
Alvanos, M and Christoudias, T 2017 MEDINA: MECCA Development in Accelerators – KPP
Fortran to CUDA source-to-source Pre-processor. Journal of Open Research Software,
5: 13, DOI: https://doi.org/10.5334/jors.158

Journal of
open research software

(1) Overview
Introduction
The numerical global atmosphere-chemistry model EMAC
(ECHAM/MESSy Atmospheric Chemistry) is a modular
application used for climate modeling simulations [5].
EMAC uses the chemical kinetic module MECCA [8], utiliz-
ing the Kinetic Pre-Processor (KPP) general purpose open-
source software tool [4] to calculate the concentrations
and the interactions between different chemical species in
the atmosphere. Numerically, solving atmospheric chemi-
cal kinetics is one of the most computationally intensive
tasks in atmospheric chemical transport simulations.

The MECCA sub-model uses KPP to numerically solve
ordinary differential equations (ODE) describing atmos-
pheric chemical kinetics. KPP takes as input chemical
reactions written in a domain-specific language and
produces C and FORTRAN compatible code. The output
ODE solver allows for the temporal integration of the full
kinetic system. KPP utilizes the sparsity of the Jacobian
matrices to increase the efficiency of the solver [9].

In typical climate simulations, chemical kinetics
can take up to 90% of execution time [2]. To address
this computational challenge, this paper presents a
source-to-source parser that transforms the output of
KPP from FORTRAN to GPU accelerated code by gen-
erating a CUDA [7] compatible solver [3]. The goal is

to significantly improve the performance of numeri-
cal chemical kinetics (in terms of time-to-solution and
problem complexity) in climate simulation models
using GPU accelerators.

The software provides a purpose-built acceleration
pathway for EMAC, rather than the general closed source
solution KPP-A [6], which generates GPU-accelerated code
from KPP-language directly. There have also been similar
efforts in the WRF-Chem model [6].

Implementation and architecture
The implementation uses a source-to-source parser writ-
ten in the Python programming language to generate a
CUDA [7] compatible solver, by parsing the KPP preproc-
essor auto-generated FORTRAN code. Each GPU thread
calculates the chemical concentrations of an individual
cell. The solver uses the temporary arrays between differ-
ent steps and they are allocated in the stack memory with
the exception of the RCONST array that is stored in global
memory. The memory required for temporary arrays
depends on the configuration of the chemistry and can go
up to 50 KB per CUDA thread. The intermediate values are
stored in temporary arrays using the double representa-
tion. The accelerated code uses 3 KB of shared memory and
0.5 KB of constant memory when indirect arrays are not
used. The parser allocation additional constant memory

SOFTWARE METAPAPER

MEDINA: MECCA Development in Accelerators – KPP
Fortran to CUDA source-to-source Pre-processor
Michail Alvanos and Theodoros Christoudias
The Cyprus Institute, PO Box 27456, 1645 Nicosia, CY
Corresponding author: Michail Alvanos
(malvanos@gmail.com)

The global climate model ECHAM/MESSy Atmospheric Chemistry (EMAC) is a modular global model that
simulates climate change and air quality scenarios. The application includes different sub-models for the
calculation of chemical species concentrations, their interaction with land and sea, and the human inter-
action. The paper presents a source-to-source parser that enables support for Graphics Processing Units
(GPU) by the Kinetic Pre-Processor (KPP) general purpose open-source software tool. The requirements
of the host system are also described. The source code of the source-to-source parser is available under
the MIT License [1].

Keywords: GPU; CUDA; Chemical Kinetics; Climate modeling; Atmospheric Chemistry
Funding Statement: The research leading to these results has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant agreement No 675121 and grant agreement
No 676629. This work was also supported by the Cy-Tera Project, which is co-funded by the European
Regional Development Fund and the Republic of Cyprus through the Research Promotion Foundation.

https://doi.org/10.5334/jors.158
mailto:malvanos@gmail.com

Alvanos and Theodoros: MEDINAArt. 13, p. 2 of 4

up to 2 KB when indirect accesses are used. All the meth-
ods that are available in the KPP numerical library under
MECCA are supported.

The computation data structures are subdivided in
runtime-specified arrays of columns in the atmosphere,
with the memory of each array transferred to the GPU
global memory and each grid box calculated on a sep-
arate GPU core to achieve massive parallelization, as
shown in Figure 1. The CUDA chemical kinetics solver
comprises three steps, also presented diagrammatically
as a flow chart in Figure 2:

1.	 The first step is the calculation of the reaction rate
coefficients. The variable values are stored in a
global array inside the GPU and used in the com-
putational kernels.

2.	 The second step is the most computationally
demanding, including mostly linear algebra func-
tions for the ODE solvers. The kernel selects the
variation of the Rosenbrock solver method inside
the GPU using an array of constant values in the
memory.

3.	 The third step kernel is used for statistical reduc-
tion, and demands limited computational time
compared with other kernels.

There are two files required to enable the GPU utilization:
i) f2c_alpha.py and ii) kpp_integrate_cuda_
prototype.cu. The pre-processor is executed by run-
ning python f2c_alpha.py in the messy/util
directory.

When offloading to GPUs, the number of cells must
not exceed 12288. The application calculates the
number of cells by multiplying the number of col-
umns by the number of levels for the atmosphere. The
user can specify the number of columns by using the
NVL[1] (NPROMA) runtime parameter in the con-
figuration of the EMAC.

Quality control
To ensure the quality of the code, we conduct unit test-
ing by comparing the GPU accelerated with a pure Fortran
simulation for one model year, using 155 species and 310
reactions. We compare the output of chemical element
concentrations between the CPU only and accelerated
version after the first time-step to calculate the relative
error. The results show a median difference of 0.00005%
with the maximum difference value of 0.54% using iden-
tical inputs, ensuring the high accuracy of the chemical
solver. This is well within the accuracy criterion, asserting
the numerical correctness of the GPU kernel.

Finally, we compare the results of aggregated mass of the
CPU-only and GPU-accelerated version, over one year of
simulated time. This test aggregates the error created over
time using the L1-norm method and investigates the stabil-
ity of the model. The results show that the median value
of the difference in aggregated mass is less than 5%, well
within the expected margin of differences stemming from
architecture and compiler implementations.

Figure 1: Grid partitioning of the atmopshere in the glob-
al model. Each GPU thread is assigned the calculation
for one cell, stacked in arrays of columns.

(2) Availability
Operating system
The software is compatible with any operating system that
supports the CUDA SDK.

Programming language
The script is written in the Python language and it has
been tested with Python version 2.7. The script produces
code that supports the the CUDA programming model
version 2.0 or later.

Additional system requirements
Each CPU process that offloads to GPU requires a chunk of
the GPU VRAM memory, whose size is dependent on the
number of species and reaction constants in the MECCA
mechanism. The number of GPUs per node and VRAM
memory available in each GPU dictates the total number
of CPU cores that can run simultaneously. We strongly rec-
ommend that at least 2.5 GB of VRAM per CPU process
should be available on each GPU. Note that if not enough
memory is available, the CUDA runtime will silently fail –
without any warning.

Dependencies
The script requires Python version 2.6 or 2.7. The source
code produced requires the CUDA SDK 6.5 or newer.

List of contributors
•	 Michail Alvanos – Active maintenance and optimiza-

tion.
•	 Theodoros Christoudias – Conception, integration

with the ECHAM/MESSy climate model, correctness/
accuracy testing.

•	 Giannis Ashiotis – Developed an initial version of the
parser.

Software location
Archive

Name: MECCA – KPP Fortran to CUDA source-to-source
pre-processor.

Persistent identifier: DOI: 10.5281/zenodo.546811
Licence: MIT License.
Publisher: The Cyprus Institute.

https://doi.org/10.5281/zenodo.546811

Alvanos and Theodoros: MEDINA Art. 13, p. 3 of 4

Version published: 1.1.
Date published: 18/04/17.

Code repository
Name: GitHub.
identifier: https://github.com/CyIClimate/medina.
Licence: MIT License.
Date published: 12/12/16.

Language
English.

(3) Reuse potential
The source-to-source parser core can be used by other
researchers to transform FORTRAN 90 code to CUDA
accelerated code. The methodology can be used as tem-
plate to create high performance computing capabilities
on GPUs for scientific code that is currently written in
FORTRAN 90.

The CUDA compatible ODE solvers comprises the Runge
Kutta methods and the linearly-implicit Rosenbrock fam-
ily of solvers, and may be used for chemical kinetics and
numerical integration outside the field. The software is
supported by the developers. Any inquiries should be
addressed by e-mail.

Acknowledgements
The authors would like to thank Patrick Jöckel for his sup-
port during the packaging and integration of the source-
to-source parser and Klaus Klingmueller for the graphics
in Figure 1.

Competing Interests
The authors have no competing interests to declare.

