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(1) Overview
Introduction
The numerical global atmosphere-chemistry model EMAC 
(ECHAM/MESSy Atmospheric Chemistry) is a modular 
application used for climate modeling simulations [5]. 
EMAC uses the chemical kinetic module MECCA [8], utiliz-
ing the Kinetic Pre-Processor (KPP) general purpose open-
source software tool [4] to calculate the concentrations 
and the interactions between different chemical species in 
the atmosphere. Numerically, solving atmospheric chemi-
cal kinetics is one of the most computationally intensive 
tasks in atmospheric chemical transport simulations.

The MECCA sub-model uses KPP to numerically solve 
ordinary differential equations (ODE) describing atmos-
pheric chemical kinetics. KPP takes as input chemical 
reactions written in a domain-specific language and 
produces C and FORTRAN compatible code. The output 
ODE solver allows for the temporal integration of the full 
kinetic system. KPP utilizes the sparsity of the Jacobian 
matrices to increase the efficiency of the solver [9].

In typical climate simulations, chemical kinetics 
can take up to 90% of execution time [2]. To address 
this computational challenge, this paper presents a 
source-to-source parser that transforms the output of 
KPP from FORTRAN to GPU accelerated code by gen-
erating a CUDA [7] compatible solver [3]. The goal is 

to significantly improve the performance of numeri-
cal chemical kinetics (in terms of time-to-solution and 
problem complexity) in climate simulation models 
using GPU accelerators.

The software provides a purpose-built acceleration 
pathway for EMAC, rather than the general closed source 
solution KPP-A [6], which generates GPU-accelerated code 
from KPP-language directly. There have also been similar 
efforts in the WRF-Chem model [6].

Implementation and architecture
The implementation uses a source-to-source parser writ-
ten in the Python programming language to generate a 
CUDA [7] compatible solver, by parsing the KPP preproc-
essor auto-generated FORTRAN code. Each GPU thread 
calculates the chemical concentrations of an individual 
cell. The solver uses the temporary arrays between differ-
ent steps and they are allocated in the stack memory with 
the exception of the RCONST array that is stored in global 
memory. The memory required for temporary arrays 
depends on the configuration of the chemistry and can go 
up to 50 KB per CUDA thread. The intermediate values are 
stored in temporary arrays using the double representa-
tion. The accelerated code uses 3 KB of shared memory and 
0.5 KB of constant memory when indirect arrays are not 
used. The parser allocation additional constant memory 
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up to 2 KB when indirect accesses are used. All the meth-
ods that are available in the KPP numerical library under 
MECCA are supported.

The computation data structures are subdivided in 
runtime-specified arrays of columns in the atmosphere, 
with the memory of each array transferred to the GPU 
global memory and each grid box calculated on a sep-
arate GPU core to achieve massive parallelization, as 
shown in Figure 1. The CUDA chemical kinetics solver 
comprises three steps, also presented diagrammatically 
as a flow chart in Figure 2:

1.	 The first step is the calculation of the reaction rate 
coefficients. The variable values are stored in a 
global array inside the GPU and used in the com-
putational kernels.

2.	 The second step is the most computationally 
demanding, including mostly linear algebra func-
tions for the ODE solvers. The kernel selects the 
variation of the Rosenbrock solver method inside 
the GPU using an array of constant values in the 
memory.

3.	 The third step kernel is used for statistical reduc-
tion, and demands limited computational time 
compared with other kernels.

There are two files required to enable the GPU utilization: 
i) f2c_alpha.py and ii) kpp_integrate_cuda_
prototype.cu. The pre-processor is executed by run-
ning python f2c_alpha.py in the messy/util 
directory.

When offloading to GPUs, the number of cells must 
not exceed 12288. The application calculates the 
number of cells by multiplying the number of col-
umns by the number of levels for the atmosphere. The 
user can specify the number of columns by using the 
NVL[1] (NPROMA) runtime parameter in the con-
figuration of the EMAC.

Quality control
To ensure the quality of the code, we conduct unit test-
ing by comparing the GPU accelerated with a pure Fortran 
simulation for one model year, using 155 species and 310 
reactions. We compare the output of chemical element 
concentrations between the CPU only and accelerated 
version after the first time-step to calculate the relative 
error. The results show a median difference of 0.00005% 
with the maximum difference value of 0.54% using iden-
tical inputs, ensuring the high accuracy of the chemical 
solver. This is well within the accuracy criterion, asserting 
the numerical correctness of the GPU kernel.

Finally, we compare the results of aggregated mass of the 
CPU-only and GPU-accelerated version, over one year of 
simulated time. This test aggregates the error created over 
time using the L1-norm method and investigates the stabil-
ity of the model. The results show that the median value 
of the difference in aggregated mass is less than 5%, well 
within the expected margin of differences stemming from 
architecture and compiler implementations.

Figure 1: Grid partitioning of the atmopshere in the glob-
al model. Each GPU thread is assigned the calculation 
for one cell, stacked in arrays of columns.

(2) Availability
Operating system
The software is compatible with any operating system that 
supports the CUDA SDK.

Programming language
The script is written in the Python language and it has 
been tested with Python version 2.7. The script produces 
code that supports the the CUDA programming model 
version 2.0 or later.

Additional system requirements
Each CPU process that offloads to GPU requires a chunk of 
the GPU VRAM memory, whose size is dependent on the 
number of species and reaction constants in the MECCA 
mechanism. The number of GPUs per node and VRAM 
memory available in each GPU dictates the total number 
of CPU cores that can run simultaneously. We strongly rec-
ommend that at least 2.5 GB of VRAM per CPU process 
should be available on each GPU. Note that if not enough 
memory is available, the CUDA runtime will silently fail – 
without any warning.

Dependencies
The script requires Python version 2.6 or 2.7. The source 
code produced requires the CUDA SDK 6.5 or newer.
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Software location
Archive

Name: MECCA – KPP Fortran to CUDA source-to-source 
pre-processor.

Persistent identifier: DOI: 10.5281/zenodo.546811
Licence: MIT License.
Publisher: The Cyprus Institute.

https://doi.org/10.5281/zenodo.546811
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Version published: 1.1.
Date published: 18/04/17.

Code repository
Name: GitHub.
identifier: https://github.com/CyIClimate/medina.
Licence: MIT License.
Date published: 12/12/16.

Language
English.

(3) Reuse potential
The source-to-source parser core can be used by other 
researchers to transform FORTRAN 90 code to CUDA 
accelerated code. The methodology can be used as tem-
plate to create high performance computing capabilities 
on GPUs for scientific code that is currently written in 
FORTRAN 90.

The CUDA compatible ODE solvers comprises the Runge 
Kutta methods and the linearly-implicit Rosenbrock fam-
ily of solvers, and may be used for chemical kinetics and 
numerical integration outside the field. The software is 
supported by the developers. Any inquiries should be 
addressed by e-mail.
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