
Markussen, T N 2016 Parchar – Characterization of Suspended Particles
Through Image Processing in Matlab. Journal of Open Research Software,
4: e26, DOI: http://dx.doi.org/10.5334/jors.114

Journal of
open research software

SOFTWARE METAPAPER

Parchar – Characterization of Suspended Particles
Through Image Processing in Matlab
Thor Nygaard Markussen
CENPERM, Department of Geosciences and Natural Resource Management, University of Copenhagen, Øster Voldgade 10, 1350
Copenhagen, Denmark
thor.markussen@ign.ku.dk

Studies of suspended particles and particle dynamics in aquatic environments increasingly rely on camera
systems to characterize the particles. Numerous systems exist and all use different codes and practises
to process the images from the systems. Here, a step-by-step guide to an image processing and particle
characterization code for Matlab is presented with the aim of bringing the particle community towards
standardized image processing techniques. The code uses morphological reconstruction and simple block
processing to filter out noise, out-of-focus particles and light source inconsistencies. It has been imple-
mented on a specific camera system but is applicable to numerous systems and on highly variable particle
types due to the standardized setup.

Keywords: Image processing; Thresholding; Particle characterization; Particle size; Blob analysis;
 Suspended particles
Funding statement: The code design and writing was partly funded by Department of Geosciences
and Natural Resource Management, University of Copenhagen, and through financial support of a larger
project by the Danish National Research Foundation (CENPERM DNRF100).

(1) Overview
Introduction
The correct size characterization of particles in suspension
is an important part of many scientific disciplines ranging
from oil droplet spreading studies in the laboratory to sed-
iment grain or organic marine aggregate characterization
in their natural aquatic environment. Many of the studies
today rely on the use of camera systems and the subse-
quent processing of images. Here, an image processing
code is presented that has been specifically designed for
the direct characterization of aquatic, suspended particles
in particulate flux studies. The script has primarily been
used with the non-intrusive Pcam camera system, see [1]
for a recent example, but the code is applicable to differ-
ent camera systems over a wide range of sizes, shapes and
environments. The purpose of presenting this code is not
only to give an example of a new image processing code,
more importantly the purpose is to make the code freely
available and open on GitHub, so that other researchers
may build on this. Thus, the hope is that it can bring us
closer towards one standardized method of image pro-
cessing of suspended particles.

Aquatic, suspended particles differ greatly in composi-
tion and thus spectral signatures and the cameras used to
capture the particles utilize many different light sources.
Particles are characterized by separating the objects in
the foreground from the potential noise and out-of-focus

particles in the background. The code gives the possibility
of correcting for inconsistencies in background illumina-
tion and to use a standardized morphological reconstruc-
tion of particles to filter out noise and is in this way not
dependent on a specific light source to function. The size
of particles is in most studies characterized by the equiva-
lent spherical diameter (ESD) and the code applies this
concept as well although users may decide on other ways
of characterizing sizes. The code also outputs a number
of other shape parameters to make way for more compre-
hensive characterizations of the studied particles.

Implementation and architecture
The code has been programmed in a Matlab (R2014b)
working environment using the Image Processing Toolbox
on a Windows 7 Enterprise machine. Five Matlab Code files,
one Matlab Data file and a number of example figures and
datasets are supplied. Three of the five codes are used to
process the individual image (ParChar, imoverlay_orig and
ImRec) and the ParChar_mult uses the processing code on
multiple files. The fifth code (CompatibilityTest) is a small
test script to be run before using the code, to make sure
the user has the correct Matlab version and that files have
been downloaded correctly. The Data file (Bins.mat) is nec-
essary to run the particle characterization part of the code.

