
Slaughter, A E et al 2015 Continuous Integration for Concurrent MOOSE
Framework and Application Development on GitHub. Journal of Open Research
Software, 3: e14, DOI: http://dx.doi.org/10.5334/jors.bx

Journal of
open research software

ISSUES IN RESEARCH SOFTWARE

Continuous Integration for Concurrent MOOSE
Framework and Application Development on GitHub
Andrew E. Slaughter1, John W. Peterson1, Derek R. Gaston1, Cody J. Permann1,
David Andrš1, and Jason M. Miller1

1 Modeling and Simulation Department, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415
andrew.slaughter@inl.gov, jw.peterson@inl.gov, derek.gaston@inl.gov, cody.permann@inl.gov, david.andrs@inl.gov, jason.miller@inl.gov

Corresponding author: Andrew E. Slaughter

For the past several years, Idaho National Laboratory’s MOOSE framework team has employed modern
software engineering techniques (continuous integration, joint application/framework source code repos-
itories, automated regression testing, etc.) in developing closed-source multiphysics simulation software
(Gaston et al., Journal of Open Research Software vol. 2, article e10, 2014). In March 2014, the MOOSE
framework was released under an open source license on GitHub, significantly expanding and diversifying
the pool of current active and potential future contributors on the project. Despite this recent growth,
the same philosophy of concurrent framework and application development continues to guide the pro-
ject’s development roadmap. Several specific practices, including techniques for managing multiple reposi-
tories, conducting automated regression testing, and implementing a cascading build process are discussed
in this short paper. Special attention is given to describing the manner in which these practices naturally
synergize with the GitHub API and GitHub-specific features such as issue tracking, Pull Requests, and
project forks.

Keywords: continuous integration; github; multiphysics

(1) Introduction
The MOOSE (Multiphysics Object Oriented Simulation
Environment) framework is an open-source computational
platform for developing scientific applications. MOOSE
development relies on direct continuous integration
[1, 2] between the framework and all derived applications.
As described in [3], this integration was originally
 implemented using a shared repository strategy. Since that
publication, MOOSE has been released under the GNU
LGPL 2.1 license and is currently available via GitHub [4].

To support individual application development, and
because many of the MOOSE-based applications contain
export-controlled content, the single repository design is
no longer possible. This paper is a follow-on to our pre-
vious work [3], and details the integration of the open-
source version of MOOSE in both public and private
repositories, while still maintaining continuous integra-
tion and software engineering best practices. We also
discuss the impact that open sourcing has had on user
engagement levels with the MOOSE development process.

Originally, the MOOSE framework and its applications
were developed concurrently within a single SVN reposi-
tory hosted at the Idaho National Laboratory (INL). Now
that the framework has been moved to GitHub, the con-
tinuous integration process requires that MOOSE-based

applications hosted in GitHub repositories (both public
and private) and the INL-hosted Git repositories (based on
the GitLab platform [5])—which naturally have different
owners, permissions, and levels of accessibility—interop-
erate seamlessly with the MOOSE framework repository
on GitHub. While this paper focuses specifically on the
interaction between GitHub-based repositories, related
strategies have also been implemented to facilitate
GitHub-GitLab interactions for all of the techniques dis-
cussed in Section 2.

Separating the framework and applications into differ-
ent repositories eliminates some of the benefits of the
shared repository model detailed in [3]. In particular, the
ability to commit “across” the framework and applications
simultaneously is lost. Developers now face the additional
burden of ensuring that changes to the code which affect
both MOOSE and its dependent applications are synchro-
nized. Section 2 describes, in detail, how repository forks,
Git submodules, Pull Requests, and automated testing are
combined in order to alleviate this burden.

(2) Development Strategy
As discussed in [3], a key benefit of the shared reposi-
tory model was that the framework developers’ need to
maintain backwards compatibility with previous APIs was

http://dx.doi.org/10.5334/jors.bx
mailto:andrew.slaughter@inl.gov
mailto:jw.peterson@inl.gov
mailto:derek.gaston@inl.gov
mailto:cody.permann@inl.gov
mailto:david.andrs@inl.gov
mailto:jason.miller@inl.gov
http://www.mooseframework.org/
http://www.mooseframework.org/
https://www.mooseframework.org
https://www.mooseframework.org
https://www.mooseframework.org
https://www.mooseframework.org
https://www.mooseframework.org
https://www.mooseframework.org
https://www.mooseframework.org
https://www.mooseframework.org
https://www.mooseframework.org
https://www.mooseframework.org
https://www.mooseframework.org
https://www.mooseframework.org

Slaughter et al: Continuous Integration for Concurrent MOOSE
Framework and Application Development on GitHub

Art. e14, p.  2 of 7

largely absent—the developers could update the appli-
cations along with changes to the framework in a single,
atomic commit. This basic approach continues in the new
multi-repository model, but of course it is no longer possi-
ble to achieve with a single commit into a single repository.
Instead, the following technologies are critical for making
this approach viable in the multi-repository model:

1. GitHub forks.
2. The cascading build system.
3. Git submodules and automated regression testing.

The roles of each of these technologies are described in
the following subsections.

