Mahotas is a computer vision library for Python. It contains traditional image processing functionality such as filtering and morphological operations as well as more modern computer vision functions for feature computation, including interest point detection and local descriptors.

The interface is in Python, a dynamic programming language, which is appropriate for fast development, but the algorithms are implemented in C++ and are tuned for speed. The library is designed to fit in with the scientific software ecosystem in this language and can leverage the existing infrastructure developed in that language.

Mahotas is released under a liberal open source license (MIT License) and is available from http://github.com/luispedro/mahotas and from the Python Package Index (http://pypi.python.org/pypi/mahotas). Tutorials and full API documentation are available online at http://mahotas.readthedocs.org/.

Keywords: computer vision, image processing

Funding statement
The author was supported by the Fundação para a Ciência e Tecnologia (grant SFRH/BD/37535/2007 to the author and grant PTDC/SAU-GMG/115652/2009 to Musa Mhlanga), by NIH grant GM078622 (to Robert F. Murphy), by a grant from the Scaife Foundation, by the HHMI Interfaces Initiative, and by a grant from the Siebel Scholars Foundation.
Surf: Speeded-up Robust Features. This includes both keypoint detection and descriptor computation.

Features: Global feature descriptors. In particular, Haralick texture features, Zernike moments, local binary patterns, and threshold adjacency statistics (both the original and the parameter-free versions).

Wavelet: Haar and Daubechies wavelets. Forward and inverse transforms are supported.

Morphological functions: Erosion and dilation, as well as some more complex operations built on these. There are both binary and grayscale implementations of these operators.

Watershed: Seeded watershed and distance map transforms.

Filtering: Gaussian filtering, edge finding, and general convolutions.

Polygon operations: Convex hull, polygon drawing.

Numpy arrays contain data of a specific type, such as unsigned 8 bit integer or floating point numbers. While natural colour images are typically 8 bits, scientific data is often larger (12 and 16 bit formats are common). Processing can generate floating point images. For example, a common normalization procedure is to subtract from each pixel location the overall pixel value mean; the result will be a floating point image even if the original image was integral. Mahotas works on all datatypes. This is performed without any extra memory copies. Mahotas is heavily optimised for both speed and memory usage (it can be used with very large arrays).

There are a few interface conventions which apply to many functions. When meaningful, a structuring element is used to define neighbourhoods or adjacency relationships (morphological functions, in particular, use this convention). Generally, the default is to use a cross as the default if no structuring filter is given.

When a new image is to be returned, functions take an argument named out where the output will be stored. This argument is often much more restricted in type. In particular, it must be a contiguous array. Since this is a performance feature (its purpose is to avoid extra memory allocation), it is natural that the interface is less flexible (accessing a contiguous array is much more efficient than a non-contiguous one).

Examples of Use

Code for this and other examples is present in the mahotas source distribution under the demos/ directory. In this example, we load an image, find SURF interest points, and compute descriptors.

We start by importing the necessary packages, including numpy and mahotas. We also use scipy.cluster to demonstrate how the mahotas output can integrate with a machine learning package.

```python
import numpy as np
import mahotas as mh
from mahotas.features import surf
from scipy.cluster import vq
```

The first step is to load the image and convert to 8 bit numbers. In this case, the conversion is done using standard numpy methods, namely astype. We use the function mahotas.demos.image_path to access a demonstration image.

```python
import mahotas.demos
impath = mh.demos.image_path('luispedro.jpg')
f = mh.imread(impath, as_grey=True)
f = f.astype(np.uint8)
```

We can now compute SURF interest points and descriptors.

```python
spoints = surf.surf(f, 4, 6, 2)
descrs = spoints[:,6:]
```

The surf.surf function returns both the descriptors and their meta data. We use numpy operations to retain only the descriptors (the meta data is in the first five positions):

```python
colors = vq.kmeans2(vq.whiten(descrs), 5)
```

Using scipy.cluster.vq, we cluster the descriptors into five groups. The function kmeans2 returns two values: the centroids, which we ignore; and the cluster ids, which we will use below to assign colours:

```python
f2 = surf.show_surf(f, spoints[:64], cids, colors)
```

Finally, we can show the points in different colours. In order to avoid a very cluttered image, we will only plot the first 64 regions.

```python
colors = np.array([
    [255, 25, 1],
    [203, 77, 37],
    [151, 129, 56],
    [99, 181, 52],
    [47, 233, 5])
f2 = surf.show_surf(f, spoints[:64], cids, colors)
```

