
Korosov, A A, et al 2016 Nansat: a Scientist-Orientated Python Package for Geospatial Data
Processing. Journal of Open Research Software, 4: e39, DOI: http://dx.doi.org/10.5334/jors.120

Journal of
open research software

SOFTWARE METAPAPER

Nansat: a Scientist-Orientated Python Package for
Geospatial Data Processing
Anton A. Korosov1, Morten W. Hansen1, Knut-Frode Dagestad2, Asuka Yamakawa1,
Aleksander Vines1, and Maik Riechert3

1 Nansen Environmental and Remote Sensing Center, Bergen, Norway
2 Norwegian Meteorological Institute, Bergen, Norway
3 University of Reading, GB
Corresponding author: Anton A. Korosov
(anton.korosov@nersc.no)

Nansat is a Python toolbox for analysing and processing 2-dimensional geospatial data, such as satel-
lite imagery, output from numerical models, and gridded in-situ data. It is created with strong focus on
facilitating research, and development of algorithms and autonomous processing systems. Nansat extends
the widely used Geospatial Abstraction Data Library (GDAL) by adding scientific meaning to the datasets
through metadata, and by adding common functionality for data analysis and handling (e.g., exporting to
various data formats). Nansat uses metadata vocabularies that follow international metadata standards,
in particular the Climate and Forecast (CF) conventions, and the NASA Directory Interchange Format (DIF)
and Global Change Master Directory (GCMD) keywords. Functionality that is commonly needed in scien-
tific work, such as seamless access to local or remote geospatial data in various file formats, collocation
of datasets from different sources and geometries, and visualization, is also built into Nansat. The paper
presents Nansat workflows, its functional structure, and examples of typical applications.

Keywords: Python, Nansat, GDAL, geospatial data, satellite remote sensing, data synergy, data handling

Funding Statement: This work was supported via the NORMAP project under the Research Council of
Norway (grant no. 195397/V30), the EU FP7 project SeaU under contract no. 263246, the European Space
Agency (ESA) and the Norwegian Space Centre (NSC) through the Prodex Experiment Arrangement (Prodex
ISAR, project no. 4000108820), and the NSC through researcher support (JOP.15.13.2).

(1) Overview
Introduction
Geospatial data is information that identifies the geo-
graphic location of features and boundaries on Earth,
such as natural or constructed features, oceans, and
more, usually stored as coordinates and topology, that
can be mapped [1]. This paper describes a new tool to
handle the interpretation and processing of geospatial
data from satellite images and numerical models.Typical
operations on such data include visualization for human
perception of spatial patterns, extraction of geophysical
values, pixel-per-pixel or contextual calculation of new
geophysical variables based on one or several input data-
sets, re-gridding to another coordinate system, co-loca-
tion of several datasets on one spatial grid, subsetting
in space, and automatic recognition and description of
objects.

With a growing amount of available geospatial data,
the complexity of this work is, however, increasing. As

an example, a collection of 2-dimensional (2D) datasets
acquired over one geographic region at a given point of
time will form a 3D cube of data, and time series of such
cubes represent 4D datasets. The combination of multidi-
mensional data analysis with significant input data heter-
ogeneity and size (a single satellite may, e.g., provide 20TB
of data per day) creates a challenge for researchers [2], and
powerful and customized tools are thus required.

A number of analysis and processing tools for gridded
data already exist, e.g., ERDAS IMAGINE [3], Bilko [4], and
ArcGis [5]. Both the European Space Agency (ESA) and the
National Aeronautics and Space Administration (NASA)
have developed and provide software tools for processing
their respective satellite data, including, e.g., the Sentinel
Toolbox [6] and SeaDAS [7]. However, these tools are
written by programmers, from a programmer perspec-
tive, in compiled low-level and object-oriented languages
[8], such as Java or C/C++ to accomplish highly generic
software and reduced execution time. However, scientists

http://dx.doi.org/10.5334/jors.120
emailto:anton.korosov@nersc.no

Korosov et al: Nansat Art. e39, p. 2 of 11

often prefer higher-level programming languages in order
to minimize the abstraction from their scientific ideas.
The nature of scientific work also requires researchers to
be able to quickly modify and extend their software tools
to be able to analyse new sets of information. The possibil-
ity to work from the command line, and create quick and
simple visualizations is therefore very important, whereas
execution speed is usually less of a concern. Python [9] is a
programming language that can meet these needs. It has
a large user community, and it is free and open source.
Existing Python packages, such as Numerical Python
(Numpy) [10], Scientific Python (Scipy) [11] and Matplotlib
[12], already provide much of the required flexibility, and
code can be speeded up by clever programming practices.
Compared to, e.g., Java, it is relatively easy to get started
with Python, and the threshold for being able to produce
scientific results is lower. As Python is object oriented, it
also allows programmers to create reusable and complex
software tools. As such, Python is highly suitable for sci-
entists, while overlapping into what programmers want.