2.1 Forking Stork
MOOSE-based applications are created by Stork [6]
through a repository “fork,” a standard practice in GitHub-
based development. The fork provides a simple method for
tracking MOOSE-based applications, and allows MOOSE
developers to pull code, build and test the applications,
and submit Pull Requests to the fork owners, providing
them with the necessary updates when changes are made
to the MOOSE API. Note that submission of a Pull Request
does not require write access for the submitter: it merely
makes code available which an application owner may
then choose to incorporate into the project, or reject.

Fig. 1 shows this development strategy in action: Pull
Requests are issued to MOOSE-based applications which
were originally created by forking Stork. As changes are
made to the MOOSE framework, these applications are
monitored in order to determine if the changes have
altered their behavior. The monitoring is implemented
through the cascading build and automated testing
 systems, as discussed in the following sections. The
 techniques used to monitor the various MOOSE-based
applications are themselves undergoing rapid develop-
ment, and will be discussed in greater detail in subse-
quent publications.

The process of manually submitting Pull Requests to all
Stork forks is clearly not sustainable: at the time of this
writing, 125 forks are in existence, and even when the
required patch is relatively small, it may be non-trivial
to automate the process in an application-independent
manner. One exception is the case where the required
changes can be applied using a script, for example when
the MOOSE input file syntax changes in a relatively
simple way. In this case, the GitHub web API [7] can be used
to automatically create a Pull Request for each dependent
application, an example of which is shown in Fig. 2.

Considering the limitations involved in manually
 updating applications, a related approach that uses
Git submodules [8] has been successfully employed. In
this alternate approach, the MOOSE-based application

Figure 1: Screenshot of GitHub network graph for MOOSE developer (friedmud; Derek Gaston) fork of Stork that
contains branches for each of the derivative applications that required an update due to a change in the MOOSE
framework (https://github.com/friedmud/stork/network).

https://www.mooseframework.org
https://github.com/idaholab/stork
https://www.mooseframework.org
https://www.mooseframework.org
https://www.mooseframework.org
https://www.mooseframework.org
https://github.com/idaholab/stork
https://www.mooseframework.org
https://www.mooseframework.org
https://github.com/idaholab/stork
https://www.mooseframework.org
https://www.mooseframework.org
https://github.com/friedmud/stork/network

Slaughter et al: Continuous Integration for Concurrent MOOSE
Framework and Application Development on GitHub

Art. e14, p.  3 of 7

Figure 2: GitHub screenshots showing: (a) the patch for a Pull Request created via the GitHub API, and (b) the list of
automatically generated Pull Requests for various forks.

repository contains a Git submodule for MOOSE which can
be updated, either automatically or manually, based on the
results of the regression testing system. The MOOSE-based
Pika [9] application, for example, is updated in this way.
This submodule update can also be restricted to a devel-
opment branch within the application repository, allow-
ing some users to continue running (and even developing)
the application with a prior version of MOOSE, while other

developers move forward with the latest API, with the goal
of merging at some future date. Additional details of this
strategy are discussed in Section 2.3.

2.2 Cascading Build System
The cascading build system, as discussed in [3], still oper-
ates in essentially the same manner as it did in the earlier
shared repository model, with various enhancements to

https://www.mooseframework.org
https://www.mooseframework.org
https://www.mooseframework.org

Slaughter et al: Continuous Integration for Concurrent MOOSE
Framework and Application Development on GitHub

Art. e14, p.  4 of 7

support the multi-repository configuration. The build sys-
tem now automatically detects MOOSE-based applications
that are stored in directories alongside the moose direc-
tory (e.g., a MOOSE installation in ~/projects/moose
would find ~/projects/app0 and ~/projects/
app1). Additionally, we employ a set of environment
variables (e.g. $MOOSE_DIR) to support a user-defined
directory structure. As before, executing the ‘make’ com-
mand from any MOOSE-based application directory will
automatically rebuild not only the application, but all of
its dependencies as well. Additionally, running “make
test_up” from the $MOOSE_DIR/framework direc-
tory will automatically build and test all applications.
This single command allows a MOOSE developer to
ensure that the changes are compatible with the other
MOOSE-based applications installed before proposing a
GitHub Pull Request.