The show_surf only builds the image as a multi-channel (one for each colour) image. Using matplotlib, we finally display the image as Fig. 1.

```python
colors = np.array([
    [255, 25, 1],
    [203, 77, 37],
    [151, 129, 56],
    [99, 181, 52],
    [47, 233, 5])
f2 = surf.show_surf(f, spoints[:64], cids, colors)
```

The easy interaction with matplotlib is another way in which we benefit from the numpy-based ecosystem. Mahotas does not need to support interacting with a graphical system to display images.

Implementation

Mahotas is mostly written in C++, but this is completely hidden from the user as there are hand-written Python wrappers for all functions. The main reason that mahotas is implemented in C++ (and not in C, which is the language of the Python interpreter) is to use templates. Almost all C++ functionality is split across 2 functions:

1. A py_function which uses the Python C API to get arguments and check them.
2. A template function <dtype> which works for the type dtype performing the actual operation.
So, for example, this is how erode is implemented. py_erode consists mostly of boiler-plate code:

```c
PyObject* py_erode(PyObject* self, PyObject* args) {
    PyArrayObject* array;
    PyArrayObject* Bc;
    PyArrayObject* output;
    if (!PyArg_ParseTuple(args, "OOO", &array, &Bc, &output) ||
        !numpy::are_arrays(array, Bc, output) ||
        !numpy::same_shape(array, output) ||
        !numpy::equiv_typenums(array, Bc, output) ||
        PyArray_NDIM(array) != PyArray_NDIM(Bc)) {
        PyErr_SetString(PyExc_RuntimeError, TypeErrorMsg);
        return NULL;
    }
    holdref r_o(output);
    #define HANDLE(type) 
    erode>type<(numpy::aligned_array<T>(output),
                   numpy::aligned_array<T>(array),
                   numpy::aligned_array<T>(Bc));
    SAFE_SWITCH_ON_INTEGER_TYPES(array);
    #undef HANDLE
    ...
}
```

This function retrieves the arguments, performs some sanity checks, performs a bit of initialization, and finally, switches in the input type with the help of the SAFE_SWITCH_ON_INTEGER_TYPES macro, which calls the right specialisation of the template that does the actual work. In this example erode implements erosion:

```c
template<typename T>
void erode(numpy::aligned_array<T>& res,
           numpy::aligned_array<T>& array,
           numpy::aligned_array<T>& Bc) {
    gil_release nogil;
    const int N = res.size();
    typename numpy::aligned_array<T>:iterator iter = array.begin();
    filter_iterator<T> filter(array.raw_array(),
                               Bc.raw_array(),
                               ExtendNearest,
                               is_bool(T()));
    const int N2 = filter.size();
    T* rpos = res.data();
    for (int i = 0; i != N; ++i, ++rpos, filter.iterate_both(iter)) {
        T value = std::numeric_limits<T>::max();
        for (int j = 0; j != N2; ++j) {
            T arr_val = T();
            filter.retrieve(iter, j, arr_val);
            value = std::min<T>(value, erode_sub(arr_val, filter[j]));
        }
        *rpos = value;
    }
```

The template machinery makes the functions that use it very simple and easy to read. The only downside is that there is some expansion of code size when the compiler instantiates the function for the several integer and floating point types. Given the small size of these functions, the total size of the compiled library is reasonable (circa 6 MiB on an Intel-based 64 bit system for the whole library).

In the snippet above, you can see some other C++ machinery:

- **gil_release**: This is a “resource-acquisition is object initialisation” (raii) object that releases the Python global interpreter lock (gil) in its constructor and gets it back in its destructor. Normally, the template function will release the gil after the Python-specific code is done. This allows several mahotas functions to run concurrently.

- **array**: This is a thin wrapper around PyArrayObject, the raw numpy data type, which has iterators which resemble the C++ standard library. It also handles...
type-casting internally, making the code type-safer. This is also a raii object in terms of managing Python reference counts. In mahotas debug builds, this object additionally adds several checks to all the memory accesses.

- filter_iterator: This was adapted from code in the scipy.ndimage packages and it is useful to iterate over an image and use a centered filter around each pixel (it keeps track of all of the boundary conditions).