The processing code, ParChar.m, involves six steps of
which three are optional. Figure 1 shows a simplified flow

http://dx.doi.org/10.5334/jors.114
mailto:thor.markussen@ign.ku.dk

Markussen: Parchar – Characterization of Suspended Particles Through
Image Processing in Matlab

Art. e26, p.  2 of 7

chart with the six steps and their interdependencies and
Figure 2 exemplifies some of the steps. The steps are:

1. Variable inputs
2. Data loading, Figure 2a
3. Background correction and noise removal (optional),

Figure 2b
4. Thresholding and particle extraction, Figure 2c
5. Particle characteristics calculations (optional), Figure 2d
6. Results plotting (optional)

Step 1: Variable inputs
The location of the file to be processed is selected by a
pop-up window that allows the user to browse to the cor-
rect location. ImHeight, ImWidth and MeasDepth require
inputs of the height, width and depth of the field of view
of the image and measuring volume to be processed, in
millimetres. SubDiff sets the amount (0–255) to extract
between the marker and the mask in the morphological
reconstruction in step 3). If set to 0, no morphological
reconstruction will take place. Lvl sets the threshold level
that will be used to convert the image to a black-and-
white image, see step 4). MaxInt determines the fraction
of the maximum intensity required for individual particles
to be selected as described under step 4). This can also
be excluded by setting MaxInt to 0. CalcPSD determines
whether or not to skip step 5) of the image processing
and calculate particle characteristics. If CalcPSD is set to 1,
the characteristics will be calculated, all other values will
skip step 5). PlotResults determines what to do in terms of
plotting the results under step 6) of the image processing.
PlotResults can be set to either 1 or 2 to enable plotting.

Setting it to 1 will plot everything while setting it to 2 will
only plot one figure for each processed image. Note that a
small step before the data loading checks whether or not
the Image Processing Toolbox is present. Preferably, this
has already been assessed by running the CompatibilityTest
script before using the ParChar code.

Step 2: Data loading
The image is loaded from the file location specified under
step 1). Matlab reads the info from the file metadata to
find the date and time that the image was taken and the
height of the image, in pixels. The size of the field of view
of one pixel in microns, the pixelsize, is calculated based
on the ImHeight input in step 1).

Step 3: Background correction and noise removing
(optional)
This step may be skipped entirely by setting the SubDiff
input to 0. The ImRec.m function is used to correct incon-
sistencies in the background illumination, filter out
noise and remove out-of-focus particles through mor-
phological reconstruction. It is inspired by a code from
the Matlab course “Image Processing in Matlab”. The
background illumination is corrected by first splitting
the image into blocks and finding the minimum inten-
sity of each block. The minimum intensity is assumed to
be the intensity of the background and may in this way
differ between each block, e.g. if a light source is used
that yields a non-uniform intensity across the image.
The width and height of each block is determined by the
BlockSize input. The block size is an important param-
eter and should be related to the expected particle

Figure 1: Simplified flow chart showing the six steps that the ParChar code is based on. Before anything can be done,
the inputs have to be set in step 1. As described in the text and shown in the flow chart, some of the steps can be
skipped by setting the relevant input values to zero.

Markussen: Parchar – Characterization of Suspended Particles
Through Image Processing in Matlab

Art. e26, p.  3 of 7

sizes. If, for instance, maximum particle sizes are
expected to be around 1 mm, then the block size should
be larger than this (e.g. 2 mm, which is the standard
used here), so that individual large particles are not fill-
ing out an entire block. A new image is created in which
values of each block is assigned the minimum value of this
block in the original image. The resulting image is sub-
tracted from the original image and thus the background
illumination will become more uniform. In morpho-
logical reconstruction a marker image is created based
on the input image, called the mask. In the marker
image, all intensities of the mask image are subtracted
by a constant value, specified by the SubDiff input.
The Matlab function imreconstruct from the Image

Processing Toolbox is then run. The marker image is
dilated, meaning that the intensities are gradually
increased, but the intensities of individual pixels can
never be higher than they were in the original mask. This
will identify peaks in the image, which in this case are
in-focus particles. In this way, low-intensity objects such
as out-of-focus particles or random noise can be com-
pletely removed without removing pixels that belong
to particles or blobs that are a combination of low- and
high-intensity features. Compare Figure 2a+b to see
an example of background correction and image recon-
struction. The corrected image in Figure 2b is darker
but with less noise and a more uniform background
than the input image.