2.3 Automated Testing
The continuous integration strategy employed by MOOSE
requires every commit to undergo a series of tests to
ensure that all MOOSE-based applications continue to
build and pass their regression test suites (details of the
Python-based “test harness” used by MOOSE and the appli-
cations are discussed in [3]). Toward this end, a multi-level
build and testing system called MooseBuild was devel-
oped (Gaston et al., in preparation) that integrates with

GitHub, and facilitates the testing of MOOSE and its appli-
cations. The MooseBuild process is depicted graphically in
Fig. 3, and the steps of the entire process from GitHub
Pull Request to commit in the INL-hosted repositories is
described in the following list.

1. Pull Request Created: All changes to MOOSE
require GitHub Pull Requests [10]. Creating a Pull
Request triggers the MooseBuild system, as shown
in Fig. 3.

2. Pull Request Testing: Proposed changes are checked
for adherence to coding standards, compiled, and
tested—before being merged into the repository—on
various compilers and in various configurations
(valgrind, debug, MPI, threaded). Test results are
reported as comments and continuous integration
status updates [11] on the Pull Request. Both frame-
work- and application-level tests exist. If a framework-
level test fails, the Pull Request will most likely not be
merged as-is, and the author will need to address the
failures. The failure of an application-level test may
or may not prevent the merge, depending on the way
MooseBuild is configured.

3. Review: All code changes go through a peer-review
process prior to being merged, both to ensure cor-
rectness and to determine the appropriateness of
the changes for the referenced issue number. In the

Figure 3: Flowchart depicting the development process and associated MooseBuild testing system. For a more detailed
description, see Section 2.3.

https://www.mooseframework.org
https://www.mooseframework.org
https://www.mooseframework.org
https://www.mooseframework.org
https://www.mooseframework.org
https://www.mooseframework.org
https://www.mooseframework.org
https://www.mooseframework.org
https://www.moosebuild.org
https://www.mooseframework.org
https://www.moosebuild.org
https://www.mooseframework.org
https://www.moosebuild.org
https://www.moosebuild.org

Slaughter et al: Continuous Integration for Concurrent MOOSE
Framework and Application Development on GitHub

Art. e14, p.  5 of 7

MOOSE project, code proposed by any given devel-
oper must be reviewed and merged by someone
else—you cannot merge your own Pull Request.

4. Pull Request Merge: After the Pull Request has
passed the tests and one or more members of the
MOOSE developer community have signed off on it,
the Pull Request is merged (by clicking the “green
button” on GitHub) into the devel branch of the
repository.

5. Devel Branch Testing: A merge to the devel branch
triggers a second round of testing that includes a suite
of tests similar to Step 2. These are included to allow
changes that are pushed directly to the development
branch to be tested completely, even though this is
a rare occurrence. Additionally, the devel branch
of MOOSE is tested against the master branches of
various other open- and closed-source MOOSE-based
applications. Depending on the application, test fail-
ures will either cause the automated system to report
a failure (and therefore prevent the MOOSE devel
branch from merging into master) or simply be
noted for future reference.

6. devel to master Merge: After the application
tests are completed, the devel branch is automati-
cally merged into master. This merge triggers Steps
7 and 9 to occur simultaneously.

7. App Testing: A second round of application testing
occurs when the master branch is updated. This
round tests the applications’ devel branch against
the MOOSE master branch.

8. Update App Submodules: If the application tests
pass in the second round of application (Step 7),
the MOOSE submodule within the application is
updated. Further details of this process are discussed
below.

9. Documentation Updated: After the master
branch is updated, the various documentation-
related tasks are executed. These include updates
to the Doxygen-based source code documentation,
input file syntax listings, and test timing data.

The computational resources required to run the con-
tinuous integration system are fairly unexceptional:
we currently employ ten rack-mounted Ubuntu-based
build machines, each with dual 8-core Intel Xeon
E5-2450 2.1GHz CPUs, 96GB of system memory, and a
single 256GB solid state hard drive. The testing (Steps 2,
5, and 7) typically requires about 15 minutes to
 complete, and the entire process, from Pull Request to
merging in the master branch, is usually finished in
about one hour.

