
(1) Overview
Introduction
Image Enhancer was developed in keeping certain per-
spectives in mind. Even the openCV, being one the finest
real time computer vision library in recent times, does not
come with an “out-of-the-box” GUI, apart from some burn-
ing issues like complex usability, memory management
schemes and developmental environment dependencies.
Since there are a very limited number of open source soft-
ware for performing image processing research so the need
for incorporating all digital imaging filters integrated in
one place was one of the major goals of this development.
As a result, the researchers in the fields of image process-
ing and computer vision could utilize it in their research
or developers may extend the code for specific application
development. Also the ability to edit the parameters of an
image processing algorithm is another important aspect
in Image Processing research which increases the reus-
ability of the algorithm significantly. The parameters of
the digital imaging filters can be customized according to
end user choices so that the reusability and popularity of
the software increases for the researchers/developers who
want to develop an image processing workflow. Currently,
it also provides support for several image file types apart
from jpg and bmp. The source code of Image Enhancer
Release Candidate version can be found here (http://ima-
geenhancer.codeplex.com/SourceControl/latest). It was

awarded with “100% FREE” & “100% CLEAN” awards by
several popular software archives of the world.

Using Image Enhancer is quite simple. The end user
navigates through the three interfaces by just pressing
the “Next” or “Back” buttons. If any problem occurs dur-
ing image conversions then the errors and exceptions are
handled in a proper manner with relevant warning or
error dialogues. Users can also use the “Refresh” button
to reload the picture viewer area. As an example, when
an input image is loaded in picture viewer area (Fig. 1),
we choose a specific filter to be applied upon the image.
When we press the specific filter button, a separate dia-
logue appears for us to choose parameter values of that
specific filter (Fig. 2). When the threshold values are cho-
sen, users can get their desired image as per their require-
ments (Fig. 3). Similarly, the video buffering interface has
a drop down list in which the users can select the USB/
Surveillance camera according to their choice from a list
of cameras, if connected to the computer. ‘Start’, ‘Stop’
buttons starts and stops video buffering in the picture
box viewer respectively. ‘Save’ button saves the snapshot
to the disk drive after stopping the video buffering. The
user interface was built in Windows Form which provides
access to native MS Windows interface elements by wrap-
ping the Windows API in managed code as a replacement
of old and complex Microsoft Foundation Class (MFC)
library in C++. The code was written in Visual C# and

SOFTWARE METAPAPER

Image Enhancer: A Graphic Editor to Apply Numerous
Effects in Digital Image
Hazra Abhisek1

1	Centre for Development of Advanced Computing, India

Abhisek, H 2014 Image Enhancer: A Graphic Editor to Apply Numerous Effects in Digital Image.
Journal of Open Research Software, 2: e31, DOI: http://dx.doi.org/10.5334/jors.bm

Keywords: image processing, digital filter, computer vision, graphic editor, photo effect

Image Enhancer is an open source, portable graphic editor developed for Windows platform. It is equipped
with an enriched set of digital imaging filters with advanced computer vision techniques embedded within,
like Interest Point Detection (Susan Corner Detector), Linear Edge Detection (Simple, Sobel, Canny), His-
togram Equalization, Dithering (Bayer, Burkes, Sierra, Jarvis Judis Ninke), Transforming to Polar images
and vice versa etc.
	 Image Enhancer was released under GNU Lesser General Public License (LGPL) and the software was
made available from the Microsoft’s open source project hosting repository Codeplex (http://imageen-
hancer.codeplex.com). Image Enhancer was tested and hosted by several popular software archives like
SoftPedia, CNET, Freeware Files, ZDNet, Soft Tango and others. A stable Release Candidate (RC) version
has been made available in which some major modifications were done which were not present in the ear-
lier Beta version. The download link for the Image Enhancer (both Release Candidate & Beta Version) from
CodePlex repository is (http://imageenhancer.codeplex.com/releases).

