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Genome-wide regression using a number of genome-wide markers as predictors is now widely used for 
genome-wide association mapping and genomic prediction. We developed novel software for genome-wide 
regression which we named VIGoR (variational Bayesian inference for genome-wide regression). Variational 
Bayesian inference is computationally much faster than widely used Markov chain Monte Carlo algorithms. 
VIGoR implements seven regression methods, and is provided as a command line program package for 
Linux/Mac, and as a cross-platform R package. In addition to model fitting, cross-validation and hyper-
parameter tuning using cross-validation can be automatically performed by modifying a single argument. 
VIGoR is available at https://github.com/Onogi/VIGoR. The R package is also available at https://cran. 
r-project.org/web/packages/VIGoR/index.html.
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(1) Overview
Introduction
Linear regression methods where a number of genome-
wide markers are used as predictors are currently used 
in genomic prediction [1–3] and genome-wide associa-
tion mapping [4–6]. Bayesian regression methods have 
attracted particular attention and a number of variations 
have been proposed [2], which typically use Markov chain 
Monte Carlo (MCMC) algorithms for parameter inference 
(e.g., [1, 7, 8]). Consequently, the software currently avail-
able for Bayesian regression (e.g., GenSel [9], AlphaBayes 
[10], GS3 [11], BayeZ [12], and BGLR [13]) is mainly based 
on MCMC. However, because of the computational burden 
associated with MCMC, analyzing huge datasets, such as 
those consisting of hundreds of thousands of markers, 
within realistic time scales is often unfeasible. Moreover, 
intensive cross-validation (CV) for evaluating predictive 
ability or for tuning hyperparameters is also difficult, even 
in moderate-sized datasets. These shortcomings of MCMC-
based methods have hampered the widespread application 
of Bayesian methods to genome-wide association mapping 
and genomic prediction. To tackle the shortcomings of 
the MCMC-based software, we developed novel software 
for whole-genome regression in a Bayesian framework, 
which we named VIGoR (variational Bayesian inference for 
genome-wide regression). VIGoR is based on variational 
Bayesian inference (VB), which is computationally much 

faster than MCMC, and can implement seven regression 
methods: Bayesian lasso (BL) [14], extended Bayesian lasso 
(EBL) [15], weighted Bayesian shrinkage regression (wBSR) 
[16], BayesB [1], BayesC [8], stochastic search variable selec-
tion (SSVS) [17], and Bayesian mixture regression (MIX)
[18]. BL, EBL, and wBSR implemented by VIGoR were used 
for genomic prediction of rice agronomic traits [19], and 
genomic prediction and association mapping in tomato 
[20]. EBL was also used for genomic prediction of rice head-
ing date [21]. The command line program (CLP) package for 
the Linux/Mac platform is available at https://github.com/
Onogi/VIGoR. A pdf manual is also available at the URL [24]. 
The R package is cross-platform and is available at https://
github.com/Onogi/VIGoR and from the Comprehensive R 
Archive Network (CRAN) at https://cran.r-project.org/web/
packages/VIGoR/index.html. The pdf manual contains the 
explanations of both the CLPs and the R functions.

Regression methods and algorithms
VIGoR assumes the following linear regression model:

1 1

a g b e
= =

= + +å å
F P

i ij j p ip p i
j p

y z x

where yi is the phenotypic value (response variable) of 
individual i, F is the number of covariates other than mark-
ers, zij is the covariate corresponding to the effect αj, P is 
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the number of markers, γp is the indicator variable that 
takes 0 or 1, xip is the genotype of marker p, βp is the effect 
of marker p, and εi is the residual. The indicator variables 
are fixed to 1 except in wBSR. The residual, εi, is assumed 
to follow a normal distribution with mean = 0 and  
variance = 

2
01 t . αj is assumed to be proportional to a con-

stant value, i.e., assumed to follow a non-informative prior 
distribution. The prior distribution of βp differs among the 
regression methods (Table 1). These prior distributions 
were proposed to select important markers (i.e., mark-
ers strongly associated with phenotypes) efficiently from 
given markers. Variational Bayesian algorithms for these 
regression methods which are implemented by VIGoR are 
illustrated in the pdf manual of VIGoR [24]. All the regres-
sion methods require the user specifying hyperparameters 
to determine the shapes of prior distributions. In Table 2, 
hyperparameters to be specified by the user are presented 
for each regression method. We briefly describe how to 
specify these hyperparameter values in the next section. 
In Table 3, we present the references of the regression 
methods and variational Bayesian inference.

Implementation and architecture
Both the CLP and R packages consist of two programs/
functions, vigor and hyperpara (Fig. 1). Vigor conducts 
genome-wide regression analyses, and has three main 
functions: fitting regression models to data (Model 
­fitting), fitting models after tuning hyperparameter values 
using CV (Model fitting after hyperparameter tuning), 
and evaluating predictive ability of regression methods 
by CV (Cross-validation). Using Model fitting, users can 
peform variable selection (association mapping) by fitting 
genome-wide regression models to data and estimating 
marker effects. This is the default function. Using Model 
fitting after hyperparameter tuning, users can estimate 
marker effects with the hyperparameters tuned automati-
cally using CV. Using Cross-validation, users can evaluate 
the predictive ability of regression models using CV.

Vigor requires the phenotypic values (response vari-
ables), and the marker genotypes (predictor variables) as 
mandatory input information (Fig. 1). In addition, all the 
regression methods implemented by vigor require hyperpa-
rameter values that users should specify (Fig.1 and Table 2).  

Table 1: Prior distributions of the marker effects and indicator variables.a
aPrior distributions of the marker effects have three-level hierarchical structures for BL and EBL, and two-level for the 

other methods.
BL, Bayesian lasso; EBL, extended Bayesian lasso; wBSR, weighted Bayesian shrinkage regression; SSVS, stochastic search 

variable selection; MIX, Bayesian mixture regression; N, normal distribution; Inv-G, inverse-gamma distribution; 
G, gamma distribution; Bernoulli, Bernoulli distribution; χ-2, scaled inverse-chi-square distribution.
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Regression Hyperparametersa Less influential hyperparameters 
(default values)

Influential hyperparameters 
determined by hyperpara

BL φ, ω φ (1.0) ω

EBL φ, ω, ψ, θ φ (0.1), ω (0.1), ψ (1.0) θ

wBSR v, S2, κ v (5.0) S2

BayesB v, S2, κ v (5.0) S2

BayesC v, S2, κ v (5.0) S2

SSVS c, v, S2, κ v (5.0) c, S2

MIX c, v, S2, κ v (5.0) c, S2

Table 2: Hyperparameters required by vigor.
aFor each regression model, the hyperparameters in this table correspond to those listed in Table 1. Among these hyper-

parameters, κ of wBSR, BayesB, BayesC, SSVS, and MIX is determined by the user. The other hyperparameters are set 
as default or can be determined by the function hyperpara.

BL, Bayesian lasso; EBL, extended Bayesian lasso; wBSR, weighted Bayesian shrinkage regression; SSVS, stochastic search 
variable selection; MIX, Bayesian mixture regression

Table 3: References of the regression methods and variational Bayesian algorithms.

Regression methods Variational Bayesian algorithm

BL [14] [22]

EBL [15] [22]

wBSR [16] [23]

BayesB [1] [24]

BayesC [8] [25]

SSVS [17] [24]

MIX [18] [24]

To make specification feasible, we provide the other pro-
gram/function, hyperpara, which calculates the values 
of hyperparameters that influence on inference, based 
on the values of hyperparameters that influence less and 
several assumptions of the genetic architecture (Table 2). 
Because the values of less influential hyperparameters are 
determined by default, users only input the assumptions 
of the genetic architecture to hyperpara. The required 
assumptions are (1) proportion of phenotypic variance 
(variance of response variable) that can be explained by 
the markers (predictor variables) (referred to as Mvar), and 
(2) proportion of markers with non-zero effects (referred 
to as κ). For example, when κ and Mvar are 0.01 and 0.5, 
respectively, this setting corresponds to an assumption 
that a half of phenotypic variance is explained by 1 % of 
markers. Based on this assumption, hyperpara calculates 
the values of influential hyperparameters. Explanations of 

the calculation of hyperparameter values are provided in 
the pdf manual of VIGoR [24].

The CLPs, vigor and hyperpara, were written with C, and 
are distributed as standalone pre-compiled programs. 
Source codes are also available at https://github.com/
Onogi/VIGoR. The programs can be built, for example, 
by typing gcc vigor.c -o vigor (Mac) or gcc vigor.c -o vigor 
-lm (Linux). The default function of vigor is Model fit-
ting. Model fitting after hyperparameter ­tuning and 
Cross-validation can be conducted by adding options 
-t and -c, respectively (Fig. 2). The phenotypic values 
(response variables), and the marker genotypes (predic-
tor variables) are provided as text files.

The R function vigor calls a C function from C library 
which is included in the package. Thus, calculation speed 
of the R function is almost equivalent to that of the 
CLP vigor. Hyperpara was developed with R. Both vigor 
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Figure 1: Overview of analysis by VIGoR. VIGoR consists of two programs/functions, vigor and hyperpara. Vigor conducts 
genome-wide regression analysis and has three main functions; Model fitting, Model fitting after hyperparameter 
tuning, and Cross-validation. The former two functions output the estimates of the marker and covariate effects, 
and the fitted values. The last function outputs the predicted values obtained by cross-validation. Vigor requires three 
kinds of input information, phenotypic values (response variable), marker genotypes (predictor variable), and hyper-
parameter values. Hyperparameter values can be determined by the user or by using hyperpara. Hyperpara calculates 
the values of hyperparameters that influence on inference, based on the assumptions of the genetic architecture and 
values of hyperparameters that influence less.

and hyperpara have no dependency to other R packages 
except for those included in system library. The usages of 
the R functions are similar to those of the CLPs (Fig. 2). The 
phenotypic values and the marker genotypes are input to 
vigor as a vector and a matrix objects, respectively. The 
default function of vigor is Model fitting. Model fitting 

after hyperparameter tuning and Cross-validation 
can be executed by adding arguments ”tuning” and “cv”, 
respectively (Fig. 2).

Both the CLP and R packages have advantages. The 
advantage of the CLP package is that the CLP vigor 
can accepts PED files of PLINK [26] and allele dosage 
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files of Beagle [27] as the marker genotype file. Both 
PLINK and Beagle are popular association mapping and 
genotype imputation software, respectively. Thus, the 
users of PLINK or Beagle will easily perform analyses 
of VIGoR. Meanwhile, the advantage of the R package 
is that it can visualize the analysis results easily, that is, 
Manhattan plots can be drawn with a one-row R code 
(see the pdf manual or R documentation). It is also easy 
to evaluate prediction accuracy when Cross-validation 
is executed, by calculating Pearson correlation coeffi-
cient between the predicted and true values (see the 
pdf manual or R documentation). Users can select 
the packages according to their analysis purposes or 
environments.

Quality control
The CLPs for Linux were compiled under the Linux kernel 
release 3.13.0-24-generic with a X86-64 machine. We have 
not tried the programs in other releases of Linux kernel. 
The CLPs for Mac were compiled under OS X ver. 10.6.8. 
We verified that the programs run under a recent version, 
ver. 10.9.5.

The R functions were made under R version 3.0.2, and 
the package was build using Mac (OS X ver. 10.6.8). We 
verified that the package can be loaded and the functions 
run in Windows 7/8, Mac (OS X ver. 10.6.8 and 10.9.5), 
and Linux (3.13.0-24-generic).

(2) Availability
Operating system
CLP package: Linux (kernel 3.13.0-24-generic), and Mac 
(OS X ver. 10.6.8 and 10.9.5).

R package: Windows 7/8, Linux (kernel 3.13.0-24-generic), 
and Mac (OS X ver. 10.6.8 and 10.9.5).

Programming language
C (CLP programs) and C and R (R functions).

Additional system requirements
None.

Dependencies
The R package requires installation of R (http://cran.r- 
project.org/).

List of contributors
Akio Onogi and Hiroyoshi Iwata
Department of Agricultural and Environmental Biology, 
Graduate School of Agricultural and Life Sciences, The 
University of Tokyo.

Software location
Archive
Name
CLP package: GitHub
R package: GitHub and CRAN
Persistent identifier
CLP package: https://github.com/Onogi/VIGoR
�R package: https://cran.r-project.org/web/packages/
VIGoR/index.html
Licence
MIT license
Publisher
Akio Onogi

Figure 2: Examples of the usage of vigor and hyperpara. “sample.pheno.txt” and “Pheno$Height” are the example file 
and object that contain the phenotypic values (response variables), and “sample.geno.txt” and “Geno” are the example 
file and object that contain the marker genotypes (predictor variables). These files and objects are included in the com-
mand line program (CLP) and R packages, respectively. The regression methods are specified by their abbreviations 
(e.g., BL, BayesB, and wBSR). The argument(s) immediately after the regression methods are the hyperparameter values. 
Hyperparameters should be ordered as in the second column of Table 2. In the example of Model fitting, 1 and 0.1 are 
the values of φ and ω of Bayesian lasso, respectively. In the example of Model fitting after hyperparameter ­tuning,  
two hyperparameter value sets, [v = 5, S2 = 1, κ=0.01] and [v = 5, S2 = 1, κ = 0.1], are provided using the -v option (CLP) and 
as a matrix (R function). The better set is chosen using cross-validation (CV), and model fitting is performed automatically 
with the chosen set. The -t option (CLP) and the argument “tuning” (R function) indicate this procedure. In the example 
of Cross-validation, a five-fold CV is performed. The -c option (CLP) and “cv” (R function) indicate CV, and the argument 
immediately after this option/argument (here 5) is the fold number. In the example of hyperpara, the second (0.5) and 
fourth (0.01) arguments are the values of Mvar and κ, respectively (see the main text for the explanations of Mvar and κ).
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20/05/2015

Language
English.

(3) Reuse potential
Because both the CLPs and R functions run by specifying 
only a few arguments, these programs will be approach-
able for geneticists who are interested in association map-
ping or genomic prediction. In addition, both the CLP 
and R functions vigor and hyperpara can accept predic-
tor variables other than the marker genotypes. Therefore, 
although we focus on genome-wide regression here, 
VIGoR can be applied into various problems where vari-
able selection is required for huge data. Thus, VIGoR will 
have a wide reuse potential.
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