Figure 2: Four of the six processing steps using the Matlab example image Rice.png and the settings listed in Table 1.
In Step 1, inputs are specified, in step 2, the original image is loaded (a), in step 3, the background is corrected and
noise is removed (b), in step 4, thresholding is carried out and particles are identified (c) and in step 5, the particles
are characterized, here exemplified by a histogram of sizes of the identified grains (d), plotted through step 6.

Markussen: Parchar – Characterization of Suspended Particles Through
Image Processing in Matlab

Art. e26, p.  4 of 7

Step 4: Thresholding and particle extraction
All functions used in this step are part of the Image
Processing Toolbox in Matlab. The potentially noise-
removed image has to be converted to a black-and-white
image to allow the extraction of particles from the image.
A black-and-white image is a logical array with nothing
but zeros (black) and ones (white). The conversion is car-
ried out using the im2bw function which requires an
intensity threshold level to distinguish between particles
in the foreground and the background. Numerous studies
and automatic methods exist to find the optimal value of
the threshold level, see Keyvani and Strom [2] for a good
example. In the script presented here the threshold level
is set to a fraction of the maximum intensity of the input
image, determined by the Lvl input. In many cases, the
maximum intensity of an image will be 255, but in some
cases it might be lower due to differences in the water
properties and electrical or power supply irregularities
of the light source. This method has been applied after
numerous tests using many different automatic thresh-
olding methods and yields good results across environ-
ments and deployment configurations. Essentially, setting
a threshold level can never be completely objective as it
will be based on some degree of testing. Thus, the exact
level specified in the Lvl input must also be based on vis-
ual comparisons of results using different values. Particles
touching the border of the converted black-and-white
image will be removed using the imclearborder function
as it is unknown how big a part of these particles are out-
side the viewing volume. Connected components, in other
words individual particles, are identified using the bwcon-
ncomp function and relevant particle characteristics for
each individual component are subsequently calculated
and stored using the regionprops function. See Figure 2c
for an example of particle identifications in which grains
that touch the border are also removed. The last part of
step 4) is a second option for removing potentially out-of-
focus particles. It removes all particles which do not have a
single pixel with intensity above the MaxInt fraction of the
maximum intensity of the image. The assumption behind
this step is that particles in focus will always have a part
that is illuminated by the laser sheet and get a high inten-
sity value. If, however, the particles are loosely packed,
low-density organic particles, it might not be fruitful to
apply the MaxInt rule as such particles might not have a
strong spectral signal. Thus, the maximum intensity rule
can be excluded by setting MaxInt to 0.

Step 5: Particle characteristics calculations
(optional)
This step may be skipped entirely by setting the CalcPSD
input to 0. The size limits used for binning the parti-
cles according to equivalent spherical diameter (ESD)
are loaded, ESD and equivalent spherical volume is cal-
culated, the sizes are sorted in bins and the relative fre-
quency of particles in each bin is calculated. The bins that
are used are loaded from the Bins.mat file which needs
to be located in the same folder as the one the code is
located in. See Figure 2d for an example of a histogram of
counts of particles in size bins after image processing. The