Journal of
open research software

http://imageenhancer.codeplex.com/SourceControl/latest
http://imageenhancer.codeplex.com/SourceControl/latest
http://dx.doi.org/10.5334/jors.bm
http://imageenhancer.codeplex.com
http://imageenhancer.codeplex.com
http://imageenhancer.codeplex.com/releases

AbhisekArt. e31 p.  2 of 7

fine-tuned for optimal time and space complexity to sup-
port faster execution of the software.

Image Enhancer contains 64 simple and complex imag-
ing filters covering well known image enhancement
techniques (e.g. brightness correction, increment or dec-
rement, contrast correction or stretching, RGB scale rota-
tion), Linear Edge Detection Techniques (Simple, Canny,
Sobel), Dithering (Simple, Burkes, Sierra, Stucki, Jarvis
Judis Ninke), Interest Point Detection (Susan Corner
Detector) and many more. Almost all the parameters of an
image processing algorithm can be modified generically

as per end user requirements. Additionally users can use
the video buffering from USB/Surveillance camera to take
snapshots from video and apply effects to that image.
Currently Image Enhancer 1.0 RC accepts .jpg, .bmp, .png,
.tiff, .tif, .emf, .exif, .gif, .wmf and .dcm image formats.
More imaging formats to be added later in the upcoming
version.

The GUI was developed in Windows Forms Application
as a part of Microsoft .NET framework. This software was
written using Visual C# 4.0 using Visual Studio 2010 IDE.
AForge.NET (http://www.aforgenet.com), an open source

Fig. 1: RGB Input Image in Image Enhancer. © Playboy. All Rights Reserved.

Fig. 2: Threshold selection for Binarization. © Playboy. All Rights Reserved.

http://www.aforgenet.com

Abhisek Art. e31, p.  3 of 7

computer vision library was used to develop this software
(Ref. 3).

Image Enhancer (Both RC and Beta version) has a stable
release from Microsoft CodePlex code repository. It runs in
Windows Platform (Windows XP Service Pack 3, Windows
Vista, and Windows 7/8/8.1). Microsoft Dot NET client
profile is the only dependency which is required to run
this software.

Implementation and architecture
Image Enhancer was written using C# and Microsoft .Net
4.0 framework which allows high performance, scalable
and robust software development for windows platform.
The main files are Form1.cs, Form2.cs & Form3.cs where
the events for filter invocation of all the filters were writ-
ten. Each filter was implemented in its own separate class
e.g. Image Binarization was implemented in Binarization.
cs, Adaptive Smoothing in AdaptiveSmooth.cs and so on.
Form1.cs.design, Form2.cs.design & Form3.cs.design are
the designer classes contain the code for the three inter-
faces. When the software runs, the first GUI is loaded.
Using the “Open Image” button, which is basically an
“OpenFileDialogue” control in Windows Form, the input
image is loaded into the image frame (Fig. 1). The GUI
is quite simple and user friendly, which contains all the
buttons and functionalities for digital imaging filters. The
output of the applied filter is shown in the picture box to
get a widening idea about the effect of the applied imag-
ing filter. The GUI has the “Save” button option through
which the filtered image may be saved to disk drive accord-
ing to the choices of the users. Also the snapshot from a
video source (USB/Surveillance Camera) may be taken and
saved using the third form interface.

Using the code
Code section of Image Enhancer is located at Microsoft
CodePlex repository (http://imageenhancer.codeplex.
com/SourceControl/latest) under the GNU Lesser General
Public License (LGPL). In the following code example,
Binarization filter is applied on the input image. At the
very beginning, all namespaces required for this project
in .NET were imported into the workspace. At first, when
the “Binarize” button is clicked from the interface, the
Binarize_Click event is invoked (Line 6).

