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WekaPyScript is a package for the machine learning software WEKA that allows learning algorithms and 
preprocessing methods for classification and regression to be written in Python, as opposed to WEKA’s 
implementation language, Java. This opens up WEKA to its machine learning and scientific  computing 
 ecosystem. Furthermore, due to Python’s minimalist syntax, learning algo rithms and preprocessing  methods 
can be prototyped easily and utilised from within WEKA. WekaPyScript works by running a local Python 
server using the host’s installation of Python; as a result, any libraries installed in the host installation 
can be leveraged when writing a script for WekaPyScript. Three example scripts (two learning algorithms 
and one preprocessing method) are presented.
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(1) Overview
Introduction
WEKA [1] is a popular machine learning workbench 
 written in Java that allows users to easily classify, process, 
and explore data. There are many ways WEKA can be used: 
through the WEKA Explorer, users can visualise data, train 
learning algorithms for classification and regression and 
examine perfor mance metrics; in the WEKA Experimenter, 
datasets and algorithms can be compared in an automated 
fashion; or, it can simply be invoked on the terminal or 
used as an external library in a Java project.

Another machine learning library that is increasingly 
becoming popular is Scikit-Learn [2], which is written in 
Python. Part of what makes Python attrac tive is its ease 
of use, minimalist syntax, and interactive nature, which 
makes it an appealing language to learn for non-specialists.  
As a result of Scikit-Learn’s popularity the wekaPython [3] 
package was released, which allows users to build Scikit-
Learn classifiers from within WEKA. While this  package 
makes it easy to access the host of algorithms that Scikit-
Learn provides, it does not provide the capability of  
executing external custom-made Python scripts, which 
limits WEKA’s ability to make use of other interesting 
Python libraries. For example, in the world of deep learning  
(currently a hot topic in machine learning), Python is 
widely used, with libraries or wrappers such as Theano [4], 
Lasagne [5], and Caffe [6]. The ability to create classifiers 
in Python would open up WEKA to popular deep learning 
implementations.

In this paper we present a WEKA classifier and a WEKA 
filter,1 PyScript Classifier and PyScriptFilter (under the 

umbrella “WekaPyScript”), that are able to call arbitrary 
Python scripts using the functionality provided by the 
wekaPython package. So long as the script conforms to 
what the WekaPyScript expects, virtually any kind of 
Python code can be called. We present three example 
scripts in this paper: one that re-implements WEKA’s 
ZeroR classifier (i.e., simply predicts the majority class from 
the training data), one that makes use of Theano in order 
to train a linear regression model, and a simple filter that 
standardises numeric attributes in the data. Theano is a 
symbolic expression library that allows users to  construct 
arbitrarily complicated functions and au tomatically 
 compute the derivatives of them – this makes it trivial to 
implement classifiers such as logistic regression or feed-
forward neural networks (according to Baydin et al. [7], 
the use of automatic differentiation in machine learning 
is scant).

In our research, we used this package to implement new 
loss functions for neural networks using Theano and com-
pare them across datasets using the WEKA Experimenter.

Implementation and architecture
In this section, we explain how wekaPython is imple-
mented and how WekaPyScript makes use of it to allow 
classifiers and filters to be implemented in Python.

wekaPython
WekaPyScript relies on a package for WEKA 3.7 called 
wekaPython [3]. This package provides a mechanism that 
allows the WEKA software, which is running in a Java JVM, 
to interact with CPython – the implementation of the 
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Python language written in C. Although there are versions 
of the Python language that can execute in a JVM, there is 
a growing collection of Python libraries for scientific com-
puting that are backed by fast C or Fortran implementa-
tions, and these are not available when using a JVM-based 
version of Python.

In order to execute Python scripts that can access pack-
ages incorporating native code, the wekaPython package 
uses a micro-service architecture. The package starts a 
small server, written in Python, and then communicates 
with it over local sockets. The server implements a simple 
protocol that allows WEKA to transfer and receive data-
sets, invoke CPython scripts, and retrieve the values of 
variables set in Python. The format for transporting data-
sets to and from Python is comma-separated values (CSV). 
On the Python side, the fast CSV parsing routine from 
the pandas package [8] is used to convert the CSV data 
read from a socket into a data frame data structure. On 
the WEKA side, WEKA’s CSVLoader class is used to convert 
CSV data sent back from Python.