Further elaboration on the two rounds of application
testing and automatic submodule updates is warranted
at this stage of the discussion. The system is designed
to allow for framework- and application-spanning
changes to occur without the master branches of
either ever being in an invalid state. In general terms,
this is accomplished by pushing application-break-
ing changes to the MOOSE GitHub repository (either
directly to devel or to a special “integration branch”

created expressly for the purpose) and then updating
a dependent application’s MOOSE submodule to this
commit on the same branch where the application
itself is updated. The key point is that the Git submod-
ule allows applications to be based on a version of
MOOSE that is not yet in the master branch, but will
be at some time in the future. The basic steps of this
approach are given in further detail as follows:

1. The developer makes the necessary changes to the
framework and application locally.

2. The framework changes are pushed to an integration
branch in the MOOSE GitHub repository.

3. The application’s MOOSE submodule is updated to a
commit on the integration branch.

4. A Pull Request is submitted to the application with
the proposed changes as well as a submodule update
of the MOOSE framework that points to the integra-
tion branch.

5. After the application Pull Request is merged, a Pull
Request is submitted from the integration branch to
the devel branch in the MOOSE GitHub repository.

We emphasize that the master branches of both the
framework and the application are in a valid state during
the entire process. This is important because it ensures
that a user who tracks the master branch of their
application can stay up-to-date without worrying about
updating to an incompatible version of MOOSE, provided
that the application is a part of the automated testing
process. Furthermore, even if the integration branch is
not merged into MOOSE devel in a timely manner (say,
within a day or two) the dependent applications can con-
tinue to use revisions from the integration branch as long
as necessary.

2.4 Discussion
It is important to understand that MOOSE, its derivative
applications, and the continuous integration strategy dis-
cussed in this paper are ongoing research projects. The
MOOSE framework and the applications are required to
adapt and improve, in a synchronized manner, on a daily
basis. To date, we have not employed traditional version-
ing or major-minor-point releases in the development of
the framework. We envision the automated and manual
submodule updates discussed here as a more fine-grained
application of this concept, but recognize that a shift in
both user and developer practices will be required for this
approach to truly flourish.

We furthermore understand that maintaining, updat-
ing, and testing in the manner described in this paper does
not scale particularly well in the number of applications.
Therefore, in the future, we envision the need for stricter
requirements on the application testing process, includ-
ing e.g. minimum test coverage requirements, maximum
test suite execution times, and willingness to merge com-
patibility pull requests from upstream in a timely manner.
MooseBuild is being developed with extensibility in mind,
and with the ability to allow external applications to test
on their own hardware and report the results back to a

https://www.mooseframework.org
https://www.mooseframework.org
https://www.mooseframework.org
https://www.mooseframework.org
https://www.mooseframework.org
https://www.mooseframework.org
https://www.mooseframework.org
https://www.mooseframework.org
https://www.mooseframework.org
https://www.mooseframework.org
https://www.mooseframework.org
https://www.mooseframework.org
https://www.mooseframework.org
https://www.mooseframework.org
https://www.mooseframework.org
https://www.mooseframework.org
https://www.mooseframework.org
https://www.mooseframework.org
https://www.moosebuild.org

Slaughter et al: Continuous Integration for Concurrent MOOSE
Framework and Application Development on GitHub

Art. e14, p.  6 of 7

centralized server or servers, thereby reducing the overall
computational requirements for testing.

(3) Documentation and Wiki
The content from the INL-hosted Trac [12] “wiki” described
in [3] has since migrated to a public website [13]. This
page is a “one-stop shop” for all MOOSE-related support
topics and documentation resources, including: installa-
tion instructions, details of MOOSE plugin system APIs,
descriptions of MOOSE physics modules, and links to
automatically-generated documentation (code coverage,
test timing and input file syntax). All of the automatic
documentation mentioned in [3] is still available; docu-
mentation of the MOOSE physics modules is an ongoing
effort. The modules documentation is a key addition to
the existing MOOSE framework documentation, and is
essential for accommodating and enabling new users who
can now obtain MOOSE without first receiving formal, in-
person training on its use.

(4) Impact of Open Source
Releasing MOOSE with an open source license was a
strategic decision made with the goal of increasing the
number of users and developers who can actively work
on the project. It is instructive to look at the periods
both immediately before and immediately following
the public release of MOOSE on GitHub when trying
to gauge the impact which opening the code has had
on the project. Table 1 shows the change in both the
number of commits and contributors in the four month
periods immediately preceding and immediately fol-
lowing March 2014, the date when MOOSE officially
went open source. The increased frequency and size
of commits over the approximately one year period
 following March 2014 is also evident in Fig. 4. Fig. 5
 highlights the increase in the rate of commits from
outside developers as well as the number of unique
contributors to the MOOSE framework.