Many of the above mentioned tools are available only
as Graphical User Interfaces (GUIs). A challenge with such
tools is to automate operations that could be performed
by computers alone [13, 14]. In an attempt to solve this
problem, scientific users of geospatial data often develop
their own software tools which can be more easily inte-
grated into processing chains handling multiple datasets
(e.g., an archive of satellite images) [15]. With the boom
of open source software, the programming paradigm has
gradually changed from development of large, strongly
coupled packages to modular, unifunctional libraries
that can be used together as building blocks for multi-
functional applications. The Geospatial Data Abstraction
Library (GDAL [16]) is an example of an open source
software rarely used alone, but which is included in
many applications (even proprietary) and online services
such as, e.g., QGIS [17] and GRASS [18]. GDAL has a very
usable and well documented application programming
interface (API), with bindings for many programming
languages, and a number of community developed driv-
ers that are capable of reading geospatial data and meta-
data from many file formats.

The advantage of GDAL is that it provides access to vari-
ous sources of information using the same universal data
model. However, a limitation for scientific users is that
GDAL only provides access to the data or metadata stored
in the file and does not attach any geophysical meaning to
the data. Thus, it may become difficult for a researcher to
correctly interpret the content of the dataset with regard
to the relevant band name, calibration, physical units, spa-
tial scale, etc. In addition, GDAL provides low-level access
to the data, and a scientific user is often required to per-
form several complicated operations in order to eventu-
ally fetch the values of the required geophysical variable
at a given resolution and region of interest. Furthermore,
the structure of files containing geospatial data varies sig-
nificantly between its sources, and GDAL does not provide
a unified interface. In many datasets, there are specific
details about, e.g., subdatasets, ground control points,

or the location of metadata, which should be taken into
account.

The main goal of Nansat is thus to combine the versatil-
ity and power of GDAL with scientific knowledge about
the content of geospatial data from various sources in a
user-friendly Python package. In order to simplify the data
use and interpretation, Nansat adds a priori known scien-
tific metadata following the CF and GCMD conventions
[19, 20] to the datasets, unifies the access to various data
(either in local files or through the OpenDAP protocol) as
much as possible, and provides a high level API to enable
use in diverse, as well as automated operations. Via GDAL,
spatial transformation of data and exporting the data into
common formats (e.g., NetCDF-CF, PNG, GeoTIFF) is also
facilitated.

Implementation and architecture
In this section, the instantiation of a Nansat object with
geospatial satellite data is summarized and schematically
presented on Fig. 1 (subsection A), and the Nansat struc-
ture including details about classes, mappers and use of
third party libraries are given (subsection B). Examples
of more advanced processing are provided in section (3)
‘Reuse Potential’.

A. Nansat workflow
(1) A user invokes the command n=Nansat (input_

file_name), where input_file_name is a string
that includes the full path to the input file contain-
ing the geospatial data.

(2) The Nansat constructor uses GDAL to open the
input file and extract provided metadata.

(3) The Nansat constructor generates a list of available
mappers based on the content of the nansat.map-
pers subpackage. A mapper is a Python class named
Mapper, where the structure of the opened file is
defined a priori, or where qualified guesses based
on, e.g., filenames and metadata following known
conventions (e.g., the CF-conventions) are defined.
A mapper maps the structure of the input file to the
structure of the Nansat object and provides mean-
ing to the dataset through added metadata. Since
there are many file types which can be opened by
Nansat, many mapper classes have been developed.
In each mapper class, the structure of the input
file (e.g., the number of bands and their content,
type and name of the sensor and platform, relevant
global metadata) is hardcoded or partly dynamically
constructed. The Nansat constructor then loops
through the available mappers, and.

(4) Each of the mapper constructors tests whether or
not the opened file matches the given mapper.

(5) If the opened file matches the given mapper, a
GDAL Virtual XML file [21] (hereinafter referred to
as VRT file), which represents the description of the
GDAL data model, is created. The mapper construc-
tor then adds relevant bands from a priori specified
bands of data provided in the input file. The Map-
per constructor also adds conventional metadata

Fachada et al: Nansat Art. e39, p. 3 of 11

with the standard and short name of geophysical
variables, their units, valid minimum and maximum
to the VRT file for each band. If scaling of values is
needed a corresponding scales and offsets are also
added to the VRT file.

(6) If the given mapper does not match the provided
file, a MapperError, which is a dedicated Python
Exception, is immediately raised, and the next map-
per is tested.

(7) If none of the mappers matches the input file, the
Nansat constructor creates the VRT file without sci-
entific metadata.

(8) Finally, the Nansat constructor creates a GDAL
Dataset object from the VRT file, and adds this to
the attributes of the generated Nansat object. A
GDAL Dataset is a class that provides various meth-
ods for low level access to a set of associated raster
bands and metadata [22].

B. Nansat functional structure
Nansat is designed as a modular collection of classes (Fig.
2) to make the code more cohesive and less coupled [23],
and thus to facilitate independent development of each
block. The class Domain describes geographical projec-
tion, span and resolution of any kind of gridded data. It
contains an instance of the class VRT, which operates on
VRT files.The class VRT contains an instance of a GDAL
Dataset for the actual reading of data and metadata.

VRT is a base class for Mapper classes, which add scien-
tific meaning to various data read by GDAL. A Domain
instance also contains an NSR object, which subclasses
OGR SpatialReference for work with spatial reference
systems. Nansat is the central class in the package and a
subclass of Domain. Nansat contains Figure (convenient
generation of images) and PointBrowser (interactive digi-
tizer). Nansat is a base class for Mosaic, which performs
mosaicking of several files.