The two primary goals of the wekaPython package are 
to: a) allow users of WEKA to execute arbitrary Python 
scripts in a Python console implemented in Java or as part 
of a data processing workflow; and (b) enable access to 
classifica tion and regression schemes implemented in 
the Scikit-Learn [2] Python library. In the case of the for-
mer, users can write and execute scripts within a plug-in 
graphical environment that appears in WEKA’s Explorer 
user interface, or by using a scripting step in WEKA’s 
Knowledge Flow environment. In the case of the latter, 
the package provides a “wrapper” WEKA classifier imple-
mentation that executes Python scripts to run Scikit-Learn 
algorithms. Because the wrap per classifier implements 
WEKA’s Classifier API, it works in the same way as a 
native WEKA classifier, which allows it to be processed by 
WEKA’s evalua tion routines and used in the Experimenter 
framework. Although the general scripting functionality 
provided by wekaPython allows users to write scripts that 
access machine learning libraries other than Scikit-Learn, 
they do not appear as a native classifier to WEKA and can 

not be evaluated in the same way as the Scikit-Learn wrap-
per. The goal of the WekaPyScript package described in 
this paper is to provide this functionality.

WekaPyScript
The new PyScriptClassifier and PyScriptFilter components 
contain various op tions such as the name of the Python 
script to execute and arguments to pass to the script 
when training or testing. The arguments are represented 
as a semicolon-separated list of variable assignments. All 
of WekaPyScript’s options are described below in Table 1. 
Figures 1 and 2 show the GUI in the WEKA Explorer for 
PyScript Classifier and PyScriptFilter, respectively.

When PyScriptClassifier/PyScriptFilter is invoked, it will 
utilise wekaPython to start up a Python server on local-
host and construct a dictionary called args, which contains 
either the training or the testing data (depending on the 
context) and meta-data such as the attribute names and 
their types. This meta-data is described in Table 2.

This args dictionary can be augmented with extra 
arguments by using the -args option and passing a sem-
icolon-separated list of variable assignments. For instance, 
if -args is alpha=0.01;reg=’l2’ then the diction-
ary args will have a variable called alpha (with value 
0.01) and a variable reg (with value ’l2’) and these will 
be available for access at both training and testing time.2

Given some Python script, PyScriptClassifier will execute 
the following block of Python code to train the model:
import imp

cls =  imp.load_source(’train’, <name of python 

script>)

model = cls.train(args)

In other words, it will try and call a function in the speci-
fied Python script called train, passing it the args object,  
and this function should return (in some form) some-
thing that can be used to reinstantiate the model. When 
the resulting WEKA model is saved to disk (e.g., through 
the command line or the WEKA Explorer) it is the model 
 variable that gets serialised (thanks to wekaPython’s 
 ability to receive variables from the Python VM). If the 

Table 1: Options for PyScriptClassifier and PyScriptFilter (* = applicable only to PyScriptClassifier, ** = applicable only 
to PyScriptFilter). (Note that the names in parentheses are the names of the options as shown in the Explorer GUI, as 
opposed to the terminal).

Option Description

-cmd (pythonCommand) Name of the Python executable

-script (pythonFile) Path to the Python script

-args (arguments) Semicolon-separated list of arguments (variable assignments) to pass to the script 
when training or testing

-binarize (shouldBinarize)* Should nominal attributes be converted to binary ones?

-impute (shouldImpute)* Should missing values be imputed (with mean imputation)?

-standardize (shouldStandardize)* Should attributes be standardised? (If imputation is set then this is done after it)

-stdout (printStdOut) Print any stdout from Python script?