volumes of individual particles are sorted according to the
size bins and summed up to get the total volume in each
bin. The volumes are recalculated to volume concentra-
tions by dividing the particulate volume with the meas-
uring volume obtained from the ImHeight, ImWidth and
MeasDepth inputs. This gives the volume of particles per
volume of medium, e.g. water. Mean diameters and stand-
ard deviations are calculated by converting all sizes to the
phi-scale and using the statistical method of moments.
The sphericity and the convexity, two shape parameters,
are then calculated. Sphericity is the measure of the ratio
between the major and minor axes of the best-fitting ellip-
soid and is thus 1 for completely spherical particles and
decreases towards 0 for increasingly rod-like or elongated
particles. Convexity is a parameter often used in grain
characterisations to describe the roughness of the surface
of the particle. It is measured as the ratio, with a value of
0 to 1, between the perimeter of the convex hull, i.e., the
smallest polygon inside which the object fits, of the par-
ticle and the perimeter of the actual particle. A convexity
of 1 means that the surface of the particle is completely
smooth, and convexities closer to 0 indicate longer par-
ticle perimeters in relation to the convex hull perimeter,
indicating a rougher surface. Thus, the convexity is a rela-
tive but not a direct measure of the surface roughness.
The solidity is calculated through the regionprops func-
tion in step 4). It provides an estimate of the overall fluffi-
ness or porosity of a particle and is the ratio between the
particulate area and the convex hull area.

Step 6: Result plotting (optional)
This step may be skipped entirely by setting the PlotResults
input to anything but 1 or 2. If PlotResults is set to 1 this
last step will produce four plots in individual figures and if
it set to 2 it will produce one figure with four subplots. The
four individual plots are the original image overlaid by the
number assigned to each individual particle, the original
image overlaid by the selected particles, a histogram of
the ESD of the particles and a particle size frequency dis-
tribution. The four subplot figures are the original image,
the original image overlaid by the selected particles, a his-
togram of ESD-values and the particle size frequency, see
example in Figure 3.

Running the code on several images
The ParChar_mult code allows the user to run the particle
characterization code on numerous images all from within
the same file location. The location of images and the loca-
tion where the results will be stored are specified through
a pop-up interface. The code combines individual images
into two table variables and saves these to the specified
location whenever the total amount of particles that have
been identified crosses 10,000, in order to save memory.
This code can only run if the CalcPSD input is set to 1.

Influence of changing inputs
This section will give a very brief example of the influence
of applying or excluding the optional image processing
steps. The following examples are all based on the exam-
ple image from the Pcam, available together with the

Markussen: Parchar – Characterization of Suspended Particles
Through Image Processing in Matlab

Art. e26, p.  5 of 7

code. Five different setups are described and the resulting
subplots and workspace variables are all available in the
Examples.zip file which can be downloaded from github
archive. For an example of the Pcam using the input val-
ues specified in Table 1, see Figure 3.

With a threshold level of 0.1 and no morphological
reconstruction, no background illumination correction
and no removal or exclusion of individual particles with
low maximum intensity threshold, the result is rather
noisy with a large number of identified particles with an
area of only one pixel, see the Lvl01_Subdiff0_MaxInt0
files. The result is much less noisy and the small 1-pixel
particles are removed if morphological reconstruction
and background illumination correction is applied, see
Lvl01_Subdiff50_MaxInt0 files. The result is also less
noisy if morphological reconstruction and background
noise is disabled but the maximum intensity thresh-
old is applied, see Lvl01_Subdiff0_MaxInt05 files. The
difference between the two latter cases is that a larger
number of small, low-intensity particles are identified
when SubDiff is used while more low-intensity parts
of the larger particles are incorporated when MaxInt
is used. When morphological reconstruction is carried

out, background illumination is corrected and indi-
vidual particles with low maximum intensity thresh-
old are removed and the result shows no low-intensity
particles and a larger exclusion of low-intensity parts
of larger particles, see Lvl01_Subdiff50_MaxInt05 files.
Finally, setting all parameters to the same values as the
last example but using a threshold level of 0.2 will cause
all found particles to be smaller, as the larger thresh-
old means that more pixels will be excluded from the
identifications, see Lvl02_Subdiff50_MaxInt05 files. The
user is strongly encouraged to test the variables and the
influence of applying or excluding the optional image
processing steps based on the images being processed to
find optimal parameter settings.