The Nansat class is the main container for the geo-
spatial data, and performs all high-level operations. An
instance of the Nansat class contains information about
the geographical reference of the data (e.g., raster size,
pixel resolution, type of projection, etc.) and about bands
with geophysical variables (e.g., water leaving radiance,
normalized radar cross section, chlorophyll concentra-
tion). A Nansat instance contains methods for high-level
operations on the data, including mainly the following:

• __get_item__, or [] (square brackets): fetch data as a
Numpy ndarray;

• write_figure: use the class Figure for writing full
resolution data to an RGB or indexed image with, e.g.,
land mask, automatic correction of brightness/con-
trast, and logarithmic scaling;

• reproject: change the projection of the dataset,
and consequently its span and resolution. This is
a lazy operation, meaning that only the projection

Figure 1: Schematic flowchart of Nansat instantiation. Details of the process are explained in the text.

Korosov et al: Nansat Art. e39, p. 4 of 11

parameters in the core VRT file are modified. The
actual resampling happens only when the data is
requested (e.g., within the method write_figure);
and

• export: write data to a GeoTIFF or NetCDF [24] file
following OGC conventions and standards.

The Domain class is a container for the geographical ref-
erence of the raster data. A Domain instance is a GDAL
Dataset with information about the geolocation infor-
mation only (i.e., no bands), containing, e.g.,

• The type and parameters of a spatial reference system
(SRS) (projection), e.g. cylindrical or stereographic,
and central meridian and parallel;

• The grid width and height (number of pixels or grid
cells);

• The pixel size in decimal degrees, metres or other
units (depends on the selected projection); and

• The relation between pixel/line coordinates and geo-
graphical coordinates, e.g., as a linear relation or as
ground control points (GCP).

There are three ways to store the geo-reference in a GDAL
dataset:

1. As a GDAL GeoTransform, which defines a linear
relationship between the raster pixels and lines, and
the geographical X and Y coordinates;

2. As GCPs (Ground Control Points), which define the
relationship between raster pixels and lines, and
geographical X and Y coordinates; and

3. As a Geolocation Array, which is a grid of geographical X
and Y coordinates for each pixel in a raster dataset.

The relation between row and column coordinates of the ras-
ter and geographic (e.g. latitude and longitude) coordinates
is defined by the projection type and projection parameters.

The Domain class has methods for basic operations
with georeference information:

• __init__: (the constructor) creates the georeference
based on provided arguments;

• get_corners, get_border, get_geolocation_grid:
fetch coordinates of the grid corners, the footprint/
coverage of the grid, or the entire raster; and

• write_map: create map of the grid footprint, and add
coastlines and graticule.

The VRT class is a wrapper around a GDAL vrt file. The
vrt file is in XML format, and contains the geo-reference,

Figure 2: UML diagram of the Nansat package including the most important class methods. White boxes describe
third party classes.

Fachada et al: Nansat Art. e39, p. 5 of 11

the global and band metadata, and reference to the data
grids (or bands) provided in the source file. The class VRT
performs all operations on the VRT files, i.e., copying,
modifying, reading, and writing of files, adding bands,
setting spatial reference attributes as such projection or
coordinate transformation, and more. These operations
are performed either directly by methods in the VRT class
(e.g., remove_geotransform and get_warped_vrt), or using
GDAL functions (e.g., Create, AddBand, SetMetadata, and
AutoCreateWarpedVRT). The core of the VRT object is a
GDAL Dataset instance generated by the GDAL VRT Driver.
The respective vrt file is located in computer memory, and
is accessible using the GDAL VSI functionality (the path
to the vrt file is /vsimem). The VRT class can also be used
to write binary files with actual data accompanied with a
wrapping vrt file that describes its dimensions and data
type. This is used when adding data to existing Nansat
instances or caching CPU consuming operations.

When Domain is instantiated, the VRT object is created
without any bands, only with geo-reference information
using the GDAL Dataset methods. On the contrary, when
a file is opened with Nansat, the VRT object with both
the georeference and the bands is created using the class
Mapper.

When Nansat performs operations that change the
vrt file, e.g., by reprojecting, cropping, resizing or adding
bands, an additional vrt file with a corresponding VRT
object is generated. The new VRT object keeps a reference
to the original VRT object. This allows to easily and safely
undo operations.

The Figure class performs graphical operations. It is
used to create figures, append a legend, add land mask,
and adjust brightness and colours, as well as saving figures
in PNG, JPG or TIFF formats. An instance of Figure can
be created in the Nansat write_figure method, or from
a Numpy 2D array (or three 2D layers in case of an RGB
image). The Figure class uses two Pillow (Python Imaging
Library) Image objects, one for the image canvas and one
for the legend. Figure has several convenient methods for
optimizing the data presentation:

• clim_from_histogram: estimates optimal minimum
and maximum brightness limits based on the data
distribution;

• apply_logarithm: applies logarithmic transforma-
tion of the original data;

• create_legend: applies one of the Matplotlib color-
maps, and adds a legend with colorbar and caption;
and

• array_mod_function: modifies the given band array
by a user provided function.

The Nansatmap class generates nice looking maps where
several datasets can be displayed together. It extends the
Python Basemap [25] class and overrides its constructor
for simpler instantiation based on a given Nansat object.
Nansatmap also overrides several Basemap methods by
taking advantage of a priori knowledge about the spatial
extent:

• imshow: adds a raster layer to the map in a fast man-
ner and colorizes with a given colormap and value
limits;

• smooth: spatially smooths the input data;
• contour(f): creates (filled) contour lines;
• quiver: adds regularly spaced and correctly rotated

arrows indicating direction and speed;
• draw_grid: adds labeled graticule; and
• save: saves to a graphical format at a given resolution.

The Mosaic class extends Nansat and provides capability
to create mosaics of several input files using one of two
methods:

• average: a memory-friendly and multi-threaded
method for averaging data. It reads all input files
using Nansat, re-projects the raster data of the
required bands onto the original Mosaic object,
calculates the mean and standard deviation, and
adds these as new bands in the Mosaic object. The
method tries to get a band with name ‘mask’ from
the input files. The mask should have the following
encoding:

	0: invalid 1 (e.g. nodata),
	1: invalid 2 (e.g. clouds),
	2: invalid 3 (e.g. land),
	64: valid pixel.

If the “mask” band is present, it is used to select the valid
pixels for averaging (i.e. where mask equals 64). Otherwise
it is assumed that all input pixels are valid.

• median: a more memory greedy method working in
only one computational thread. Instead of returning
the mean, this function calculates the median of spe-
cific bands in the input files, and adds the resulting
array as a new band in the Mosaic object.

Quality control
Quality control of the code is implemented in two blocks:
unit tests and integration tests. Currently, the unit tests
cover 78% of the core code [26] and thus the most impor-
tant functionality. Sample datasets are pre-generated for
running the unit tests, and consists of synthetic satellite
images with data either on a regular projection or with the
projection defined by ground control points (GCPs). The
code repository is integrated with the Travis Continuous
Integration platform [27] and tests are automatically run
on each commit.

The integration tests are developed for testing mappers
and operation chains on actual data. The integration tests
are designed as a separate package based on the Python
unittest [28] package, and are run only locally (i.e.,not on
TravisCI). This is to prevent downloading of large amounts
of satellite data on the test server. Including the integra-
tion tests, the coverage of all code including all mappers
is 59% (this is not reflected in the Coveralls badge in the
readme file at GitHub).

Korosov et al: Nansat Art. e39, p. 6 of 11

(2) Availability
Operating system
Nansat has been tested on OS X and Linux and is also
provided in a Vagrant/Ansible configuration for virtual
machines (CentOS 7 or Ubuntu 14.04). Thus, it is easy to
install the tool also on Windows, although the actual OS
would be Ubuntu.

Programming language
Most of Nansat is written in Python 2.7. A small and
optional part (GDAL pixel functions [16]) is written in C.

Additional system requirements
The code is 8 MB, and the system requirements largely
depend on the application of Nansat. Small satellite
images (less than 1000 x 1000 pixels) can be processed
with 100 MB of free RAM and a 1.5 GHz processor. Large
datasets (e.g. synthetic aperture radar (SAR) images
exceeding 10000 x 10000 pixels) require > 4 GB RAM
and > 2.5 GHz CPU.

Dependencies
Nansat has both required and optional dependencies.
Installation of all the dependencies for full Nansat
functionality, i.e., to access data in netCDF, HDF4 and
HDF5 files via GDAL, may sometimes be cumbersome.
Therefore, we have pre-built fully functional binaries
of GDAL for Linux (32 and 64 bits), which are available
in the Anaconda Cloud [29, 30]. To further simplify the
installation, we have created a Vagrant/Ansible configu-
ration to install Nansat and all required dependencies on
a local virtual machine as referenced in the “Emulation
Environment” section.

The basic requirements of Nansat are:

• GDAL >= 1.11.4 [16]
• Numpy >= 1.10.4 [10]
• Scipy >= 0.17.1 [11]
• Matplotlib >= 1.5.1 [12]
• Basemap >= 1.0.8dev [25]
• Pillow >= 3.2.0 [31]
• py-thesaurus-interface = 1.1.1 [32]

In addition, there are optional dependencies for specific
Nansat functionality, in particular:

• netcdf4 >= 1.2.4 required to read data from OPeNDAP
• gcc >= 4.8.2 required to compile the pixel functions

List of contributors
Anton Korosov, Nansen Environmental and Remote

Sensing Center, Bergen, Norway
Morten W. Hansen, Nansen Environmental and

Remote Sensing Center, Bergen, Norway
Asuka Yamakawa, Nansen Environmental and Remote

Sensing Center, Bergen, Norway
Knut-Frode Dagestad, Norwegian Meteorological

Institute, Bergen, Norway
Aleksander Vines, Nansen Environmental and Remote

Sensing Center, Bergen, Norway

Maik Riechert, University of Reading, Reading, United
Kingdom

Alexander Myasoedov, SoLab, Russian State Hydrome-
teorological University, St. Petersburg, Russia

Evgeny Morozov, Nansen International Environmental
and Remote Sensing Center, St. Petersburg, Russia

Natalia Zakhvatkina, Nansen International Environ-
mental and Remote Sensing Center, St. Petersburg,
Russia