-save (saveScript) Save the script in the model? (E.g., do not dynamically load the script specified by  
–script at testing time)

-ignore–class (ignoreClass)** Ignore class attribute? (See Table 2 for more information.)
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Variable(s) Description Type

X_train, 
y_train

Data matrix and label vector for training data. If -ignore-class 
is set or the class attribute is not specified, y_train will not exist 
and will instead be inside X_train as an extra column

numpy.ndarray (float 64),  
numpy.ndarray (int 64)

X, y* Data matrix and label vector for data, when PyScriptFilter calls the 
process method (see Listing 2)

numpy.ndarray (float 64),  
numpy.ndarray (int 64)

X_test Data matrix for testing data numpy.ndarray (float 64)

relation_name Relation name of ARFF str

class_type Type of class attribute (e.g., numeric, nominal) str

num_classes Number of classes int

attributes Names of attributes list

class Name of class attribute str

attr_values Dictionary mapping nominal/string attributes to their values dict

attr_types Dictionary mapping attribute names to their types (possible values 
are either nominal or numeric

dict

Table 2: Data and meta-data variables passed into args (* = only applicable to PyScriptFilter).

Figure 1: The graphical user interface for PyScriptClassifier.
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Figure 2: The graphical user interface for PyScriptFilter.

-save flag is set, the WEKA model will internally store 
the Python script so that at testing time the script speci-
fied by -script is not needed – this is not ideal however 
if the script is going to be changed frequently in the future.

When PyScriptClassier needs to evaluate the model on 
test data, it dese rialises the model, sends it back into the 
Python VM, and runs the following code for testing:
cls =  imp.load_source(’test’, <name of python 

script>)

preds = cls.test(args, model)

In this example, test is a function that takes a vari-
able called model in addition to args. This additional 
variable is the model that was previously returned by the 
train  function. The test function returns an n × k 
Python list (i.e., not a NumPy array) in the case of classifi-
cation (where ni is the probability distribution for k classes 
for the i’th test instance), and an n-long Python list in the 
case of regression.

To get a textual representation of the model, users must 
also write a function called describe which takes two 

arguments – the args object as described earlier, and 
the model itself – and returns some textual representa-
tion of the model (i.e. a string). This function is used as 
follows:
cls =  imp.load_source(’describe’, <name of 

python script>) 

model_description = cls.describe(args, model)

From the information described so far, the basic 
 skeleton of a Python script implementing a classifier will 
look like what is shown in Listing 1.

PyScript Filter also has a train function that works in 
the same way.3 Unlike a test function however, there is a 
process(args, model) function, which is applied to 
both the training and testing data. This function returns 
a modified version of the args object (this is because 
filters may change the structure, i.e., attributes, and con-
tents of the data):
cls =  imp.load_source(’process’, <name of python 

script>)

new_args = cls.process(args, model)

Listing 1: Skeleton of a Python script for PyScriptClassifier.

def train(args):
 # code for training model
def test(args, model):
 # code for running model on new instances
def describe(args, model):
 # textual representation of model
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This new args object is then automatically converted 
back into WEKA’s internal ARFF file representation, which 
then can be input into another filter or classifier.

The skeleton of a Python filter is shown in Listing 2.

Example use
In this section we present three examples: a classification 
algorithm that simply predicts the majority class in the 
training data; an excerpt of a linear regres sor that uses 
automatic differentiation; and a filter that standardises 
numeric attributes in the data.

ZeroR
The first example we present is one that re-implements WEKA’s 
ZeroR classifier, which simply finds the majority class in the 
training set and uses that for all predictions  (see Listing 3).

In the train function we simply count all the classes 
in y_train and return the index (starting from zero) 
of the majority class, m (lines 5–7). So for this particular 
script, the index of the majority class is the “model” that is 
returned. In line 15 of the test function, we convert the 
majority class index into a (one hot-encoded) probability 
distribution by indexing into a k × k identity matrix, and 
in line 16, return this vector for all n test instances (i.e., 
it returns an n × k array, where n is the number of test 
instances and k is the number of classes; nim = 1 and the 
other entries in ni are zero).

Here is an example use of this classifier from a terminal 
session (assuming it is run from the root directory of the 
WekaPyScript package, which includes zeror.py in its 
scripts directory and iris.arff in the datasets 
directory)4:

java weka.Run .PyScriptClassifier \

 -cmd python \

 -script scripts/zeror.py \

 -t datasets/iris.arff \

 -no-cv

This example is run on the entire training set (i.e., 
no cross-validation is performed) since the standard 
-no-cv flag for WEKA is supplied. We have also used 
-cmd to tell WekaPyScript where the Python execut-
able is located (in our case, it is located in the PATH 
variable so we only have to specify the executable 
name rather than the full path). If -cmd is not speci-
fied, then WekaPyScript will assume that the value is 
python. The output of this command is shown below 
in Listing 4.