Quality control
The ParChar code has been tested on Matlab versions from
R2012b and newer. It has not been run on other operat-
ing systems than Windows 7. The code has been used in
a paper published in Scientific Reports [1]. In short, the
code was found to perform very well when compared
to other particle characterisation methods. Scientific
Reports applies an open-access policy and I refer to the

Figure 3: Example of the result of image processing using the ParChar code on an image from the Pcam of natural par-
ticles suspended in the water. The inputs for this example are shown in Table 1. Top left plot shows the original input
image, bottom left plot shows the detected particles from the input images, top right plot shows the histogram count
of particles in size bins and bottom right plot shows the frequency distribution of the sizes according to the size bins.

Markussen: Parchar – Characterization of Suspended Particles Through
Image Processing in Matlab

Art. e26, p.  6 of 7

supplementary information of this paper for a more thor-
ough description of the quality control of the code, in
terms of how well particle sizes are characterized in rela-
tion to other methods. The user can check if the code is
working using the example image of rice grains built into
Matlab. This would be done by browsing to the location of
the Matlab example images (\\$Matlabdir$\$version$\
toolbox\images\imdata) and selecting the rice.png file.
Otherwise, the code can be run using the Pcam exam-
ple image supplied with the code. The inputs shown in
Table 1 will yield particle size distributions and charac-
terizations of the rice grains and the Pcam particles. 70
grains will be identified with a mean ESD of the grains of
1260 µm, see Figure 2 as well. Note that this is based on
an arbitrary definition of the field of view in the ImHeight
and ImWidth inputs and thus does not explain the real
size of the rice grains. 229 particles will be identified in
the Pcam image with a mean ESD of 54.4 µm when the
inputs stated in the table are used. The user may alter
e.g. the Lvl input to see how this influences the outlines
of each grain or particle and thus how it potentially can
improve e.g. separation of individual grains.

(2) Availability
Operating system
Matlab 8.0 (R2012b), Matlab runs on Windows, Linux and
Mac.

Programming language
Matlab 8.0 (R2012b), upward compatible.

Additional system requirements
Matlab 8.0 (R2012b), no specific computer requirements.

Dependencies
The Image Processing Toolbox in Matlab is required.
Plotting requires the original version of the imoverlay
function which is also available in the archive (imoverlay_
orig). Note that this version is different from the imover-
lay function available from the Matlab File Exchange, and
the ParChar code only works with the original function.

A small script (CompatibilityTest) can be run to make sure
the correct versions and files are present.

List of contributors
TNM programmed and tested the code and wrote this
article.

Thorbjørn Joest Andersen, University of Copenhagen,
commented on the code implementation and assisted
with knowledge on other particle sizing systems.

Software location
Archive

Name: github.com
Persistent identifier: https://github.com/ThorNM/

ParChar
Licence: CC-BY
Publisher: Thor Markussen
Version published: 1.0
Date published: 18/01/2016

Language
English

(3) Reuse potential
Numerous types of studies identify and characterize
particles. In several of these fields camera systems are
used with quite different image processing techniques.
Examples are:

• Suspended particle transport in coastal aquatic
environments: The correct characterization and
size determination of suspended particles is
important in order to understand the fluxes of
particles and related substances and numerous
studies have been carried out using camera sys-
tems [2, 3, 4, 5, 6, 7].

• Particle dynamics in marine environments: A very
diverse range of particle types and sizes exist in marine
waters and numerous studies use camera systems to
describe the dynamics and particles [8, 9, 10, 11, 12, 13]

• Oil droplet studies: The size and behaviour of oil drop-
lets is studied to understand the potential spread of
oil after oil leaks. Brandvik [14] shows an example of
such a study in which a combination of laser diffrac-
tion and camera systems is used for particle sizing.

The code presented here is not believed to be directly and
universally applicable to all studies using camera systems,
such as those referenced above. However, it can aide in
getting more standardized ways of identifying and char-
acterizing particles with camera systems. Thus, the aim
has been to present a method that is freely and openly
available for everyone to adapt, update and use in their
applications. While the focus has been on using it for the
Pcam system, users might have to adapt the code to their
specific system. No guaranteed support mechanisms are
in place for this code, but users are encouraged to con-
tact the author to discuss specific application possibilities
and issues.

Input variable Rice.png Pcam example
image

ImHeight 20 15

ImWidth 20 22.5

MeasDepth 1 2

SubDiff 50 0

Lvl 0.6 0.1

MaxInt 0.5 0.5

CalcPSD 1 1

PlotResults 1 1

Table 1: Suggested code inputs to test if the code is work-
ing using either the rice grains example from Matlab or
the Pcam example image supplied with the code.

http://www.github.com
https://github.com/ThorNM/ParChar
https://github.com/ThorNM/ParChar

Markussen: Parchar – Characterization of Suspended Particles
Through Image Processing in Matlab

Art. e26, p.  7 of 7

Acknowledgements
Gabriel Herbst and Christian Winter from MARUM,
University of Bremen, are greatly acknowledged for design-
ing the Pcam system and for discussions on the appli-
cability of this code. Steve Eddins from The Mathworks
Inc. is acknowledged for creating the original imoverlay
function and making it freely available on the Matlab File
Exchange. The ImRec function is based on a code provided
during the Matlab course “Image Processing with Matlab”
and I would like to again acknowledge The Mathworks Inc.
for making the code available.

Competing Interests
The author declares that he has no competing interests.

References
1. Markussen, T N, Elberling, B, Winter, C and

 Andersen, T J 2016 Flocculated meltwater particles
control Arctic land-sea fluxes of labile iron. Scientific
Reports. 6. DOI: http://dx.doi.org/10.1038/srep24033

2. Keyvani, A and Strom, K 2013 A fully-automated im-
age processing technique to improve measurement of
suspended particles and flocs by removing out-of-focus
objects. Computers & Geosciences. 52. DOI: http://
dx.doi.org/10.1016/j.cageo.2012.08.018

3. Eisma, D, Schuhmacher, T, Boekel, H,
 Vanheerwaarden, J, Franken, H, Laan, M, Vaars, A,
Eijgenraam, F and Kalf, J 1990 A Camera and Image-
Analysis System for Insitu Observation of Flocs in Natural-
Waters. Netherlands Journal of Sea Research. 27(1). DOI:
http://dx.doi.org/10.1016/0077-7579(90)90033-D

4. Benson, T and French, J R 2007 InSiPID: A new low-cost
instrument for in situ particle size measurements in es-
tuarine and coastal waters. Journal of Sea Research. 58(3).
DOI: http://dx.doi.org/10.1016/j.seares.2007.04.003

5. Syvitski, J P M and Hutton, E W H 1996 In situ
characteristics of suspended particles as determined
by the Floc camera assembly FCA. Journal of Sea Re-
search. 36(1–2). DOI: http://dx.doi.org/10.1016
/ S1385-1101(96)90783-2

6. Dyer, K R and Manning, A J 1999 Observation of the
size, settling velocity and effective density of flocs, and
their fractal dimensions. Journal of Sea Research. 41(1–2).
DOI: http://dx.doi.org/10.1016/S1385-1101(98)00036-7

7. Manning, A J, Friend, P L, Prowse, N and Amos,
C L 2007 Estuarine mud flocculation properties

determined using an annular mini-flume and the Lab-
SFLOC system. Continental Shelf Research. 27(8). DOI:
http://dx.doi.org/10.1016/j.csr.2006.04.011

8. Iversen, M H, Nowald, N, Ploug, H, Jackson, G A,
and Fischer, G 2010 High resolution profiles of vertical
particulate organic matter export off Cape Blanc, Mau-
ritania: Degradation processes and ballasting effects.
Deep Sea Research Part I: Oceanographic Research
Papers. 57(6). DOI: http://dx.doi.org/10.1016/j.
dsr.2010.03.007

9. Nowald, N, Iversen, M H, Fischer, G, Ratmeyer, V
and Wefer, G 2015 Time series of in-situ particle prop-
erties and sediment trap fluxes in the coastal up-
welling filament off Cape Blanc, Mauritania. Progress in
Oceanography. 137. DOI: http://dx.doi.org/10.1016/j.
pocean.2014.12.015

10. Jackson, G A, Maffione, R, Costello, D K,
Alldredge, A L, Logan, B E and Dam, H G 1997 Parti-
cle size spectra between 1 mu m and 1 cm at Monterey
Bay determined using multiple instruments. Deep-
Sea Research Part I-Oceanographic Research Papers.
44(11). DOI: http://dx.doi.org/10.1016/S0967-
0637(97)00029-0

11. Jackson, G A 2005 Role of algal aggregation in vertical
carbon export during SOIREE and in other low biomass
environments. Geophysical Research Letters. 32(13).
DOI: http://dx.doi.org/10.1029/2005gl023180

12. Petrik, C M, Jackson, G A and Checkley, D M 2013
Aggregates and their distributions determined from
LOPC observations made using an autonomous pro-
filing float. Deep-Sea Research Part I-Oceanographic
Research Papers. 74. DOI: http://dx.doi.org/10.1016/j.
dsr.2012.12.009

13. Stemmann, L, Youngbluth, M, Robert, K,
Hosia, A, Picheral, M, Paterson, H, Ibanez, F,
 Guidi, L, Lombard, F and Gorsky, G 2008 Global zoo-
geography of fragile macrozooplankton in the upper
100-1000 m inferred from the underwater video pro-
filer. Ices Journal of Marine Science. 65(3). DOI: http://
dx.doi.org/10.1093/icesjms/fsn010

14. Brandvik, P J, Johansen, O, Leirvik, F, Farooq, U
and Daling, P S 2013 Droplet breakup in subsurface
oil releases – Part 1: Experimental study of droplet
breakup and effectiveness of dispersant injection.
Marine Pollution Bulletin. 73(1). DOI: http://dx.doi.
org/10.1016/j.marpolbul.2013.05.020

How to cite this article: Markussen, T N 2016 Parchar – Characterization of Suspended Particles Through Image Processing in
Matlab. Journal of Open Research Software, 4: e26, DOI: http://dx.doi.org/10.5334/jors.114

Submitted: 21 January 2016 Accepted: 01 July 2016 Published: 19 July 2016

Copyright: © 2016 The Author(s). This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

Journal of Open Research Software is a peer-reviewed open access journal published by
Ubiquity Press OPEN ACCESS

http://dx.doi.org/10.1038/srep24033
http://dx.doi.org/10.1016/j.cageo.2012.08.018
http://dx.doi.org/10.1016/j.cageo.2012.08.018
http://dx.doi.org/10.1016/0077-7579(90)90033-D
http://dx.doi.org/10.1016/j.seares.2007.04.003
http://dx.doi.org/10.1016/S1385-1101(96)90783-2
http://dx.doi.org/10.1016/S1385-1101(96)90783-2
http://dx.doi.org/10.1016/S1385-1101(98)00036-7
http://dx.doi.org/10.1016/j.csr.2006.04.011
http://dx.doi.org/10.1016/j.dsr.2010.03.007
http://dx.doi.org/10.1016/j.dsr.2010.03.007
http://dx.doi.org/10.1016/j.pocean.2014.12.015
http://dx.doi.org/10.1016/j.pocean.2014.12.015
http://dx.doi.org/10.1016/S0967-0637(97)00029-0
http://dx.doi.org/10.1016/S0967-0637(97)00029-0
http://dx.doi.org/10.1029/2005gl023180
http://dx.doi.org/10.1016/j.dsr.2012.12.009
http://dx.doi.org/10.1016/j.dsr.2012.12.009
http://dx.doi.org/10.1093/icesjms/fsn010
http://dx.doi.org/10.1093/icesjms/fsn010
http://dx.doi.org/10.1016/j.marpolbul.2013.05.020
http://dx.doi.org/10.1016/j.marpolbul.2013.05.020
http://dx.doi.org/10.5334/jors.114
http://creativecommons.org/licenses/by/4.0/