Software location
Archive

Name: Zenodo
Persistent identifier: 10.5281/zenodo.59998
Licence: GNU GPLv3
Publisher: Anton Korosov
Date published: 11/08/2016 (last release, 0.6.14)

Code repository
Name: GitHub
Identifier: https://github.com/nansencenter/

nansat.git
Licence: GNU GPLv3
Date published: 18/01/2013 (first release, 0.4)

Emulation environment
Name: Provisioning of virtual machines with Vagrant/

Ansible
Identifier: https://github.com/nansencenter/nersc-

vagrant.git
Licence: GNU GPLv3
Date published: 10/09/2015

Language
English

(3) Reuse potential
The potential to reuse Nansat for scientific applications is
illustrated in three use cases. These examples, plus other tuto-
rials are available in the nansat-lectures repository [33].

Nansat is at the time of writing capable of reading data
from tens of platforms and instruments in 8 file formats,
as specified in the online table at https://github.com/
nansencenter/nansat/blob/master/nansat/mappers/
README.yml. Nansat can be extended by inheritance or
by adding new mappers, as described in the online man-
ual [34]. User support and feedback is realized via GitHub
issues and through a mailing list nansat-dev@google-
groups.com.

Example 1: Open, collocate, and write figure
This example covers spatial collocation of two images
acquired in May 2016 by the Synthetic Aperture Radar
(SAR) instrument onboard the Sentinel-1A [35] satellite,
and the Moderate Resolution Imaging Spectroradiometer
(MODIS) [36] onboard the Aqua satellite. The two origi-
nal level-1 datasets have different spatial reference,
resolution and coverage, and are collocated and pro-
jected onto the same spatial grid, and then visualized
using Nansat. The resulting images (Fig. 3) show MODIS

http://dx.doi.org/10.5281/zenodo.59998
https://github.com/nansencenter/nansat.git
https://github.com/nansencenter/nansat.git
https://github.com/nansencenter/nersc-vagrant.git
https://github.com/nansencenter/nersc-vagrant.git
https://github.com/nansencenter/nansat/blob/master/nansat/mappers/README.yml
https://github.com/nansencenter/nansat/blob/master/nansat/mappers/README.yml
https://github.com/nansencenter/nansat/blob/master/nansat/mappers/README.yml
mailto:nansat-dev@googlegroups.com
mailto:nansat-dev@googlegroups.com

Fachada et al: Nansat Art. e39, p. 7 of 11

Figure 3: Example of a simple application of Nansat to collocate and visualize synchronous observations acquired by
MODIS and Sentinel1A on 25 May 2011. (A) An RGB image from a MODIS/Aqua acquisition over the Norwegian Sea, (B)
a grayscale SAR image from Sentinel-1A, and (C) the data coverage.

from nansat import Nansat, Domain

Open file with MODIS image
n1 = Nansat('MYD02HKM.A2016148.1050.006.2016149162607.hdf')

Open file with Sentinel-1A image
n2 = Nansat('S1A_EW_GRDM_1SDH_20160527T163927_20160527T164031_011447' \

'_0116DE_3ED0.SAFE')

Define region of interest (south of Lofoten islands)
d = Domain('+proj=stere +lon_0=12 +lat_0=67 +no_defs',

'–te –50000 –50000 50000 50000 –tr 100 100')

Collocate the images
n1.reproject(d)
n2.reproject(d)

Write RGB graphic file from MODIS data
f = n1.write_figure('test_rgb_MODIS.png', ['L_858', 'L_555', 'L_469'],

clim='hist', ratio=0.95)

Write grayscale file from Sentinel-1A data
f = n2.write_figure('test_SENTINEL1.png', 'sigma0_HH',

clim='hist', ratio=0.95, cmapName='gray')

Write map of the region of interest

d.write_map('test_domain_map.png', resolution='h', dpi=300,
meridians=4, parallels=4,
latBorder=1, lonBorder=1,
merLabels=[False, False, True, False],
parLabels=[True, False, False, False])

Korosov et al: Nansat Art. e39, p. 8 of 11

top-of-atmosphere radiances measured at 469, 555 and
858 nm displayed in RGB (Fig. 3A) and a grayscale image
of the same area generated from SAR HH (horizontal
transmit and horizontal receive) polarized Normalized
Radar Cross Section (NRCS) (Fig. 3B) covering parts of
the Norwegian Sea. In these images, we see ocean mes-
oscale eddies as manifested by both the ocean colour
(Fig. 3A) and the sea surface roughness (Fig. 3B).