Linear regression
We now present an example that uses Theano’s 
automatic differentiation capa bility to train a linear 
regression classifier. We do not discuss the full script 
and instead present the gist of the example. To intro-
duce some notation, let x = {x(1), x(2), . . . , x(n) } be the 
training examples, where x(i) ∈ Rp, and y = {y(1), y(2), 
 . . . , y(n) } where y(i) ∈ R. Then, the sum-of-squares loss 
is simply:

( ) ( ) 2

1

1
( , ) [( ) ]

n
i i

i

L w b wx b y
n =

= + -å  (1)

where w ∈ Rp is the vector of coefficients for the linear 
regression model and b ∈ R is the intercept term. To fit 
a model, i.e., find w and b such that L (w, b) is minimised, 

Listing 2: Skeleton of a Python script for PyScriptFilter.

from collections import Counter

import numpy as np

def train(args):

       y_train = args[“y_train”].flatten()

       counter = Counter(y_train)

       return counter.most_common()[0][0]

def describe(args, model):

       return “Majority class: %i” % model

def test(args, model):

       num_classes = args[“num_classes”]

       n = args[“X_test”].shape[0]

       majority_cls = np.eye(num_classes)[model].tolist()

       return [majority_cls for x in range(0, n)]

def train(args):

 # code for training filter

def process(args, model):

 # code for processing instances(training or testing)

Listing 3: Python implementation of ZeroR.
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we can use gradient descent and iteratively update  
w and b:

: ( ,  )w w L w b
w

a
¶

= -
¶

 (2)

: ( ,  )b b L w b
b

a
¶

= -
¶  (3)

We repeat above until we reach a maximum number of 
epochs (i.e., scans through the training data) or until we 
reach convergence (with some epsilon, ∈). Fortunately, we 
do not need to manually compute the partial derivatives 
because Theano can do this for us. Listing 5 illustrates 
this.

In this code, which we would place into the train 
 function of the script for PyScriptClassifier, we define our 
parameters w and b in lines 7–9, initialising w and b to 
zeros. In lines 12–13, we define our symbolic matrices  
x ∈ Rn×p and y ∈ Rn×1, and in line 15, the output function 
h(x) = wx+b, where h(x) ∈ Rn×1. In line 18, we finally com-
pute the loss function in Equation 1 and in lines 20–21 we 
compute the gradients 

w
¶
¶

L(w, b) and 
b
¶
¶

L(w, b). We define 
our learning rate α in line 23 and in line 24, we define 
the parameter updates as described in Equations 2 and 
3. Finally, in line 26 we define the iter_train func-
tion: given some x and y (which can be the entire training 

set, or a mini-batch, or a single example), it will output 
the loss (Equation 1) and automatically update the param-
eters as per Equations 2 and 3.

We can run this example from a terminal session by 
executing:
java weka.Run .PyScriptClassifier \

 -script scripts/linear-reg.py \

 -args “alpha=0.1; epsilon=0.00001“ \

 -standardize \

 -t datasets/diabetes_numeric.arff \

 -no-cv

In this example we have used the -standardize flag 
to perform zero-mean unit-variance normalisation on all 
the numeric attributes. Also note that we did not have to 
explicitly specify an alpha and epsilon since the script has 
default values for these – this was done just to illustrate 
how arguments work. The output of this script is shown 
below in Listing 6.

Because we created a textual representation of the 
model with the describe function, we get the equation 
of the linear classifier in the output.

Standardise filter
Lastly, we present an example filter script that stand-
ardises all numeric at tributes by subtracting the mean 
and dividing by the standard deviation. This is shown in 
Listing 7.

