
Siqueira, A S et al 2016 Perprof-py: A Python Package for Performance Profile
of Mathematical Optimization Software. Journal of Open Research Software,
4: e12, DOI: http://dx.doi.org/10.5334/jors.81

Journal of
open research software

SOFTWARE METAPAPER

Perprof-py: A Python Package for Performance Profile
of Mathematical Optimization Software
Abel Soares Siqueira1, Raniere Gaia Costa da Silva2 and Luiz-Rafael Santos3

1	Department of Mathematics, Federal University of Paraná, Brazil
abelsiqueira@ufpr.br

2	Institute of Mathematics, Statistics and Scientifc Computing, University of Campinas, Brazil
3	Department of Exact Sciences, Federal University of Santa Catarina, Brazil
Corresponding author: Abel Soares Siqueira

A very important area of research in the field of Mathematical Optimization is the benchmarking of
optimization packages to compare solvers. During benchmarking, one usually collects a large amount of
information like CPU time, number of functions evaluations, number of iterations, and much more. This
information, if presented as tables, can be difficult to analyze and compare due to large amount of data.
Therefore tools to better process and understand optimization benchmark data have been developed.
One of the most widespread tools is the Performance Profile graphics proposed by Dolan and Moré [2].
In this context, this paper describes perprof-py, a free/open source software that creates Performance
Profile graphics. This software produces graphics in PDF using LaTeX with PGF/TikZ [22] and PGFPLOTS
[4] packages, in PNG using matplotlib [9], and in HTML using Bokeh [1]. Perprof-py can also be easily
extended to be used with other plot libraries. It is implemented in Python 3 with support for internation-
alization, and is under the General Public License Version 3 (GPLv3).

Keywords: software benchmarking; mathematical optimization; performance profile; Python 3

(1) Overview
Introduction
When creating a piece of software, the measurement of a
set of information of interest regarding performance — for
instance: CPU time, number of functions evaluated, num-
ber of iterations, memory usage, accuracy, or others — is
common. Benchmarking is the process of measuring the
performance information of one piece of software relative
to similar software.

This is necessary when developing programs since it
helps uncover software deficiencies and usually leads to
general software improvements [3, 10, 11].

Furthermore, given a set of software that solve the same
problem, one could compare them in order to choose
the best one, or verify how their own software can be
improved. To address this, Dolan and Moré [2] developed
a tool to visualize optimization solvers benchmarks: the
performance profile.

Formally, a performance profile allows one to evaluate
and compare the performance of a set S of solvers on a
given test set P, with respect to a chosen evaluation param-
eter, which will be referenced as cost. It is presented as a
graphic that shows the cumulative distribution function
of different solvers performances, according to the chosen
cost metric. Note that the cost metric must be positive.

This method is mostly used for nonlinear optimization
solvers, however, it is possible to extend it to other soft-
ware comparison. For instance, some authors have used
it in the context of algorithms for matrix functions [5, 6,
7, 8, 12, 13, 14]. Notice that, in some cases, a specialized
test can be more significant than the performance profile
with a specific cost. For derivative-free optimization, for
instance, Moré and Wild [15] define a data profile, using
the number of function evaluations as the metric cost,
nevertheless in a different way of performance profile
definition.

For each problem p ∈ P and solver s ∈ S, let tp,s be the
cost required to solve problem p by solver s and

,
,

,min{ : }
p s

p s
p s

t
r

t s S
=

Î

be the performance ratio of solver s for the problem p
when compared with the best performance by any solver
on this problem. As a convention, we set rp,s to a large
value, say rmax, if the solver s does not solve the problem p.

The probability of a solver s ∈ S to solve one problem
within a factor τ ∈ of the best performance ratio is the
function

http://dx.doi.org/10.5334/jors.81

Siqueira et al: Perprof-pyArt. e8, p.  2 of 5

,| { : }|
() .

| |
p s

s

p P r

P

t
r t

Î £
=

For a given τ, the best solver is the one with the highest
value for ρs(τ), that is, the one with the highest probabil-
ity to solve the problem. The value ρs(τ) represents the
percentage of problems solved by algorithm s with a cost
at most τ times worse than the best algorithm. ρs (1) is
the percentage of problems solved as fast as the fastest
algorithm, which gives the efficiency of solver s. On the
other hand

max

lim ()s
rt

r t
-®

is the total percentage of problems solved by solver s, or in
other words, the robustness of solver s.

Motivation
To facilitate the reproduction of data set analysis, such
as benchmarking of solvers analysis provided by Dolan
and Moré [2]’s performance profile, an open source tool
that handles the production of performance profile plots
should be available.

Performance profile has been, over the years, the most
used benchmark comparison tool used in optimization.
Nevertheless, the production of such analysis is some-
times a dull task, that can lead a researcher to waste a lot
of time and effort that should have been spent in develop-
ing the solver itself.

There are other implementations to generate perfor-
mance profiles, some of them being reasonable well-
known, such as a MatLab script from the same group that
created performance profile [17], and a module written by
Michael Friedlander inside NLPy [18].

Some, perhaps unaware of these implementations or
trying to avoid proprietary solutions, implemented their
own solutions and then made them available. Solutions
such as a Python function perfprof from Relton [20] and
a Julia module perfprof.jl from Zhang [25], both
language dependent. A thorough search would possibly
reveal many others. However, there are features that some
users need that these software have not implemented.

This paper describes a straightforward open source tool
that allows one to create performance profile pictures in
a fast and easy manner called perprof-py. In addition, this
tool allows LaTeX users, a group which includes almost all
of the optimization community, to generate performance
profile plots as LaTeX code that will be processed later
with the rest of their document or standalone PDF when
needed.

With these two main goals in mind, perprof-py was
developed and implemented in Python 3 with interna-
tionalization features and direct LaTeX integration.

Implementation and architecture
Perprof-py was implemented as a Python 3 package
and organized to allow addition of new backends. Core
files are

•	 perprof/prof.py that defines a class Pdata that
need to be extend for every backend;

•	 perprof/parse.py that has the parser for the
input files; and

•	 perprof/main.py that has the command line
interface.

The incompatibility of perprof-py with Python 2 was due
(i) to the fact that unicode processing with Python 2 can
be a nightmare, and (ii) to the authors’ desire to push
Python 3 forward.

Users have a command line interface to use out of the
box, however one can also use the package in their own
software.

Implementation is very straightforward. In fact, the
algorithm:

1.	 parses the options passed as arguments, creating a
structure with all information;

2.	 parses and process input files, using the performance
function definition to create data to be plotted;

3.	 uses the chosen backend to plot data.

Input
For each solver to be compared in benchmarking, one
must write a file in the following manner:

YAML information

Problem01 exit01 time01
Problem02 exit02 time02

YAML[19, 24] information is a list of keywords and val-
ues used to set the name of the solver and some flags for
perprof-py. A legacy option remains, in which the user can
instead put only the solver name using
#Name SOLVERNAME
Problem01 exit01 time01
Problem02 exit02 time02

nevertheless some users may like to add more options.
Each line of data has at least 3 columns. Columns’ mean-

ings, in the default order, are:

•	 Problem’s name;
•	 Exit flag;
•	 Cost measure – for instance, elapsed time.

Default exit flag is c or d on the exit flag column, meaning
convergence or divergence, respectively.

One of the perprof-py solver examples uses the follow-
ing YAML information
algname: Alpha
success: converged
free_format: True

which means that the name appearing on the profile
will be Alpha; that converged is the word that means
convergence, and that every other exit flag word means
divergence. These options were set from algname,
success and free_format options, respectively.

A user can, optionally, add more columns to add infor-
mation. They can verify, for instance, that the optimal-
ity conditions are satisfied for each problem. Also, using

Siqueira et al: Perprof-py Art. e8, p.  3 of 5

either YAML or command line options, a user can change
each columns’ meaning. Note that these options are not
enabled by default. The user should consult the help and
documentation files to see how to enable them.

Parsing process and output
To use perprof-py, one needs to issue a command of the type
$ perprof OPTIONS BACKEND FILES

where

•	 FILES are the input files described in the previous sec-
tion. At least two files input are required;

•	 BACKEND is one of the options --tikz, --mp,
--bokeh or --raw, which represents whether the
user wants to use TikZ/PGFPLOTS, matplotlib, Bokeh,
or simply printing the performance ratios, respectively;

•	 OPTIONS are varied arguments that can be passed to
perprof-py to customize the graphics or modify the
performance functions. Some noteworthy options are
–	 --semilog: the natural logarithmic scale is

used on the abscissa axis;
–	 --success STR: STR is a comma separated string

of keys that was considered success by the solver;
–	 --black-and-white: perprof-py creates the

plots using only line styles and it colors them in
black;

–	 --subset FILE: perprof-py considers only
the subset problems listed in FILE, while creating
the performance functions.