The inner loop is as direct an implementation of erosion as one would wish for: for each pixel in the image, look at its neighbours, subtract the filter value, and compute the minimum of this operation.

Efficiency

<table>
<thead>
<tr>
<th>Operation</th>
<th>mahotas</th>
<th>pymorph</th>
<th>scikits-image</th>
<th>OpenCV</th>
</tr>
</thead>
<tbody>
<tr>
<td>erode</td>
<td>1.6</td>
<td>15.1</td>
<td>7.4</td>
<td>0.4</td>
</tr>
<tr>
<td>dilate</td>
<td>1.5</td>
<td>9.1</td>
<td>7.3</td>
<td>0.4</td>
</tr>
<tr>
<td>open</td>
<td>3.2</td>
<td>24.3</td>
<td>14.8</td>
<td>NA</td>
</tr>
<tr>
<td>median filter (2)</td>
<td>226.9</td>
<td>NA</td>
<td>2034.0</td>
<td>NA</td>
</tr>
<tr>
<td>median filter (10)</td>
<td>2810.9</td>
<td>NA</td>
<td>1877.1</td>
<td>NA</td>
</tr>
<tr>
<td>center mass</td>
<td>5.0</td>
<td>NA</td>
<td>3611.2</td>
<td>NA</td>
</tr>
<tr>
<td>sobel</td>
<td>34.1</td>
<td>NA</td>
<td>62.5</td>
<td>6.2</td>
</tr>
<tr>
<td>cwatershed</td>
<td>174.8</td>
<td>58440.3</td>
<td>287.3</td>
<td>44.9</td>
</tr>
<tr>
<td>daubechies</td>
<td>18.8</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>haralick</td>
<td>233.1</td>
<td>NA</td>
<td>7760.7</td>
<td>NA</td>
</tr>
</tbody>
</table>

Table 1: Efficiency Results for mahotas, pymorph, scikits-image, and openCV (through Python wrappers). Shown are values as multiples of the time that numpy.max(image) takes to compute the maximum pixel value in the image (all operations are over the same image). For scikits-image, features on the grey-scale cooccurrence matrix were used instead of Haralick features, which it does not support. In the case of median filter, the radius of the structuring element is shown in parentheses. NA stands for “Not Available.”

Table 1 shows timings for different operations. These were normalized to multiples of the time it takes to go over the image and find its maximum pixel value (using the expression numpy.max(image)). The measurements shown were obtained on an Intel 64 bit system, running Ubuntu Linux. Due to the normalization, measurements obtained on another system (Intel 32 bits running Mac OS) were qualitatively similar.

The comparison is against Pymorph\(^3\), which is a pure Python implementation of some of the same functions; scikits-image, which is a similar project to mahotas, but with a heavier emphasis on the use of Cython\(^4\); and OpenCV, which is a C++ library with automatically generated Python wrappers.

OpenCV is the fastest library, but this comes at the cost of some flexibility. Arguments to its functions must be of the exact expected type and it is possible to crash the interpreter if types do match the expected type (in the other libraries, including mahotas, all types are checked and an exception is generated which can be caught by user code). This is particularly relevant for interactive use as the user is often exploring and is willing to pay the speed cost of a few extra type checks to avoid a hard-crash.

Distribution and Installation

In keeping with the philosophy of blending in with the ecosystem, Mahotas uses the standard Python build machinery and distribution channels. Building and installing from source code is done using python setup.py install Alternatively, Python based package managers (such as easy_install or pip) can be used (mahotas works well with these systems).

For compiling from source, a C++ compiler is needed, as well as the development headers for Python and numpy.

There are binary packages available for Windows, maintained by Christoph Gohlke, and for FreeBSD and Linux Frugalware through their respective package systems.

Quality Control

Mahotas includes a complete automated suite of unit tests, which tests all functionality and include several regression tests. There are no known bugs in version 1.0.2. Occasional bugs discovered in previous released versions have been corrected before the next release.

The development is completely open-source and development versions are available. Many users have submitted bug reports and fixes.

(2) Availability

Operating system

Mahotas runs and is used on different versions of Unix (including Linux, SunOS, and FreeBSD), Mac OS X, and Windows.

Programming Language

Mahotas works in Python (minimal version is 2.5, but mahotas works with all more recent versions, including version in the Python 3 series).