Options: –script scripts/zeror.py

Majority class: 0

Time taken to build model: 2.54 seconds

Time taken to test model on training data: 0.02 seconds

=== Error on training data ===

Correctly Classified Instances 50  33.3333 %
Incorrectly Classified Instances 100  66.6667 %
Kappa statistic 0
Mean absolute error 0.4444
Root mean squared error 0.6667
Relative absolute error 100    %
Root relative squared error 141.4214 %
Coverage of cases (0.95 level) 33.3333 %
Mean rel. region size (0.95 level) 33.3333 %
Total Number of Instances 150

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F–Measure MCC ...
1.000 1.000 0.333 1.000 0.500 0.000 ...
0.000 0.000 0.000 0.000 0.000 0.000 ...
0.000 0.000 0.000 0.000 0.000 0.000 ...
Weighted Avg. 0.333 0.333 0.111 0.333 0.167 ...

=== Confusion Matrix ===

a b c  <-- classified as
50 0 0 |   a = Iris – setosa
50 0 0 |   b = Iris – versicolor
50 0 0 |   c = Iris – virginica

Listing 4: Output from zeror.py script.
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import theano
from theano import tensor as T
import numpy as np

# assume 5 attributes for this example
num_attributes = 5
w = theano.shared(
    np.zeros((num_attributes, 1)), name =’w’)
b = theano.shared(0.0, name =’b’)

# let x be a n*p matrix, and y be a n*1 matrix
x = T.dmatrix(’x’)
y = T.dmatrix(’y’)
# prediction is simply xw + b
out = T.dot(x, w) + b

# loss function is mean squared error
loss = T.mean((out - y)**2)
# compute gradient of cost w.r.t. w and b
g_w = T.grad(cost = loss, wrt = w)
g_b = T.grad(cost = loss, wrt = b)

alpha = 0.01
updates = [(w, w - alpha * g_w), (b, b - alpha * g_b)]

iter_train = theano.function(
    [x, y], outputs=loss, updates=updates)

Listing 5: Optimising sum-of-squares loss in Theano.

Options: –script scripts/linear–reg.py...

f(x)=
  age *0.266773099848 +
  deficit *0.289990210412 +
  4.74354333559

Time taken to build model: 8.49 seconds
Time taken to test model on training data: 1.18 seconds

=== Error on training data ===

Correlation coefficient 0.607
Mean absolute error 0.448
Root mean squared error 0.5659
Relative absolute error 82.3838 %
Root relative squared error 79.4711 %
Coverage of cases (0.95 level) 0       %
Mean rel.region size (0.95 level) 0       %
Total Number of Instances 43

Listing 6: Output from linear-reg.py script.

In lines 11–18, we iterate through all attributes  
in the dataset and store the means and standard devia-
tions for the numeric attributes. The “model” that we 
return in this script is a tuple of two lists (the means 
and standard deviations). In lines 26–28, we perform 
the standardisation. From there, we return the args 
object (which has changed due to the modification  
of X).

We can run this example on the diabetes dataset:
java weka.Run .PyScriptFilter \

 -script scripts/standardise.py \

 -i datasets/diabetes_numeric.arff \

 -c last

The output of this script is the transformed dataset. An 
excerpt of this, in WEKA’s ARFF data format, is shown in 
Listing 8.
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@relation diabetes_numeric—weka.filters.pyscript.PyScriptFilter ...

@attribute age numeric
@attribute deficit numeric
@attribute c_peptide numeric

@data

—0.952771, 0.006856, 4.8
—0.057814, —1.116253, 4.1
0.364805, 1.017655, 5.2 
0.389665, 0.048973, 5.5
0.339945, —2.927268, 5
...

Listing 8: Output from standardise.py script.

Listing 7: Standardise filter in Python.

from wekapyscript import \
   ArffToArgs, get_header, instance_to_string
import numpy as np

def train(args):
   X_train = args[“X_train”]
   means = []
   sds = []
   attr_types = args[“attr_types”]
   attributes = args[“attributes”]
   for i in range(0, X_train.shape[1]):
      if attr_types[attributes[i]] == “numeric”:
        means.append(np.nanmean(X_train[:,i]))
        sds.append(
           np.nanstd(X_train[:,i],ddof=1))
      else:
        means.append(None)
        sds.append(None)
   return (means, sds)

def process(args, model):
   X = args[“X”]
   attr_types = args[“attr_types”]
   attributes = args[“attributes”]
   means, sds = model
   for i in range(0, X.shape[1]):
      if attr_types[attributes[i]] == “numeric”:
        X[:,i] = (X[:,i] - means[i]) / sds[i]
   return args

Because we have set the class attribute using -c, 
standardisation is not applied to it. However, if we wish 
to also apply standardisation to it, we can add the flag 
-ignore-class to the end of the command.