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using AForge.Imaging.Filters;
using AForge.Math.Random;
using AForge.Imaging.Textures;
using System.IO;
using System.Drawing.Imaging;
using AForge.Imaging;

Until the filter is applied on the input image, cur-
rent cursor icon will be a busy cursor indicating that
a task is running in the background (Line 10).Then
the input image (rgb_image) is copied to a Bitmap
object for further processing (Line 12). An object
of Binarization class is created (Line 15) which is
a partial windows form class capable of accepting
Binarization threshold (0-255 for an 8 bit image)
from users. Next an instance of FiltersSequence class
from AForge.Imaging.Filters namespace is created to

Fig. 3: Binarized Output Image with a threshold limit of 90. © Playboy. All Rights Reserved.

http://imageenhancer.codeplex.com/SourceControl/latest
http://imageenhancer.codeplex.com/SourceControl/latest

AbhisekArt. e31 p.  4 of 7

add and apply Grayscale and Threshold filters (Line
19-26). Belonging to AForge.Imaging.Filters names-
pace, The FiltersSequence class, represents collection
of filters, which need to be applied to an image in
sequence. Using this class, user may specify set of fil-
ters, which will be applied to source image one by one
in the order users define them. The Grayscale filter
converts the RGB image to grayscale, Otsu Threshold
filter is used for threshold setting in binarized images
and to convert from grayscale image to binary image.
These filters are combined in FiltersSequence object
and applied on the input image and output image is
stored. The resultant binarized image is shown in the
picture box viewer (Line 28). If the input image to
this method stub is null then the user is prompted to
browse for the input image (Line 31-34). Any errors
or exceptions occurred during conversion from RGB to
binary image, is properly handled through catch block
(Line 36-40).

Parameter customization of imaging filter
Like other image editors, editing the threshold param-
eters of a specific image processing algorithm is also an
important aspect of Image Enhancer. The following part
(Code Segment 2) represents the Binarization class
through which users can edit the binarization threshold.
Whenever, threshold value selected from the Binarization
dialogue control, the SetValue() method (Line 14-17)
present in Binarization.cs, sets the value of the threshold
and GetValue() method (Line 18-22) returns the thresh-
old value to the Binarize_Click event. Whenever the user
chooses the threshold value from Binarization dialogue, it
is ensured whether the user enters a valid threshold value
within the range (For an 8 bit image, the RGB intensity
varies between 0 -255) (Line 32-37) otherwise a warning
dialogue appears notifying the user to enter valid thresh-
old values (Line 38-40).

Whenever the Binarize_Click event occurs, an object of
binarization class is created, through which the GetValue()

1 /* Method stub for Image Binarization */
2 /* The filter accepts 8, 16 bpp grayscale images for processing */
3 /* In the case of 8 bpp images the threshold value is in the [0, 255] range,
4 * but in the case of 16 bpp images the threshold value is in the [0, 65535] range */
5
6 private void Binarize_Click(object sender, EventArgs e)
7 {
8 try
9 {
10 Cursor.Current = Cursors.WaitCursor;
11 int final_threshold_binarization; // storing the final binarization threshold
12 Bitmap bp = (Bitmap)rgb_image;
13 if (bp != null)
14 {
15 Binarization bs = new Binarization();
16 bs.ShowDialog();
17 final_threshold_binarization = Convert.ToInt32(bs.getValue());
18 Bitmap temp = bp.Clone() as Bitmap;
19 FiltersSequence fseq = new FiltersSequence();
20 fseq.Add(AForge.Imaging.Filters.Grayscale.CommonAlgorithms.BT709);
21 temp = fseq.Apply(temp);
22 /* As Threshold filter accepts 8/16 bpp grayscale image, so the input grayscale image is
	 converted into 8 bpp(0-255 threshold range) grayscale image before binarization */
23 if (temp.PixelFormat != PixelFormat.Format8bppIndexed)
24 temp = new Bitmap(temp.Width, temp.Height, PixelFormat.Format8bppIndexed);
25 Threshold t = new Threshold(final_threshold_binarization);
26 t.ApplyInPlace(temp);
27 picImage.Image = new Bitmap(temp);
28 picImage.Show();
29 Cursor.Current = Cursors.Default;
30 }
31 else
32 MessageBox.Show(“Select the Image”, “Close”,
		 MessageBoxButtons.OK, MessageBoxIcon.Warning);
33 Cursor.Current = Cursors.Default;
34 this.Refresh();
35 }
36 catch (Exception e1)
37 {
38 MessageBox.Show(“Error in Binarization”, “Try Again”,
		 MessageBoxButtons.OK, MessageBoxIcon.Error);
39 this.Refresh();
40 }
41 }

Code Segment 1: Binarization event present in Form1.cs.

Abhisek Art. e31, p.  5 of 7

1 using System.ComponentModel;
2 using System.Data;
3 using System.Drawing;
4 using System.Linq;
5 using System.Text;
6 using System.Windows.Forms;
7
8 namespace Accord_Test
9 {
10 public partial class Binarization : Form
11 {
12 /* threshold value for binarization within the range[0-255] for 8 bit image */
13 private string threshold;
14 public void SetValue(string str)
15 {
16 this.threshold = str;
17 }
18 public string getValue()
19 {
20 /* method returns the binarization threshold */
21 return threshold;
22 }
23 public Binarization()
24 {
25 InitializeComponent();
26 }
27 private void comboBox1_SelectedIndexChanged(object sender, EventArgs e)
28 {
29 }
30 private void OkButton_Click(object sender, EventArgs e)
31 {
32 if ((Convert.ToInt32(comboBox1.Text) > 0) || (Convert.ToInt32(comboBox1.Text) < 255))
33 {
34 comboBox1.Items.Add(comboBox1.Text);
35 threshold = comboBox1.Text;
36 this.Close();
37 }
38 else
39 MessageBox.Show(“Please Select a Threshold Limit For Binarization”,
		 “Warning”, MessageBoxButtons.OK, MessageBoxIcon.Warning);
40 }
41 }
42 }

Code Segment 2: Binarization event present in Form1.cs.

method present in Binarization.cs is invoked and the
GetValue() method returns the threshold binarization
value (Code Segment 1, Line 15-17)

Quality control
Some basic functional testing procedures were carried out
for Image Enhancer 1.0.0 Release Candidate. The operat-
ing systems used for performance testing are Windows XP
with SP3, Windows 7 professional (32 & 64 bit), Windows
7 ultimate (32 & 64 bit) and Windows 8/8.1 (32 & 64
bit). It was noticed that Image Enhancer performs equally
well on these OS but the execution time of the software
increases if each input image size exceeds 15 MB in size.
Black box testing was also performed to ensure the proper
functionality without peering into its internal structures
or workings. In this context, each digital imaging filter was
tested with different threshold values and the result data
set was kept, which can be found here http://imageen-
hancer.codeplex.com/releases. Apart from these, Image
Enhancer was also tested based on some crucial software
engineering aspects (Code Metric) obtained directly from
Microsoft Visual Studio 2010 Ultimate IDE, which are
described below.

Code Metric for Image Enhancer 1.0.0 Release
Candidate
Maintainability Index (MI) - An index value between 0
and 100 that represents the relative ease of maintaining
the code. A high value means better maintainability. The
classifications of the Maintainability index with respect to
range of values are defined as

•	 20-100-good maintainability
•	 10-19-moderately maintained
•	 0-9-low maintainability
•	 The MI value for Image Enhancer 1.0 RC was found to

be 55. (Ref. 1)

Cyclomatic/Conditional Complexity (CC) - A soft-
ware metric measuring linearly independent paths
through a program’s source code. The CC of this software
was found to be 802. (Ref. 1, 2)

Depth of Inheritance Tree (DIT) – It is defined as the
maximum length from the node to the root of the tree
which was found to be 7 here. Since all classes inherit from
System. Object class, the depth 7 means 6 child classes are
utilized under System. Object. (Ref. 1)

http://imageenhancer.codeplex.com/releases
http://imageenhancer.codeplex.com/releases

AbhisekArt. e31 p.  6 of 7

Class Coupling (Cc) – It is a distinguishing metric and
accurate predictor of software failure to depict how many
classes a single class uses. It also measures the coupling to
unique classes through parameters, local variables, return
types, method calls, generic or template instantiations,
base classes, interface implementations, fields defined on
external types, and attribute decoration. The class cou-
pling value of Image Enhancer 1.0.0 RC was 191. (Ref. 1)

Lines of Code (LC) – 8309
The Release Candidate (RC) and the Beta versions of

Image Enhancer went through an extensive acceptance
testing. “SOFTPEDIA” and “FreewaresFiles” certified that
Image Enhancer didn’t contain any form of malware,
including but not limited to: spywares, viruses, Trojans
and backdoors. This software product was also thoroughly
tested in SOFTPEDIA lab and was found absolutely clean.
(Dated 16th July, 2014)

(2) Availability
Operating system
Microsoft windows XP (SP3), Windows Vista, Windows 7,
Windows 8/8.1

Programming language
Visual C# 4.0

Additional system requirements

•	 Memory: 512 MB RAM
•	 Disk Space: 3428 KB
•	 Processor: 1 GHZ
•	 Input Devices: USB/Surveillance Camera(If live video

feed and snapshots are required)

Dependencies
Microsoft .Net Framework 4.0 or higher

List of contributors
Abhisek Hazra, Centre for Development of Advanced
Computing, India, opensource@abhisek-hazra.in

Role: Conceptualization, Planning and Designing,
Writing the software, Functional Testing, Software
Packaging, Paper Writing.

Archive
Name
Figshare

Persistent identifier
http://dx.doi.org/10.6084/m9.figshare.1045339

License
GNU lesser general public license (LGPL) version 2.1

Publisher
Abhisek Hazra

Date published
04/06/2014(Release Candidate)

Code Repository
Name
CodePlex

Identifier
http://imageenhancer.codeplex.com

License
GNU Lesser General Public License (LGPL) version 2.1

Date published
28/05/2014(Release Candidate)

Language
English

(3) Reuse potential
Being a standalone application, Image Enhancer 1.0.0
Release Candidate provides a wide potential and benefit
for the researchers in the field of Image Processing, apart
from a bigger set of general users who are interested in
image manipulation tasks like noise removal, smooth-
ing and sharpening of an image, edge preservation and
enhancement, saturation and brightness correction, resiz-
ing an image etc. It is a useful tool to dive into several
image processing algorithms as all the parameters of the
digital imaging filters can be fully customized as per the
choices of the end users. The following figure (Fig. 4) illus-
trates an example of editing the parameter values of satu-
ration increment to obtain the desired result which can
be effectively used to rectify low saturated noisy images.
Another case (Fig. 5) is shown where the ‘jittering radius’
parameter of the jittering filter has been modified to
obtain different effects of Jittering filter. An artistic effect
can be applied to an input image by the use of Jittering
filter which replaces each pixel of an image with a ran-
dom pixel from an adjacent neighbourhood of the speci-
fied radius.

Currently Image Enhancer has an implementation of
64 simple and complex digital imaging filters for differ-
ent problem instances which can be easily utilized to
find research outcomes and preparing quality research
publications. Some potential applications include image
classification and soft biometric cues where the images
need pre-processing to rectify noises and distortion. Face,
ear, signature and other biometric applications require
pre-processing of RGB images to obtain morphological/
shape based feature extraction where it can be used as
an offline utility to measure the threshold limits of the
images. Sharpening, restoration (betterment of an image)
and retrieval of images (seek for image of interest) in dif-
ferent applications/research also demands a lot of atten-
tion where Image Enhancer can play significant roles. Also
the video buffering facility present in Image Enhancer
can be utilized in surveillance and asset visibility applica-
tions. Users of this software can modify it accordingly as
per their requirements, as all the classes are loosely cou-
pled. This tool was developed for producing quality out-
put images. Being free to distribute and copy, this tool

mailto:opensource@abhisek-hazra.in
http://dx.doi.org/10.6084/m9.figshare.1045339
http://imageenhancer.codeplex.com