In addition to new framework developers, the overall
number of MOOSE-based applications and application
developers has also increased. In the prior six years of
closed-source MOOSE development, approximately thirty
applications were created. Since open-sourcing MOOSE,
over 125 public Stork forks and approximately 10 new
closed-source applications [14] have been created, dem-
onstrating the important role that ease of access plays in
the growth and improvement of scientific software.

(5) Future Work and Closing Remarks
The system and methodology used by the MOOSE
project for continuous integration and concurrent
framework and application development on GitHub is
rapidly evolving. The development aspects discussed
here represent the MOOSE team’s current strategy
for handling the many challenging multi-repository
integration issues which have arisen thus far, but it is
inevitable that the supporting infrastructure will con-
tinue to evolve and improve over time. As the concepts
discussed here are further streamlined, the burdens
of managing multiple repositories will likewise be
reduced. Finally, the initial community response to the
open sourcing of MOOSE and the introduction of the
related software engineering practices has been very
positive. We are confident that further improvements
will continue to attract new users and developers to
the project.

Figure 5: Left axis: commit history for the top ten MOOSE
developers compared to all “other” contributors. Right
axis: cumulative number of unique contributors over
time (thick black line). The shaded region highlights the
time frame during which MOOSE has been available as
an open source library on GitHub.

Figure 4: Number of source code lines added (green) or
deleted (red) per week for the MOOSE repository (as
reported by GitHub). Note the increased activity after
MOOSE was open-sourced in March, 2014.

Table 1: Number of lines added/removed, commits, and
unique contributors both before and after the open
sourcing of MOOSE. “Before” and “After” refer to the
four month periods immediately before and after the
open sourcing of MOOSE, respectively (see the Appen-
dix for how these value were determined).

Lines Added/
Removed

Number of
Commits

Number of
Contributers

Before
After

+24373/–12618
+49964/–33164

377
1069

16
24

https://www.mooseframework.org
https://www.mooseframework.org
https://www.mooseframework.org
https://www.mooseframework.org
https://www.mooseframework.org
https://www.mooseframework.org
https://www.mooseframework.org
https://www.mooseframework.org
https://www.mooseframework.org
https://www.mooseframework.org
https://www.mooseframework.org
https://www.mooseframework.org
https://www.mooseframework.org
https://www.mooseframework.org
https://www.mooseframework.org
https://www.mooseframework.org
https://www.mooseframework.org
https://www.mooseframework.org
https://www.mooseframework.org
https://www.mooseframework.org
https://www.mooseframework.org
https://www.mooseframework.org

Slaughter et al: Continuous Integration for Concurrent MOOSE
Framework and Application Development on GitHub

Art. e14, p.  7 of 7

Competing Interests
The authors declare that they have no competing interests.

Author Information
The submitted manuscript has been authored by a con-
tractor of the U.S. Government under Contract DE-AC07-
05ID14517. Accordingly, the U.S. Government retains a
non-exclusive, royalty-free license to publish or reproduce
the published form of this contribution, or allow others to
do so, for U.S. Government purposes.

Appendix
The results provided in Table 1 were obtained by analyzing
the four months prior to and following the open-source
release of MOOSE. The Git revisions corresponding to
these dates are:

• 10-Oct-2013: 961fcf56
• 10-Mar-2014: b4739561
• 10-Jul-2014: 793e4ce6

Only changes to source and header files were recorded,
across both modules and frameworks. The following com-
mands were used for producing the total lines removed/
added, the number of commits, and the number of con-
tributors, respectively:
git log --numstat -- pretty=”%H” <hash1>..<

hash2> -- ‘*.[Ch]’ | awk ‘NF ==3 {plus +=$1;
minus +=$2} END {printf (“+%d, -%d\n”,
plus, minus)}’

git rev-list --count <hash1>..<hash2>

git shortlog -s <hash1>..<hash2>

where <hash1>..<hash2> = 961fcf56..b4739561
and b4739561..793e4ce6 for the four months prior
to and after open-sourcing, respectively.

References
 1. Duvall, P M, Matyas, S and Glover, A 2007 Continuous

integration: improving software quality and reducing
risk. Addison-Wesley. Available at: http://books.google.
com/books?vid=ISBN9780321336385.

 2. Deshpande, A and Riehle, D 2008 Continuous integra-
tion in open source software development. In: Russo, B
et al. (Eds.) Open Source Development, Communities
and Quality, ser. The Inter national Federation for
Information Processing (IFIP), Springer, vol. 275,
pp. 273–280. DOI: http://dx.doi.org/10.1007/978-
0-387-09684-123

 3. Gaston, D R, