMatrix functions with 
the arguments modified as follows: 

>> r = rbfx.distanceMatrix1d(xc(1:N/2),xc);
>> [r, rx, ry] = rbfx.distanceMatrix2d(xc(1:N/2)
       ,yc(1:N/2),xc,yc);

The half sized distance matrices can be used to form half-
sized system and derivative evaluation matrices as

>> B = phi.rbf(r,s);
>> H = phi.D2(r,s,rx);

Matrix condition numbers in the 2-norm are calculated via

>> [kappaB, kappaL, kappaM] = rbfCentro.
 centroConditionNumber(B,mu);

with a factor of four savings in the dominant term in the 
flop count compared to the standard algorithm. The RBF 
expansion coefficients for interpolation problems can be 
found from the half-sized system matrix as
>> a = rbfCentro.solveCentro(B,f,mu,safe);

Two quarter-sized matrices are factorized by a Cholesky 
factorization and the dominant term in the flop count is 
reduced by a factor of four from 31

3
N  to 31

12
N . In a similar 

manner, differentiation matrices are formed via
>> D = rbfCentro.centroDM(B,F,N,rho,mu,safe);

with a factor of four savings in computational effort. 
Centrosymmetric matrix-vector multiplication is asymp-
totically faster by a factor of two over the standard algo-
rithm and can be accomplished via
>>  [L,M]  =    rbfCentro.centroDecomposeMatrix(D,rho);
        % decompose into smaller matrices
>> fp =   rbfCentro.centroMult(f,L,M,rho);
          % multiply and reconstruct solution

Other miscellaneous functions concerning centrosymme-
try are
>> c = rbfCentro.hasSymmetry(B);
%tests a N x N matrix for (skew) centrosymmetry

which test matrices for symmetry and

>> D = rbfCentro.fullCentroMatrix(Dh,N,skew);

which constructs a full-size centrosymmetric matrix from 
a half-sized matrix.

Examples, tests, and benchmarks
The MRBFT distribution includes three directories that 
contains scripts that provide examples of using the 
functions in the toolbox. The examples directory 

contains scripts that use the functions for typical tasks 
associated with the RBF method. The tests directory 
contains scripts that verify that the various functions 
are working as claimed. The benchmarks directory 
contains scripts that measure the execution time of 
the centrosymmetric algorithms versus the standard 
algorithms and that measure the execution time of 
algorithms in double precision versus extended preci-
sion. Below a brief description of each script is given. 
More detailed information is contained in the com-
ments of each script. Extensive comments are also 
contained in the source code the the classes rbfx,  
rbfCenters, and rbfCentro.

The following example scripts come with the toolbox:

•   variableShapeInterp1d.m Variable shape 
parameter versus constant shape parameter. This is 
a typical example in which the two approaches have 
system matrices with approximately the same con-
dition number, but the variable shape approach is 
several decimal places more accurate.

•   centroCenters.m Produces the centers in the 
right image of figure 4.

•   complexCentroCenters.m Constructs a centro 
center distribution on a complexly shaped domain 
using quasi-random Hammersley points which are 
placed denser near the boundary than in the inte-
rior. Before the centers are extended centrosymmet-
rically, the domain needs to be rotated so that it is 
symmetric with respect to the x-axis.

•   interp3d.m Gaussian RBF interpolation on the 
surface of a sphere.

•   interp3dCentro.m Gaussian RBF interpolation 
on the surface of a sphere as in interp3d.m but with 
a centrosymmetric center distribution. The system 
matrix as well as all order differentiation matrices 
will have a centro structure. The centrosymmetric 
approach executes in approximately half the time 
that the standard approach takes.

•   condVaccuracy.m Uses a 1d interpolation 
problem and the IQ RBF to illustrates the trade off 
between conditioning and accuracy using both dou-
ble and extended precision. The script produces the 
images in figure 1.

•   mdiRegularization.m Interpolates the Franke 
function on scattered centers located in a domain 
that is one-fourth of a circle. Compares the accuracy 
and condition number of the system matrix over a 
range of shape parameter with and without regulari-
zation by the method of diagonal increments. The 
output is shown in figure 2.

•   mdiExample.m 1d interpolation problem using 
extended precision and regularization by the 
method of diagonal increments.

•   rbfInterpConvergence.m Convergence rate of 
a RBF interpolant with a fixed shape parameter and 
increasing N (decreasing distance between centers). 
The convergence is geometric (also called spectral or 
exponential) as long as the floating point system can 
handle the condition number of the system matrix.
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•   rbfInterpConvergenceB.m Similar to 
rbfInterpConvergence.m except that the number 
of centers N is fixed and the shape parameter is 
decreasing. The convergence is exponential as long 
as the floating point system can handle the condi-
tion number of the system matrix.

•   poissonCentro.m The script solves a 2d steady 
PDE problem, the Poisson equation uxx + uyy = −π2 

sin(πx) sin(πy), on a circular domain with Dirichlet 
boundary conditions using Kansa’s assymetric RBF 
collocation method [9]. The asymmetric collocation 
method discretizes the boundary value problem as 
Ha = f where H is a N × N matrix that discretizes 
the PDE at interior centers and applies boundary 
conditions at centers located on the boundary. After 
the linear system is solved for the expansion coef-
ficients, a, the approximate solution is found by a 
matrix-vector multiplication u ≈ Ba where B is the N 
× N system matrix. The details of the application of 
the asymmetric collocation method to steady linear 
PDEs can be found in reference [21].

The problem is solved two ways: 1) standard 
algorithms, 2) centrosymmetric algorithms. With N 
= 5000 the accuracy of the two approaches is the 
same but the centrosymmetric approach is approxi-
mately five times faster and requires only half the 
storage compared to the standard approach.

•   diffusionReactionCentro.m and 
diffusionReactionCentroDriver.m The 
scripts solve the diffusion-reaction PDE ut = ν(uxx 
+ uyy) + 𝜆u2(1 – u) on a circular domain with Dir-
ichlet boundary conditions prescribed from the 
exact solution. The space derivatives in the PDE are 
discretized by the IQ RBF method and are evalu-
ated by the matrix-vector product Du where D is a 
differentiation matrix that discretizes the 2d Lapla-
cian operator. The PDE is advanced in time with a 
fourth-order Runge-Kutta method. The details of 
the application of the RBF collocation method to 
time-dependent PDEs can be found in reference 
[21].

The problem is solved two ways: 1) standard algo-
rithms, 2) centrosymmetric algorithms. With N = 
5000 the accuracy of the two approaches is the same 
but the centrosymmetric approach is approximately 
eight times faster and requires half the storage.

The following test scripts come with the toolbox:

•   centroCondTest.m Verifies the centrosymmet-
ric 2-norm condition number algorithm against the 
standard algorithm. The two algorithms agree until 
the matrix becomes very ill-conditioned. As expected 
there is a slight variation when K(B) > O(1016).

•   centroSolveAccuracy.m Compares the 
accuracy of the centrosymmetric and standard 
algorithms for solving a linear system. The linear 
system is the system (6) for the RBF expansion 
coefficients over a range of the shape parameter. 
The centrosymmetric algorithm is slightly more 

accurate at most shape parameters and several 
decimal places more accurate for several shape 
parameters.

•   isCentroTest.m Depending on how the centers 
were extended to be symmetric, RBF differentiation 
matrices will have a (skew) centrosymmetric struc-
ture. Reference [18] can be consulted for details.

•   rbfDerivativeTest.m Verifies the accuracy of all 
derivative approximation methods of the iqx and gax 
classes using both double and quadruple precision.

The following benchmark scripts come with the toolbox:

•   systemSolveBench.m Compares the evalu-
ation times of centrosymmetric versus standard 
algorithms for the solution of a centrosymmetric 
linear system. The centrosymmetric linear system 
solving algorithm is faster than the standard algo-
rithm for N > 350 and nearly four times as fast for 
large N .

•   condBench.m Compares the execution times of 
the centrosymmetric and standard algorithm for 
calculating the 2-norm condition number of a cen-
trosymmetric matrix. For N > 100 the centrosym-
metric algorithm is more efficient and for large N > 
2000 it is nearly five times as fast.

•   dmFormBench.m Compares the execution time of 
the centrosymmetric and standard algorithm for RBF 
derivative matrix formation. For larger N, the cen-
trosymmetric algorithm is over three times faster.

•   multiplicationBench.m Compares the execu-
tion times of centrosymmetric matrix multiplication 
to standard matrix multiplication. For N ≥ 900 the 
centrosymmetric algorithm is faster and the limiting 
efficiency factor of two is being approached.

•   interpBenchExtended.m Compares the 
execution time of a 2d scattered data interpolation 
problem over a range of the shape parameter using 
both double and quadruple precision.

•   centroExtendedConditionNumberBenc
h.m Compares the execution times of centrosym-
metric and standard algorithms for the 2-norm con-
dition number using both double and quadruple 
precision. The condition number of a 2000 × 2000 
system matrix is calculated using both double preci-
sion and quadruple precision. The centrosymmetric 
algorithm speeds up the double precision calcula-
tion by a factor of approximately 3.8 and the quad-
ruple precision calculation by a factor of 3.3.

Additional results demonstrating the benefits of using 
extending precision with RBF methods and the efficiency 
gains from exploiting centrosymmetry can be found in 
references [20] and [18] for which the MRBFT was used 
extensively to produce the examples and results.

Summary
The MRBFT is a freely available collection of Matlab files 
and scripts that implement RBF methods for scattered 
data interpolation and for the numerical solution of PDEs. 
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The toolbox has been developed over a period of several 
years while it has been used in the author’s research. 
The class rbfx implements routines for common tasks 
associated with all RBFs and defines abstract methods 
for differential operators that must be implemented 
by all subclasses that define particular RBFs. The class  
rbfCenters implements methods for locating uni-
form and quasi-random centers in rectangular and 
circular domains. The class rbfCentro implements 
methods for locating centers in symmetric domains that 
cause RBF matrices to have a structure that allows for 
substantial saving in storage requirements and reduc-
tions in flop counts for associated linear algebra rou-
tines. All MRBFT functions can be implemented using 
extended precision floating point arithmetic provided 
that the MCT [1] is installed. Scripts that provide exam-
ples, tests, and benchmarks of the MRBFT are included 
with the distribution. Comments in the class files pro-
vide additional documentation.

The author uses the MRBFT in his own research and 
as a result the toolbox is constantly being improved 
and new features are being added. Future improve-
ments to the MRBFT include: developing a class of 
methods for working with the local RBF method, 
implementing Mercer’s method for the GA RBF [3], 
developing a class that implements rational RBF 
methods, and adding methods to the rbfCenters class 
that distribute centers in more complexly shaped 
domains. Updates, bug fixes, and other improvements 
to the MRBFT are posted at [19] where the project is 
hosted.

Implementation and architecture
A summary of the implementation of the MRBFT is as 
follows. The toolbox is implemented in Matlab which is 
widely used in Mathematics and other scientific disci-
plines. An object oriented approach is used to organize 
the functionality of the toolbox.

Quality control
The MRBFT has been developed over a period of several 
years as it has been used in the author’s research. It was 
used extensively in the preparation of references [20] and 
[18] which are accompanied by scripts that use the MRBFT 
to produce the results in the manuscripts. Additionally, as 
discussed in the overview section, the toolbox comes with 
a collection of scripts that demonstrate its usage, bench-
mark its performance, and verify that its algorithms pro-
duce the correct results.

(2) Availability
Operating system
The MRBFT is programmed in Matlab which is available 
on Windows, OS X, and Linux.

Programming language
The MRBFT was developed and tested using Matlab ver-
sions 2015b through 2016b [12]. It is not clear as to 
which version of Matlab first featured object oriented pro-
gramming (OOP). However, version R2008a made major 

changes in the way Matlab implements OOP. Thus, while 
not tested, it is possible that the MRBFT is compatible 
with Matlab versions as old as 2008a.

Dependencies
The MRBFT uses the Multiprecision Computing Toolbox 
for Matlab (MCT) [1] for its extended precision function-
ality. Note that the MRBFT is in no way dependent on 
the MCT. The installation of the MCT is not necessary. 
However, without the MCT, the MRBFT is limited to dou-
ble precision floating point arithmetic.

List of contributors
The author is the only contributor to the software. 
However, the contributions of others are welcome.

Software location
Code repository GitHub 
Name: scottsarra/Matlab-RBF-Toolbox
Persistent identifier: https://doi.org/10.5281/
zenodo.221368
Licence: GNU GPL V3
Date published: 28/03/16

(3) Reuse potential
The potential for others to use the MRBFT is substantial. 
RBF methods have become very popular in applications. 
The MRBFT may potentially find use in industrial applica-
tions. Research in RBF methods is very active. The MRBF 
is a potentially useful tool for faculty research, gradu-
ate student research, and undergraduate research pro-
jects. The object oriented design of the toolbox makes it 
extremely easy for it to be extended by subclassing rbfx 
to define new RBFs. The MRBFT can be used to foster the 
idea of reproducible research in the area of RBF meth-
ods. The MRBFT provides core functionality that other 
research can be built on and for which the code is freely 
available.
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