References
1.	 Alvanos, M and Christoudias, T 2016 ‘Medina: KPP

Fortran to CUDA source-to-source pre-processor’.
2.	 Christou, M Christoudias, T, Morillo, J Alvarez, D

and Merx, H 2016 ‘Earth system modelling on

system-level heterogeneous architectures: EMAC
(version 2.42) on the Dynamical Exascale Entry
Platform (DEEP)’, Geoscientific Model Development
9(9), 3483. DOI: https://doi.org/10.5194/gmd-9-
3483-2016

3.	 Christoudias, T and Alvanos, M 2016 Accelerated
chemical kinetics in the EMAC chemistry-climate
model, In ‘High Performance Computing & Simulation
(HPCS), 2016 International Conference on’, IEEE,
pp. 886–889. DOI: https://doi.org/10.1109/
hpcsim.2016.7568427

4.	 Damian, V, Sandu, A, Damian, M, Potra, F and
Carmichael, G R 2002 ‘The kinetic preprocessor
KPP – a software environment for solving chemical
kinetics’, Computers & Chemical Engineering 26(11),
1567–1579. DOI: https://doi.org/10.1016/S0098-
1354(02)00128-X

5.	 Jöckel, P, Kerkweg, A, Pozzer, A, Sander, R, Tost, H,
Riede, H, Baumgaertner, A, Gromov, S and Kern, B
2010 ‘Development cycle 2 of the modular earth
submodel system (messy2)’, Geoscientific Model
Development 3(2), 717–752. DOI: https://doi.
org/10.5194/gmd-3-717-2010

6.	 Linford, J C, Michalakes, J, Vachharajani, M and
Sandu, A 2009 Multi-core acceleration of chemical
kinetics for simulation and prediction, In Proceedings
of the Conference on High Performance Computing
Networking, Storage and Analysis, ACM, p. 7. DOI:
https://doi.org/10.1145/1654059.1654067

7.	 Nvidia, C 2015 ‘Programming guide’.
8.	 Sander, R, Baumgaertner, A, Gromov, S, Harder, H,

Jöckel, P, Kerkweg, A, Kubistin, D, Regelin, E, Riede,
H, Sandu, A, Taraborrelli, D, Tost, H and Xie, Z-Q
2011 ‘The atmospheric chemistry box model CAABA/
MECCA-3.0’, Geoscientific Model Development 4(2), 373–
380. DOI: https://doi.org/10.5194/gmd-4-373-2011

9.	 Zhang, H, Linford, J C, Sandu, A and Sander, R
2011 ‘Chemical mechanism solvers in air quality
models’, Atmosphere 2(3), 510–532. DOI: https://doi.
org/10.3390/atmos2030510

Figure 2: Tasks offload execution GPU.

https://github.com/CyIClimate/medina
https://doi.org/10.5194/gmd-9-3483-2016
https://doi.org/10.5194/gmd-9-3483-2016
https://doi.org/10.1109/hpcsim.2016.7568427
https://doi.org/10.1109/hpcsim.2016.7568427
https://doi.org/10.1016/S0098-1354(02)00128-X
https://doi.org/10.1016/S0098-1354(02)00128-X
https://doi.org/10.5194/gmd-3-717-2010
https://doi.org/10.5194/gmd-3-717-2010
https://doi.org/10.1145/1654059.1654067
https://doi.org/10.5194/gmd-4-373-2011
https://doi.org/10.3390/atmos2030510
https://doi.org/10.3390/atmos2030510

Alvanos and Theodoros: MEDINAArt. 13, p. 4 of 4

How to cite this article: Alvanos, M and Christoudias, T 2017 MEDINA: MECCA Development in Accelerators – KPP Fortran to
CUDA source-to-source Pre-processor. Journal of Open Research Software, 5: 13, DOI: https://doi.org/10.5334/jors.158

Submitted: 09 December 2016 Accepted: 20 April 2017 Published: 28 April 2017

Copyright: © 2017 The Author(s). This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

Journal of Open Research Software is a peer-reviewed open access journal published by
Ubiquity Press OPEN ACCESS

https://doi.org/10.5334/jors.158
http://creativecommons.org/licenses/by/4.0/

	(1) Overview
	Introduction
	Implementation and architecture
	Quality control

	(2) Availability
	Operating system
	Programming language
	Additional system requirements
	Dependencies
	List of contributors
	Software location
	Archive

	Code repository
	Language

	(3) Reuse potential
	Acknowledgements
	Competing Interests
	References
	Figure 1
	Figure 2