Example 2: Analyse transects using data streamed via
the OPeNDAP protocol
In this example Nansat is used to compare two datasets of
surface Chlorophyll-A (Chl-A) and Sea Surface Temperature
(SST) in the Barents Sea. As shown in the code below, Nansat
accesses remote Chl-A and SST datasets streamed from the
Norwegian Meteorological Institute and Plymouth Marine
Laboratory (PML) (the latter dataset is provided as part of

from nansat import Nansat, Domain

Access online sea surface temperature data streamed from
the Norwegian Meteorological Institute (met.no) via the
OpenDAP protocol
n1 = Nansat('http://thredds.met.no/thredds/dodsC/sea_ice/' \

'SSTMETNOARCSST_L4OBSV2V1/sst_arctic_aggregated',
date = '20120601',
bands = ['analysed_sst'])

Access online Chlorophyll-A data streamed from
Plymouth Marine Laboratory, UK, via the OpenDAP protocol
n2 = Nansat('https://rsg.pml.ac.uk/thredds/dodsC/CCI_ALLv2.08DAY',

date = '20120601',
bands = ['chlor_a'])

Get transects from points given by [longitude, latitude]
t1 = n1.get_transect([[24, 24], [71, 77]], ['analysed_sst'])
t2 = n2.get_transect([[24, 24], [71, 77]], ['chlor_a'])

Fetch values from the transects
sst_lat = t1['lat']
sst_val = t1['analysed_sst']
chl_lat = t2['lat']
chl_val = t2['chlor_a']

Mask invalid SST values
sst_val[sst_val < 0] = np.nan
...[Plotting is performed using standard Matplotlib and Basemap
libraries (Fig. 4)]...

Figure 4: Comparison (A) of Sea Surface Temperature (SST) and Chlorophyll-A (Chl-A) from transect (B) across the
Barents Sea (the data is retrieved using Nansat, and the figure is generated using Matplotlib and Basemap).

http://thredds.met.no/thredds/dodsC/sea_ice/
https://rsg.pml.ac.uk/thredds/dodsC/CCI_ALLv2.08DAY

Fachada et al: Nansat Art. e39, p. 9 of 11

the ESA Ocean Colour Climate Change Initiative) via the
OpenDAP protocol. When connection to the data stream
is established, Nansat is used to define the transects and
retrieve and plot the actual data (Fig. 4). The Matplotlib
and Basemap code used for creating Fig. 4 is out-of-scope
of the paper and is thus not provided.

Example 3: Fusion and visualization of Sea Surface
Temperature (SST), sea ice concentration and sea ice
drift
The example below illustrates how to use Nansat to
access online datasets of sea ice concentration, SST and
sea ice drift streamed from the Norwegian Meteorological

from nansat import Nansat, Domain, Nansatmap

Access online sea ice concentration data (IC) from met.no
n1 = Nansat('http://thredds.met.no/thredds/dodsC/osisaf/met.no/' \

'ice/conc/2016/04/' \
'ice_conc_nh_polstere100_multi_201604011200.nc',

bands = ['ice_conc'])

Access online SST data from met.no
n2 = Nansat('http://thredds.met.no/thredds/dodsC/myocean/' \

'siwtac/sstmetnoarcsst03/'\
'20160401000000METNOL4_GHRSST-SSTfnd' \
'METNO_OIARCv02.0fv02.0.nc',

bands = ['analysed_sst'])

Access online sea ice drift data from met.no
n3 = Nansat('http://thredds.met.no/thredds/dodsC/osisaf/met.no/' \

'ice/drift_lr/merged/2016/04/' \
'ice_drift_nh_polstere625_multi' \
'oi_201604011200201604031200. nc',

bands = ['dX', 'dY'])
Define domain of the region of interest
d = Domain('+proj=stere +lon_0=45 +lat_0=90 +no_defs',
 '–te 300000 –1200000 1700000 300000 –tr 10000 10000')

Project the collocated datasets onto the same domain
n1.reproject(d)
n2.reproject(d)
n3.reproject(d)

Retrieve data covering the region of interest
ice_conc = n1['ice_conc']
analysed_sst = n2['analysed_sst']
dX = n3['dX']
dY = n3['dY']

Mask invalid data with Numpy NotANumber values
ice_conc[ice_conc <=1] = np.nan
analysed_sst[analysed_sst < 0] = np.nan

Create canvas for drawing a map
nmap = Nansatmap(n2, resolution ='l')

Add SST data as a raster layer, then the corresponding colorbar
nmap.imshow(analysed_sst, vmin = 270, cmap = 'viridis')
nmap.add_colorbar(shrink = 0.5, pad = 0.05)

Add the ice concentration as a raster layer
nmap.imshow(ice_conc, vmin = 0, vmax = 100, cmap = 'bone')

Add the ice drift data as vectors
nmap.quiver(dX, dY, step = 5)

Decorate the map with a grid
nmap.drawmeridians([-20, 0, 20, 40], labels = [False, True, False, True],

fontsize = 6)
nmap.drawparallels([75, 80, 85], labels = [True, False, True, False],

fontsize = 6)
Save the image as a graphical file
nmap.save('nmap_example5.png', dpi = 300)
plt.close('all')

http://thredds.met.no/thredds/dodsC/osisaf/met.no/
http://thredds.met.no/thredds/dodsC/myocean/
http://thredds.met.no/thredds/dodsC/osisaf/met.no/

Korosov et al: Nansat Art. e39, p. 10 of 11

Figure 5: Map of Sea Surface Temperature (SST), sea ice concentration, and sea ice drift streamed from the Norwegian
Meteorological Institute, collocated over the Greenland, Barents, and Arctic Seas. The land mass in the centre of the
image is Svalbard.

Institute, collocate the datasets, and create a nice looking
map (Fig. 5).

Competing Interests
The authors declare that they have no competing interests.

References
1. Beal, F, Stroud, F, Shread, P. 2016 WEBOPEDIA, URL:

http://www.webopedia.com/TERM/S/spatial_data.html.
2. Korosov, A, Counillon, F, Johannessen, J A. 2014

Monitoring the spreading of the Amazon freshwater
plume by MODIS, SMOS, Aquarius, and TOPAZ, Journal
of Geophysical Research: Oceans, 120(1). DOI: http://
dx.doi.org/10.1002/2014JC010155

3. ERDAS, I 2016 URL: http://www.hexagongeospatial.
com/products/producer-suite/erdas-imagine

4. Bilko software for ESA LearnEO! 2012 URL: http://
www.learn-eo.org/software.php.

5. ArcGIS 2010 URL: https://www.arcgis.com.
6. Toolboxes Sentinel Online – ESA 2014 URL: https://

sentinel.esa.int/web/sentinel/toolboxes.
7. Feldman, G C. 2002 SeaDAS Home Page, URL: http://

seadas.gsfc.nasa.gov.
8. “Low-level programming language” 2016 WIKIPE-

DIA, URL: https://en.wikipedia.org/wiki/Low-level_
programming_language.

9. Rossum, G. 1997 Scripting the Web with Python. In
“Scripting Languages: Automating the Web”, World
Wide Web Journal, 2(2), O’Reilly., URL: https://www.
python.org/.

10. Oliphant, T, et al. 2016 Numpy, URL: http://www.
numpy.org/.

11. Oliphant, T, Peterson, P, Jones, E, et al. 2016 Scipy,
URL: https://www.scipy.org/.

12. Hunter, J D, et al. 2016 Matplotlib, URL: http://mat-
plotlib.org/.

13. Korosov, A A, Pozdnyakov, D V, Grassl, H. 2012
Spaceborne quantitative assessment of dissolved
organic carbon fluxes in the Kara Sea, Advances in
Space Research, 50, 1173–1188, DOI: http://dx.doi.
org/10.1016/j.asr.2011.10.008

14. Muckenhuber, S, Nilsen, F, Korosov, A and Sandven,
S. 2016 Sea ice cover in Isfjorden and Hornsund, Sval-
bard (2000–2014) from remote sensing data, The Cryo-
sphere, 10, 149–158, DOI: http://dx.doi.org/10.5194/
tc-10-149-2016

15. Hansen, M W, Collard, F, Dagestad, K F, Johannessen,
J A, Fabry, P, Chapron, B. 2011 Retrieval of Sea Surface
Range Velocities From Envisat ASAR Doppler Centroid
Measurements, IEEE TRANSACTIONS ON GEOSCIENCE
AND REMOTE SENSING, 49, (10)6: 3582–3592, DOI:
http://dx.doi.org/10.1109/TGRS.2011.2153864

16. Rouault, E, Jolma, A, Baryshnikov, D. 2004 GDAL
Geospatial Data Abstraction Library, URL: http://www.
gdal.org/.

17. Sutton, T, Dassau, O, Sutton, M. 2015 QGIS A Free
and Open Source Geographic Information System,
URL: http://www.qgis.org/.

18. GRASS Development Team. 2015 Geographic Re-
sources Analysis Support System (GRASS) Software,

http://www.webopedia.com/TERM/S/spatial_data.html
http://dx.doi.org/10.1002/2014JC010155
http://dx.doi.org/10.1002/2014JC010155
http://www.hexagongeospatial.com/products/producer-suite/erdas-imagine
http://www.hexagongeospatial.com/products/producer-suite/erdas-imagine
http://www.learn-eo.org/software.php
http://www.learn-eo.org/software.php
https://www.arcgis.com
https://sentinel.esa.int/web/sentinel/toolboxes
https://sentinel.esa.int/web/sentinel/toolboxes
http://seadas.gsfc.nasa.gov
http://seadas.gsfc.nasa.gov
https://en.wikipedia.org/wiki/Low-level_programming_language
https://en.wikipedia.org/wiki/Low-level_programming_language
https://www.python.org/
https://www.python.org/
http://www.numpy.org/
http://www.numpy.org/
https://www.scipy.org/
http://matplotlib.org/
http://matplotlib.org/
http://dx.doi.org/10.1016/j.asr.2011.10.008
http://dx.doi.org/10.1016/j.asr.2011.10.008
http://dx.doi.org/10.5194/tc-10-149-2016
http://dx.doi.org/10.5194/tc-10-149-2016
http://dx.doi.org/10.1109/TGRS.2011.215386
http://www.gdal.org/
http://www.gdal.org/
http://www.qgis.org/

Fachada et al: Nansat Art. e39, p. 11 of 11

How to cite this article: Korosov, A A, Hansen, W M, Dagestad, F K, Yamakawa, A, Vines, A, Riechert, A 2016 Nansat: a
Scientist-Orientated Python Package for Geospatial Data Processing. Journal of Open Research Software, 4: e39, DOI: http://
dx.doi.org/10.5334/jors.120

Submitted: 16 February 2016 Accepted: 27 September 2016 Published: 24 October 2016

Copyright: © 2016 The Author(s). This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

Journal of Open Research Software is a peer-reviewed open access journal published by
Ubiquity Press OPEN ACCESS

Version 7.0. Open Source Geospatial Foundation. URL :
http://grass.osgeo.org.

19. Eaton, B, Gregory, J, Drach, B, Taylor, K, Hankin, S,
Caron, J, Signell, R, Bentley, P, Rappa, G, Höck, H,
Pamment, A, Juckes, M. 2011 NetCDF Climate and
Forecast (CF) Metadata Conventions, Version 1.6, URL:
http://cfconventions.org/.

20. Wharton, S. 2016 National Aeronautics and Space Ad-
ministration (NASA), Global Change Master Directory
(GCMD), Version 10.0, URL: http://gcmd.nasa.gov/.

21. Rouault, E. 2004 GDAL Virtual Format Tutorial, 2004
URL: http://www.gdal.org/gdal_vrttut.html.

22. Rouault, E, Jolma, A, Baryshnikov, D. 2004 GDAL
Dataset Class Reference, URL: http://www.gdal.org/
classGDALDataset.html.

23. Stevens, W P, Myers, G J, Constantine, L L. 1974
“Structured design”. IBM Systems Journal, 13 (2): 115–
13 DOI: http://dx.doi.org/10.1147/sj.132.0115

24. Russ, R and Davis, G. 1990 NetCDF: an interface for
scientific data access. Computer Graphics and Applica-
tions, IEEE 10(4), p 76–82.

25. Basemap Toolkit documentation. 2012 URL: http://
matplotlib.org/basemap/.

26. Merwin, N, Donahoe, L, McAngus, E. 2016 Coverage
of nansat at github, URL: https://coveralls.io/github/
nansencenter/nansat.

27. Travis CI. 2011 URL: https://travis-ci.org.

28. Unit testing framework. 2014 URL: https://docs.py-
thon.org/2/library/unittest.html.

29. Continuum Analytics. 2015 Anaconda Cloud, URL:
https://anaconda.org.

30. Gillingham, S, et al. 2016 A conda-smithy repository
for gdal, URL: https://github.com/conda-forge/gdal-
feedstock.

31. Lundh, F, Clarck, A, et al. 2016 Pillow, URL: https://
python-pillow.org/.

32. Korosov, A A, Hansen, M W, Vines, A. 2016 Py-
thon Thesaurus Interface, URL: https://github.com/
nansencenter/py-thesaurus-interface.

33. Korosov, A A and Hansen, M W. 2016 Nansat-lec-
tures URL: https://github.com/nansencenter/nansat-
lectures.

34. Korosov, A A, Dagestad, K F, Hansen, M W. 2014
How to create a mapper, URL: https://github.com/
nansencenter/nansat/wiki/How-to-create-a-map-
per

35. Meadows, P. 2015 Sentinel-1A Annual Perfor-
mance Report for 2015, CLS Technical report
#MPC0139, CLS, URL: https://earth.esa.int/docu-
ments/247904/1814124/Sentinel-1A-Annual-Perfor-
mance-Report-2015.

36. Frazier, S. 2016 MODIS Moderate Resolution Im-
aging Spectroradiometer, URL: http://modis.gsfc.
nasa.gov/.

http://dx.doi.org/10.5334/jors.120
http://dx.doi.org/10.5334/jors.120
http://creativecommons.org/licenses/by/4.0/
http://grass.osgeo.org
http://cfconventions.org/
http://gcmd.nasa.gov/
http://www.gdal.org/gdal_vrttut.html
http://www.gdal.org/classGDALDataset.html
http://www.gdal.org/classGDALDataset.html
http://dx.doi.org/10.1147/sj.132.0115
http://matplotlib.org/basemap/
http://matplotlib.org/basemap/
https://coveralls.io/github/nansencenter/nansat
https://coveralls.io/github/nansencenter/nansat
https://travis-ci.org
https://docs.python.org/2/library/unittest.html
https://docs.python.org/2/library/unittest.html
https://anaconda.org
https://github.com/conda-forge/gdal-feedstock
https://github.com/conda-forge/gdal-feedstock
https://python-pillow.org/
https://python-pillow.org/
https://github.com/nansencenter/py-thesaurus-interface
https://github.com/nansencenter/py-thesaurus-interface
https://github.com/nansencenter/nansat-lectures
https://github.com/nansencenter/nansat-lectures
https://github.com/nansencenter/nansat/wiki/How-to-create-a-mapper
https://github.com/nansencenter/nansat/wiki/How-to-create-a-mapper
https://github.com/nansencenter/nansat/wiki/How-to-create-a-mapper
https://earth.esa.int/documents/247904/1814124/Sentinel-1A-Annual-Performance-Report-2015
https://earth.esa.int/documents/247904/1814124/Sentinel-1A-Annual-Performance-Report-2015
https://earth.esa.int/documents/247904/1814124/Sentinel-1A-Annual-Performance-Report-2015
http://modis.gsfc.nasa.gov/
http://modis.gsfc.nasa.gov/

	(1) Overview
	Introduction
	Implementation and architecture
	A. Nansat workflow
	B. Nansat functional structure

	Quality control

	(2) Availability
	Programming language
	Additional system requirements
	Dependencies
	List of contributors
	Software location
	Archive

	Code repository
	Emulation environment
	Language

	(3) Reuse potential
	Example 1: Open, collocate, and write figure
	Example 2: Analyse transects using data streamed via the OPeNDAP protocol

	Competing Interests
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5