Additional system requirements

None at runtime. Compilation from source requires a C++ compiler and the Python development headers.

Dependencies

At runtime, mahotas requires numpy to be present and installed.

List of contributors

Luis Pedro Coelho (Carnegie Mellon University and Instituto de Medicina Molecular), Zachary Pincus (Stanford University), Peter J. Verveer (European Molecular Biology Laboratory), Davis King (Northrop Grumman ES), Robert Webb (Carnegie Mellon University), Matthew Goodman (University of Texas at Austin), K.-Michael Aye (University of Bern), Rita Simões (University of Twente), Joe Kington...
(University of Wisconsin), Christoph Gohlke (University of California, Irvine), Lukas Bossard (ETH Zurich), and Sandro Knauss (University of Bremen).

Code Repository

Name
Github

Persistent identifier
https://github.com/luispedro/mahotas

License
MIT

Publisher
Konstantin Nikolic

Date published
Since 2010 as mahotas. Some of the code had been previously made available under other names.

Archive

Name
PyPI

Persistent identifier
https://pypi.python.org/packages/source/m/mahotas/mahotas-1.0.2.tar.gz#md5=bc3e478a5deb0f2f05e9eb385bbb07ff
MD5: bc3e478a5deb0f2f05e9eb385bbb07ff

License
MIT

Date published
2013-05-04 (Mahotas v1.0.2)

(3) Reuse potential

Originally, this code was developed in the context of cellular image analysis. However, the code was designed so that mahotas would contain functionality that is not specific to cell image analysis and many computer vision pipelines can make use of it.

This package (or earlier versions of it) have been used by myself15,16 and close collaborators in several publications17. Other groups have used it in published work in cell image analysis18 and in other areas19. Ploshnik et al.20 used mahotas to detect nanoparticles in electron microscopy images.

Mahotas provides many basic tools which can be combined to process images. It can be used in any problem which requires the processing of images to extract quantitative information.

Discussion

Python is an excellent language for scientific programming because of the inherent properties of the language and because of the infrastructure that has been built around the numpy project. Mahotas works in this environment to provide the user with image analysis and computer vision functionality.

Mahotas does not include machine learning related functionality, such as k-means clustering or classification methods. This is the result of an explicit design decision. Specialised machine learning packages for Python already exist21,22,23,24. A good classification system can benefit both computer vision users and others. As these projects all use Numpy arrays as their data types, it is easy to use functionality from the different project seamlessly (no copying of data is necessary).

Mahotas is implemented in C++, as the standard Python interpreter is too slow for a direct Python implementation. However, all of the Python interface code is handwritten, as opposed to using automatic interface generators like Swig25. This is more work initially, but the end result is of much higher quality, especially when it comes to giving useful error messages. When a type mismatch occurs, an automatic system will often be forced to resort to a generic system as it does not have any knowledge of what the arguments mean to the user. It will only know their automatically inferred types. A handwritten system can also automatically convert arguments when meaningful and be more flexible without completely foregoing type checking.

Mahotas has been available in the Python Package Index since April 2010 and has been downloaded over fifty thousand times. This does not include any downloads from other sources. Mahotas includes a full test suite. There are no known bugs.

Acknowledgements

Mahotas includes code ported and incorporated from other projects. Initially, it was used in reproducing the functionality in the Subcellular Location Image Classifier (SLIC) tool from Robert F. Murphy’s Lab26 and the initial versions of mahotas were designed explicitly to support that functionality. The surf implementation is a port from the code from dlib,7 an excellent C++ library by Davis King. I also gleaned some insight into the implementation of these features from Christopher Evan’s OpenSURF library and its documentation27. The code which interfaces with the Freelimage library, was written by Zachary Pin cus and some of the support code was written by Peter J. Verveer for the scipy.ndimage project. All of these contributions were integrated while respecting the software licenses under which the original code had been released. Robert Webb, a summer student at Carnegie Mellon University, worked with me on the initial local binary patterns implementation. Finally, I thank the several users who have reported bugs, submitted fixes, and participated on the project mailing list.

Stéfan van der Walt and Andreas Müller offered helpful comments on a draft version of this manuscript.

References

1. van der Walt S, Colbert S and Varoquaux G 2011

2. Pietzsch T, Preibisch S, Tomanačk P and Saalfeld S 2012