Abhisek Art. e31, p.  7 of 7

could be of utter use and attraction to the undergraduate
and graduate student community, aiming to start their
research career in this field. Researchers working in com-
puter vision and digital image processing in academia and
industry will also find this software useful. Apart from
this, it is also attractive for general end users interested
in photography, multimedia, animation & graphic editing
utility.

Support Mechanisms for Image Enhancer
Image Enhancer is not part of any officially funded pro-
ject, hence does not attain any donation or support
from any agency or person. However, when developers,
researchers or end users face problems related to code-
reusing, compatibility and implementation, they are
encouraged to post their issues in official project hosting
page at CodePlex (http://imageenhancer.codeplex.com/

discussions) or to contact the developer directly (Abhisek
Hazra, opensource@abhisek-hazra.in) for urgent support.

References
1.	 Microsoft Developer Network 2014 Code Metrics

Values. Available at http://msdn.microsoft.com/en-
us/library/bb385914.aspx.

2. 	 Wikipedia 2014 Cyclomatic Complexity. Available at
http://en.wikipedia.org/wiki/Cyclomatic_complexity.

3.	 AForge.NET 2014 AForge.NET. Available at http://
www.aforgenet.com.

4.	 Matalas, I, Benjamin, R and Kitney, K 1997 An Edge
Detection Technique Using the Facet Model and Pa-
rameterized Relaxation Labeling. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, 328-341.

5.	 Smith, S M and Brady, J M eds. 1997 SUSAN—A New
Approach to Low Level Image Processing, 45-71.

Fig. 4: Example of parameter customization, on the extreme left, the original image is shown, while the right ones
reflect 25%, 50%, 75% increment in saturation respectively. © Playboy. All Rights Reserved.

Fig. 5: Jittering parameter customization, on the extreme left, the original image is shown, while the right ones repre-
sent the images with 3, 6, 9 and 12 as their jittering radius in which pixels can move. © Playboy. All Rights Reserved.

How to cite this article: Abhisek, H 2014 Image Enhancer: A Graphic Editor to Apply Numerous Effects in Digital Image.
Journal of Open Research Software 2:e31, DOI: http://dx.doi.org/10.5334/jors.bm

Published: 11 December 2014

Copyright: © 2014 The Author(s). This is an open-access article distributed under the terms of the Creative Commons
Attribution 3.0 Unported License (CC-BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited. See http://creativecommons.org/licenses/by/3.0/.

Journal of Open Research Software is a peer-reviewed open access journal published by
Ubiquity Press OPEN ACCESS

http://imageenhancer.codeplex.com/discussions
http://imageenhancer.codeplex.com/discussions
mailto:opensource@abhisek-hazra.in
http://msdn.microsoft.com/en-us/library/bb385914.aspx
http://msdn.microsoft.com/en-us/library/bb385914.aspx
http://msdn.microsoft.com/en-us/library/bb385914.aspx
http://en.wikipedia.org/wiki/Cyclomatic_complexity
http://www.aforgenet.com
http://www.aforgenet.com
http://dx.doi.org/10.1175/1520-0493(1988)116%3C2417:SSBOTM%3E2.0.CO;2.
http://dx.doi.org/10.1175/1520-0493(1988)116%3C2417:SSBOTM%3E2.0.CO;2.
http://dx.doi.org/10.1175/1520-0493(1988)116%3C2417:SSBOTM%3E2.0.CO;2.
http://dx.doi.org/10.1175/1520-0493(1988)116%3C2417:SSBOTM%3E2.0.CO;2.
http://dx.doi.org/10.5334/jors.bm

