
Crusoe, M R and Brown, C T 2016 Channeling Community Contributions
to Scientific Software: A Sprint Experience. Journal of Open Research
Software, 4: e27, DOI: http://dx.doi.org/10.5334/jors.96

Journal of
open research software

ISSUES IN RESEARCH SOFTWARE

Channeling Community Contributions to Scientific
Software: A Sprint Experience
Michael R. Crusoe1 and C. Titus Brown1,2

1	Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
2	Computer Science and Engineering, Michigan State University, East Lansing, MI, USA
Corresponding author: C. Titus Brown (ctbrown@ucdavis.edu)

In 2014, the khmer software project participated in a two-day global sprint coordinated by the Mozilla
Science Lab. We offered a mentored experience in contributing to a scientific software project for anyone
who was interested. We provided entry-level tasks and worked with contributors as they worked through
our development process. The experience was successful on both a social and a technical level, bringing
in 13 contributions from 9 new contributors and validating our development process. In this experience
paper we describe the sprint preparation and process, relate anecdotal experiences, and draw conclusions
about what other projects could do to enable a similar outcome. The khmer software is developed openly
at http://github.com/dib-lab/khmer/.

Keywords: code sprint; onboarding; hackathon; khmer; bioinformatics

(1) Introduction
Sustainable development of scientific software inevitably
depends on following good software development prac-
tices. However, even rudimentary development practices
such as version control and testing are rarely a formal part
of scientific training. One way to learn these practices is to
participate in an open source project, which often provide
a path for new contributors to get involved. Open source
scientific software projects can go further by providing
scientists the opportunity to work on a science-focused
project.

In July 2014, Mozilla Science Lab (MSL) ran a two-day
global “sprint” for a wide variety of software projects. As
part of this sprint the khmer project offered a mentored
software contribution experience. The khmer project is
a bioinformatics library developed primarily at Michigan
State University, and it uses many open source software
development practices [3,4]. These practices include open
development and code review on GitHub using a work-
flow called GitHub Flow [2], the maintenance of a large
suite of unit and functional tests, continuous integration,
formal release testing, and semantic versioning. The two
authors of this paper, MRC and CTB, are respectively the
lead software engineer and the principle investigator on
the NIH grant that funds MRC and khmer development.

The basic motivating principle of many scientific hack-
athons and datathons is to gather a group of people
together to work in a focused, coherent way on one or
more projects (reviewed in [5]). Our primary goal for par-
ticipating in the MSL sprint was not to make significant

progress on the technical aspects of the code, but rather
to train scientists in version control and code review and
improve our documentation and processes so as to lower
the barriers to entry for new developers to our project. In
this case, we took advantage of the distributed nature of
the Mozilla event to recruit participants globally, with no
travel required. We also decided not to focus on expert sci-
entists or developers, but rather on participants who were
interested in but perhaps not engaged in open science or
open source practices.

We had several concerns when organizing our part of the
sprint. We were uncertain how to target the list of issues
for an unknown number of developers with a potentially
wide range of development experience. We were also con-
cerned that our development process involved too many
steps for new developers to work through. Finally, we
were unsure of whether this would be an effective use of
our time. Despite these reservations, we participated in
the sprint because the sprint would be an opportunity to
use new developers to expose problems in our documen-
tation and software. We also took advantage of the sprint
to ask local lab members to go through the full develop-
ment cycle themselves.

The global sprint was organized as follows: each physi-
cal location was asked to provide directions for attendees,
along with coffee, Internet connections, and a video wall.
Mozilla then connected these into a global video wall, and
also provided a central IRC channel for the sprint. The goal
of the sprint was to provide a supportive environment in
which to collaborate on open science projects, encourage

http://dx.doi.org/10.5334/jors.96
mailto:ctbrown@ucdavis.edu
http://github.com/dib-lab/khmer/

Crusoe and Brown: Channeling Community Contributions to Scientific SoftwareArt. e27, p.  2 of 4

contributions from new people, and introduce new peo-
ple to a variety of projects. Standard work hours, breaks for
lunch and snacks, and an emphasis on acknowledging a
diversity of contributions were all part of the setup. There
was also a pan-site Code of Conduct provided, which was
widely advertised and may have led to more significant
buy-in from certain communities.

In the end, the two-day sprint was a modest success
technically, and a big success socially. We merged 13 con-
tributions from 9 distinct contributors into the master
development branch; we solved a previously unappre-
ciated installation problem with our software; and we
revamped our development documentation to include a
detailed guide to getting started. Overall, we felt that the
sprint was a very useful investment of our time and energy
and are looking forward to future sprints.

Below, we describe the pre-sprint preparation, the
sprint itself, and the post-sprint outcomes. We then pro-
vide some concluding thoughts.

(2) Pre-sprint preparation
We announced the sprint in a blog post [1], broadcast the
blog post via Twitter, evangelized it at two conferences, and
entered it into the Mozilla Science Lab project list. We then
provided an issue on our GitHub issue tracker for people
to subscribe to for updates. This provided a more specific
notification channel than a mailing list for us to use in
informing contributors of our plans, and also ensured that
interested parties already had a GitHub account.