Note that we are not limited to just modifying the 
existing data inside args – we can do more complex 
things such as adding new attributes, and an example of 
this is shown in the Gaussian noise filter (add-gauss-
noise.py) located in the scripts folder.

Quality control
WekaPyScript contains a collection of unit tests written 
for the JUnit frame work. WEKA also contains an abstract 
test class (that includes regression tests) for classifiers and 
filters to implement, which we have used to ensure that 

WekaPyScript performs correctly with other algorithms in 
WEKA.

(2) Availability
Operating system
WekaPyScript has been tested on OS X Yosemite, Ubuntu 
14.04.1, and Windows 10.

Programming language
Java 7+, CPython 2.7 or 3.4.

Dependencies
WEKA 3.7.13, the wekaPython package for WEKA, and 
Python. Python pack ages NumPy, Pandas, Matplotlib and 
Scikit-Learn are also required (the easiest way to install 
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these is through Anaconda).5 To run the linear regression 
exam ple, Theano should also be installed.6

Software location
Archive

• Name: WekaPyScript
• Identifier: http://dx.doi.org/10.5281/zenodo.50198
• License: GPLv3
• Publisher: Zenodo
• Date published: 04/22/2016

Code repository
• Name: Github
• URL: http://github.com/christopher-beckham/ 

weka-pyscript
• License: GPLv3
• Current version: 0.5.0
• Date published: 04/22/2016

Documentation
• Mailing list: https://groups.google.com/forum/ 

#!forum/weka-pyscript
• Installation instructions: https://github.com/

christopher-beckham/weka-pyscript/blob/master/
README.md

• Wiki: https://github.com/christopher-beckham/
weka-pyscript/wiki

(3) Reuse potential
PyScriptClassifier and PyScriptFilter can be used to imple-
ment filters and clas sifiers without requiring the end user 
to know Python. For example, we cre ated LasagneNet,7 a 
classifier that wraps the deep neural network framework 
Lasagne. Users can easily define network architectures 
within WEKA, and once trained, the WekaLasagne classifier 
will use PyScript Classifier to generate the necessary Python 
code in order to train the neural network. This enables 
users not familiar with Python or Lasagne to train a vari-
ety of neural networks within WEKA which are relatively 
fast to train, thanks to the latter’s utilisation of native linear 
algebra libraries. Within the machine learning community, 
re searchers can use WekaPyScript to compare Python imple-
mentations of learning algorithms with ones in WEKA (or in 
R)8, by using the WEKA Experimenter tool.
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Notes
 1 Filters are used to preprocess the data before being 

provided to a learning algorithm. Examples of filter  
applications include binarisation of nominal  attributes, 
standardisation of data, and discretisation. In the 
 context of WEKA, a “classifier” refers to either a clas-
sification or regression learning algorithm. Additional 
information can be found at https://weka.wikispaces.
com/Primer.

 2 Since args is a list of Python variable assign-
ments separated by semicolons, something like 
“a=[1,2,3,4,5];b=abs(−2)” is valid because 
it will result in the assignments args[’a’] = 
[1,2,3,4,5] and args[’b’] = abs(−2), 
which are syntactically valid Python statements.

 3 “Training” may be a confusing term depending on the 
filter. For example, a filter that randomly adds noise to 
values in the data need not be “trained”, but a supervised 
filter (such as a discretisation algorithm) will. In the case 
of the former, we can simply perform no operation in this 
method and return anything, such as an empty string.

 4 This assumes that weka.jar is located in the 
CLASSPATH variable. For more information, see the 
README located in the root of the package directory.

 5 https://www.continuum.io/downloads 
 6 https://github.com/Theano/Theano
 7 http://www.github.com/christopher-beckham/weka-

lasagne
 8 R algorithms can be called from WEKA using the  

RPlugin package: http://weka.sourceforge.net/package 
MetaData/RPlugin/index.html
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