In order to demonstrate such OPTIONS, Figures 1–4 show
some examples of performance profile graphics. Figure 1
shows the performance profile graphic with default
options. Note that the lines are clumped due to the maxi-
mum time allowed in the solver. Figure 2 shows the per-
formance profile using semilog option, which plots the
graphic using a log scale on the abscissa. Figure 3 shows
the performance profile using also the black and white
option, which gives a printer-friendly graphic. Figure 4
shows the performance profile using subset and semilog
options. In this case, we selected around 120 problems,
put their names in a file, and passed the file with the
option. This limits the comparison to only those files.

Quality control
Perprof-py code is tested using unit tests that verify if
incorrect input information is captured. These tests are
run automatically on Travis CI [23], for Python 3.3 and 3.4.
In addition, a script is run to generate several performance
profile graphics. This script is also run on Travis CI, though

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000
0

0.2

0.4

0.6

0.8

1

Performance Ratio

P
ro

bl
em

s
so

lv
ed

Alpha
Beta

Gamma

Figure 1: Example of performance profile with default
options.

100 101 102 103
0

0.2

0.4

0.6

0.8

1

Performance Ratio

P
ro

bl
em

s
so

lv
ed

Alpha
Beta

Gamma

Figure 2: Example of performance profile with semilog
option.

100 101 102 103
0

0.2

0.4

0.6

0.8

1

Performance Ratio

P
ro

bl
em

s
so

lv
ed

Alpha
Beta

Gamma

Figure 3: Example of performance profile with semilog
and black and white options.

100 101 102
0

0.2

0.4

0.6

0.8

1

Performance Ratio

P
ro

bl
em

s
so

lv
ed

Alpha
Beta

Gamma

Figure 4: Example of performance profile with semilog
and subset options.

Siqueira et al: Perprof-pyArt. e8, p.  4 of 5

the evaluation that perprof-py outputs the desired graph-
ics can only be done locally.

This script uses artificial solver information accessible using
--demo as argument in the perprof-py call. For instance, to
test that the TikZ installation is successful, one can run
perprof-py --demo -o tmp --tikz

If everything is correct, this will generate a file tmp.pdf
with an example performance profile made using LaTeX
and compiled to a standalone PDF.

One can run the testing script by entering the folder
perprof/examples relative to the package folder, and
running
./make-examples.sh

Folder plots will contain the outputs in formats PNG
and PDF.

(2) Availability
Operating system
Perprof-py is developed and actively tested on Unix plat-
forms. The authors did not test it on Windows.

Programming language
The project was built entirely in Python 3.

Additional system requirements
No additional hardware requirements are necessary.

Dependencies
Perprof-py depends on the Python packages matplotlib,
pyyaml and bokeh. In addition, if a user wants the PDF
image from the LaTeX version, it also requires pdflatex.

Archive
Name
perprof-py v1.1.1

Identifier
http://dx.doi.org/10.5281/zenodo.30031

Licence
GPL (General Public License) Version 3

Date published
31/08/15

Publisher
Abel Soares Siqueira

Date published
31/08/15

Code Repository
Name
GitHub

Identifier
https://github.com/ufpr-opt/perprof-py

Licence
GPL (General Public License) Version 3

Date published
31/08/15

Language
Perprof-py was entirely developed in English, however
there is support for other languages in the code. Currently,
in addition to English, Brazilian Portuguese is the only
other language implemented.

(3) Reuse potential
The implementation of perfprof-py is separated in
a way that facilitates the creation of a new backend.
The class Pdata is defined to store the parsed data (P, S,
ts,p, etc.) and methods are defined to create the profile
data rp,s. Backends are classes that extend Pdata defin-
ing a method plot which creates the expected figure.
One should have little difficulty creating their own
backend, specially if one uses a perprof-py backend as
a starting point. However, if one wants to change the
profile data definition — in order to implement a data
profile (see [16]) —, one would have to modify one or
more methods in Pdata directly or re-implement the
backends.

The parser opens the input files and creates the infor-
mation for Pdata. Replacing this parser — to use with per-
prof-py backends — would not be an easy task since the
correct output format should be created. Nevertheless,
extending it with additional options would be simple
enough.

The entry point perprof-py essentially collects the
options from the command line and calls the specific
backend profiler. This can be completely bypassed
by calling the backend directly. This allows one to cre-
ate a performance profile from another python appli-
cation. In particular, a possibility is the creation of a
graphical user interface (GUI) or a web server applica-
tion. Perprof-py modularity allows whoever desires to
construct this interface to focus entirely on obtain-
ing the options from the user and passing it to the
backend.

Whether one is planning on expanding some of per-
prof-py functionalities or creating any new backend or
interface, one can contact the authors using the project
page on GitHub [21].

Competing Interests
The authors declare that they have no competing interests.

Acknowledgments
The authors would like to thank FAPESP1 and CNPq2 for
the partial support given to this project and their col-
leagues from LPOO and IMECC/UNICAMP. In addition, the
authors are grateful for the valuable insights and sugges-
tions given by Miles Lubin, by the editor-in-chief of JORS
Neil Hong, and by the three anonymous reviewers, which
improved perprof-py and this paper.

Notes
	 1	 Grants 2008/09685-8 and 2009/17273-4.
	 2	 Grant 501763/2013-9.

http://dx.doi.org/10.5281/zenodo.30031
https://github.com/ufpr-opt/perprof-py

Siqueira et al: Perprof-py Art. e8, p.  5 of 5

References
1.	 Bokeh. Available at http://bokeh.pydata.org/ (visited

on 05/30/2015).
2.	 Dolan, E D and Moré, J J 2002 ‘Benchmarking optimi-

zation software with performance profiles’, Mathemat-
ical Programming 91(2), 201–213. DOI: http://dx.doi.
org/10.1007/s101070100263.

3.	 Dolan, E D, Moré, J J and Munson, T S 2006 (Jan.)
‘Optimality Measures for Performance Profiles’, SIAM
Journal on Optimization 16(3), 891–909. DOI: http://
dx.doi.org/10.1137/040608015

4.	 Feuersänger, C 2013 Manual for Package PGFPLOTS.
Version 1.9.

5.	 Higham, N J 2005 ‘The scaling and squaring method
for the matrix exponential revisited’, SIAM Journal on
Matrix Analysis and Applications 26(4), 1179–1193.
DOI: http://dx.doi.org/10.1137/04061101X

6.	 Higham, N J 2009 ‘The scaling and squaring method for
the matrix exponential revisited’, SIAM Review 51(4),
747–764. DOI: http://dx.doi.org/10.1137/090768539

7.	 Higham, N J and Lin, L 2011 ‘A Schur-Padé algorithm
for fractional powers of a matrix’, SIAM Journal on Ma-
trix Analysis and Applications 32(3), 1056–1078. DOI:
http://dx.doi.org/10.1137/10081232X

8.	 Higham, N J and Lin, L 2013 ‘An improved Schur-Padé
algorithm for fractional powers of a matrix and their
Frechet derivatives’, SIAM Journal on Matrix Analy-
sis and Applications 34(3), 1341–1360. DOI: http://
dx.doi.org/10.1137/130906118

9.	 Hunter, J D 2007 ‘Matplotlib: A 2D graphics envi-
ronment’, Computing In Science & Engineering 9(3),
90–95. DOI: http://dx.doi.org/10.1109/MCSE.2007.55

10.	Mittelmann, H D 1999 ‘Benchmarking interior
point LP/QP solvers’, Optimization Methods and
Software 11(1–4), 655–670. DOI: http://dx.doi.
org/10.1080/10556789908805767

11.	Mittelmann, H Benchmark for optimization software.
url: http://plato.la.asu.edu/bench.html (visited on
08/21/2015).

12.	Al-Mohy, A H and Higham, N J 2009 ‘A new scaling and
squaring algorithm for the matrix exponential’, SIAM

Journal on Matrix Analysis and Applications 31(3),
970–989. DOI: http://dx.doi.org/10.1137/09074721X

13.	Al-Mohy, A H and Higham, N J 2011 ‘Computing the
action of the matrix exponential, with an application
to exponential integrators’, SIAM Journal on Scien-
tifc Computing 33(2), 488–511. DOI: http://dx.doi.
org/10.1137/100788860

14.	Al-Mohy, A H and Higham, N J 2012 ‘Improved in-
verse scaling and squaring algorithms for the ma-
trix logarithm’, SIAM Journal on Scientifc Com-
puting 34(4), C153–C169. DOI: http://dx.doi.
org/10.1137/110852553

15.	Moré, J J and Wild, S M 2009 ‘Benchmarking Deri-
vate-Free Optimization Algorithms’, SIAM Journal
on Optimization 20, 172–191. DOI: http://dx.doi.
org/10.1137/080724083

16.	Moré J J and Wild, S M 2009 ‘Benchmarking
Derivative-Free Optimization Algorithms’, SIAM Jour-
nal on Optimization 20(1), 172–191. DOI: http://
dx.doi.org/10.1137/080724083.

17.	Moré, J, Bondarenko, A, Bortz, D, Dolan, E,
Merritt, M and Munson, T COPS: Large-Scale Opti-
mization Problems. Available at http://www.mcs.anl.
gov/~more/cops/ (visited on 08/21/2015).

18.	Orban, D and Friedlander, M NLPy. Available at
https://github.com/dpo/nlpy (visited on 05/30/2015).

19.	PyYAML Available at http://pyyaml.org/ (visited on
08/25/2015).

20.	Relton, S perfprof. Available at https://github.com/
sdrelton/perfprof (visited on 08/26/2015).

21.	Siqueira, A S, da Silva, R G C and Santos, L-R
Perprof-py. Available at https://github.com/ufpr-opt/
perprof-py/ (visited on 05/30/2015).

22.	Tantau, T 2012 The TikZ and PGF Packages. Manual
for version 2.10-cvs.

23.	Travis CI. Available at http://travis-ci.org (visited on
05/30/2015).

24.	YAML Ain’t Markup Language Available at http://
yaml.org/ (visited on 08/25/2015).

25.	Zhang, W PerfPlot.jl. Available at https://github.com/
weijianzhang/PerfPlot.jl (visited on 08/26/2015).

How to cite this article: Siqueira, A S, Costa da Silva, R G and Santos, L-R 2016 Perprof-py: A Python Package for Performance
Profile of Mathematical Optimization Software. Journal of Open Research Software, 4: e12, DOI: http://dx.doi.org/10.5334/jors.81

Submitted: 01 June 2015 Accepted: 08 March 2016 Published: 22 April 2016

Copyright: © 2016 The Author(s). This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

Journal of Open Research Software is a peer-reviewed open access journal published by
Ubiquity Press OPEN ACCESS

http://bokeh.pydata.org/
http://dx.doi.org/10.1007/s101070100263
http://dx.doi.org/10.1007/s101070100263
http://dx.doi.org/10.1137/040608015
http://dx.doi.org/10.1137/040608015
http://dx.doi.org/10.1137/04061101X
http://dx.doi.org/10.1137/090768539
http://dx.doi.org/10.1137/10081232X
http://dx.doi.org/10.1137/130906118
http://dx.doi.org/10.1137/130906118
http://dx.doi.org/10.1109/MCSE.2007.55
http://dx.doi.org/10.1080/10556789908805767
http://dx.doi.org/10.1080/10556789908805767
http://plato.la.asu.edu/bench.html
http://dx.doi.org/10.1137/09074721X
http://dx.doi.org/10.1137/100788860
http://dx.doi.org/10.1137/100788860
http://dx.doi.org/10.1137/110852553
http://dx.doi.org/10.1137/110852553
http://dx.doi.org/10.1137/080724083
http://dx.doi.org/10.1137/080724083
http://dx.doi.org/10.1137/080724083
http://dx.doi.org/10.1137/080724083
http://www.mcs.anl.gov/~more/cops/
http://www.mcs.anl.gov/~more/cops/
https://github.com/dpo/nlpy
http://pyyaml.org/
https://github.com/sdrelton/perfprof
https://github.com/sdrelton/perfprof
https://github.com/ufpr-opt/perprof-py/
https://github.com/ufpr-opt/perprof-py/
http://travis-ci.org
http://yaml.org/
http://yaml.org/
https://github.com/weijianzhang/PerfPlot.jl
https://github.com/weijianzhang/PerfPlot.jl
http://dx.doi.org/10.5334/jors.81
http://creativecommons.org/licenses/by/4.0/

	bookmark2
	bookmark3
	bookmark4
	bookmark6
	bookmark7
	bookmark8
	bookmark9
	bookmark10
	bookmark11
	bookmark12
	bookmark13
	bookmark14
	bookmark15
	bookmark16
	bookmark17
	bookmark18
	bookmark19
	bookmark20
	bookmark21
	bookmark23