We next designated a set of issues with a “low-hanging
fruit” tag. These issues were chosen (or in some cases
designed) to be entry-level: they required no biology or
bioinformatics knowledge, and no prior experience with
the khmer project was needed. The issues targeted a range
of Python, C++, and documentation changes. For exam-
ple, one issue involved replacing a C++ stdlib exception
with a khmer specific one, while another issue required
copying an existing test and making a minor modification.

Finally, we wrote a detailed walk-through for new con-
tributors.1 This walk-through assumed some prior com-
mand-line expertise and basic familiarity with git, but
otherwise required no particular familiarity with GitHub,
the GitHub Flow process, khmer installation, or anything
specific to khmer development. Crucially, much of this
workflow was written to be copy-paste at the command
line, which avoided the burdensome requirement for inex-
perienced developers to compose many new commands.

The workflow covered twenty five distinct steps and
included forking a copy of khmer on GitHub, cloning it
locally, building khmer, running the tests, claiming an
issue, making changes and committing them, verifying
the changes by running the tests again, pushing back to
GitHub, and going through continuous integration and
code review.

(3) During the sprint
The sprint ran for two days, July 22 and 23, from 9am
to 5pm EST (Michigan local time). We merged 13 pull
requests that were both started and finished during this
period, contributed by five remote and four local users.
Our in-person contributors included someone from

industry who took vacation days to attend the sprint; sev-
eral people loosely affiliated with the lab but who had
not previously contributed to the codebase; and another
member of the MSU community who was unaffiliated
with our lab.

Activities During the sprint, we interacted with par-
ticipants, revised the central sprint issue, and updated
our documentation regularly in response to problems.
CTB primarily focused on updating the documentation
while MRC primarily interacted with remote and local
developers.

We enforced a requirement that each contributor com-
pleted all the items on our development checklist, just
like any other contributor. However, MRC found that
it was difficult to balance detailed code review with the
many different demands on his time as multiple contribu-
tors updated issues, encountered problems, and had ques-
tions. This was an area where more code reviewers would
be needed to scale.

Communication and Environment Throughout
the sprint, Internet Relay Chat (IRC) provided a realtime
venue for private and group chat that supported our
issue-driven process. We had little direct interaction over
video, because we were a small part of the larger Mozilla
Science Lab sprint. However, the sense of community and
cooperation was greatly enhanced by the presence of the
always-on video wall.

The environment was friendly and relaxed, with a wel-
coming physical environment and good community feel-
ing. We shared the sprint space with a Data Carpentry
sprint as well, which helped build community feeling.
We used Twitter to announce first-time contributors on
the first day, and CTB provided a running commentary as
issues came up and were addressed.

Issues and problems The most important issue that
surfaced during the sprint was that our test running com-
mands simply didn’t work for many. We had included
some installation commands in the ‘make test’ command
that depended on certain versions of Python build infra-
structure. Many of our sprint participants ran into this
problem in the first two hours of the sprint, leading us
to debug and change the installation commands live, and
then update the instructions.

We also found that many contributors did not reliably
follow the detailed instructions. This was not surprising
– 25 steps is quite a lot! – but we couldn’t find a way to
simplify our workflow, either. However, because we were
providing support in real time, we could almost always
give useful feedback to help participants discover which
steps they had missed and correct them. A longer feed-
back cycle might have led to many orphaned pull requests
as contributors gave up on our workflow.

(4) Post-sprint feedback and actions
We had 9 participants who both started and finished
a total of 13 pull requests during the sprint; five were
remote, and four were local.

None of our nine participants had experienced GitHub
Flow before, and most had no prior exposure to testing or
code review. Several participants expressed enthusiasm for
having gone through the process. A further 3 participants

Crusoe and Brown: Channeling Community Contributions to Scientific Software Art. e27, p.  3 of 4

are still working on finishing pull requests started during
the sprint.

We are further revising the documentation after post-
sprint review, to better link different sections and refine
sections that were updated hastily during the sprint.

(5) Discussion and concluding thoughts
We felt that the most valuable part of the sprint was in
setting aside this focused time for in-lab problem solving
and collaboration. Most of the khmer developers were in
the room together and when a problem needed to be dis-
cussed (e.g. the installation problem) it was easy to hold
an impromptu meeting. This is different from our usual
lab development process which is largely asynchronous.

The rapid, systematic review, improvement and testing
of documentation was tremendously valuable; having put
10 or more participants through our “getting started”
documentation means that we are now certain that the
instructions work! However, more observation of inex-
perienced contributors will undoubtedly lead to areas
where can optimize the documentation for first-time
participants.

In the long term, we do not expect many, or perhaps any,
of the sprint participants to continue developing on khmer.
None of the participants external to the lab worked in our
subfield of biology, and khmer itself has a fairly narrow set
of functionality. However, we can guess that because of the
improved documentation, khmer will now be better able
to attract contributions from developers who are inter-
ested in longer-term engagement with the project.

We do hope that the sprint participants will use their
new experience with GitHub, distributed version control,
and remote development to contribute to other open
source projects. We plan to query their GitHub activity on
public projects to see if there is additional engagement in
the months to come.

The presence of existing process and infrastructure let
us work with new contributors more easily than we would
have been able to a year ago: they got more done. In turns
this meant that we could leverage their contributions
more easily: we gained more from what they did. Process
documentation, issue tracking, tests, reliable build and
test instructions, and mechanisms for support were all
important. The up-front organization specific to our
sprint was minimal, because we already had many exist-
ing resources. Moreover, the getting-started guide and the
low-hanging-fruit issues provide an excellent entree into
our software project that remains after the sprint.

It was important to have two active, dedicated partici-
pants so that specific issues (pull requests and techni-
cal support) as well as meta-issues (documentation and
communication) could be handled. We believe the pro-
cess would not have scaled much beyond 2-3 simultane-
ous participants without an additional khmer developer,
which could be a bottleneck for projects; perhaps our next
khmer sprint will focus on training new code reviewers!

The biggest unresolved challenge is how to more effec-
tively walk participants through their first contribution.
While 25 steps may seem overly complex, each step is an
important part of the development cycle; experienced
software developers may elide many of the steps mentally

(“of course I run the tests after each commit!”) but they are
all necessary. This complexity illuminates the challenge
facing scientists who want to learn basic software devel-
opment practices: each development practice (e.g. using
version control, or testing, or code review) requires that
many different steps be executed in combination. Our
experience from the sprint suggests that participants can
be taught to execute these steps fairly easily, if sufficient
time and support is provided.

Future revisions to our on-boarding documentation
could simplify the documentation in a few ways by elimi-
nating optional steps (e.g. our current documentation
provides instructions for using ccache). Apart from that,
we could more formally study the “first-time contributor”
workflow by working with people as they go through it,
to see where mistakes are commonly made. We are wary
of oversimplifying, however, because simplifying further
could result in increased maintenance burden on our
part, and also diminish the ability of people to transition
from our project (which uses a fairly standard GitHub-flow
based workflow [2]) to others.

We are looking forward to future sprints and would like
to involve more scientific software development groups
in teaching others about their development workflows.

Note
	 1	 http://khmer.readthedocs.org/en/docs-hackathon/

dev/getting-started.html

Acknowledgements
MRC has been funded by AFRI Competitive Grant no. 2010-
65205-20361 from the USDA NIFA and is now funded
by the National Human Genome Research Institute of
the National Institutes of Health under Award Number
R01HG007513; both to C. Titus Brown.

Competing Interests
The authors declare that they have no competing interests.

References
1.	 Brown, C T and Hackathon, A K http://ivory.idyll.org/

blog/014-khmer-hackathon.html. Accessed: 2014-08-01.
2.	 Chacon, S 2011 Github flow. http://scottchacon.

com/2011/08/31/github-flow.html.
3.	 Crusoe, M R, Alameldin, H F, Awad, S, et al 2015 The

khmer software package: enabling efficient nucleotide
sequence analysis [version 1; referees: 2 approved, 1 ap-
proved with reservations]. F1000Research, 4: 900. DOI:
http://dx.doi.org/10.12688/f1000research.6924.1

4.	 Crusoe, M R and Brown, C T 2013 Walking the talk:
adopting and adapting sustainable scientific software
development processes in a small biology lab. Techni-
cal Report 791567, figshare, 2013. DOI: http://dx.doi.
org/10.6084/m9.figshare.791567

5.	 Trainer, E H, Chaihirunkarn, C, Kalyanasundaram,
A and Herbsleb, J D 2014 Community code engage-
ments: Summer of code & hackathons for community
building in scientific software. In Proceedings of the
18th International Conference on Supporting Group
Work, GROUP ’14, pages 111–121, New York, NY, USA,
ACM.

http://khmer.readthedocs.org/en/docs-hackathon/dev/getting-started.html
http://khmer.readthedocs.org/en/docs-hackathon/dev/getting-started.html
http://ivory.idyll.org/blog/2014-khmer-hackathon.html
http://ivory.idyll.org/blog/2014-khmer-hackathon.html
http://ivory.idyll.org/blog/2014-khmer-hackathon.html
http://scottchacon.com/2011/08/31/github-flow.html
http://scottchacon.com/2011/08/31/github-flow.html
http://dx.doi.org/10.12688/f1000research.6924.1
http://dx.doi.org/10.6084/m9.figshare.791567
http://dx.doi.org/10.6084/m9.figshare.791567

Crusoe and Brown: Channeling Community Contributions to Scientific SoftwareArt. e27, p.  4 of 4

How to cite this article: Crusoe, M R and Brown, C T 2016 Channeling Community Contributions to Scientific Software: A
Sprint Experience. Journal of Open Research Software, 4: e27, DOI: http://dx.doi.org/10.5334/jors.96

Submitted: 28 September 2015 Accepted: 28 June 2016 Published: 19 July 2016

Copyright: © 2016 The Author(s). This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

Journal of Open Research Software is a peer-reviewed open access journal published by
Ubiquity Press OPEN ACCESS

http://dx.doi.org/10.5334/jors.96
http://creativecommons.org/licenses/by/4.0/

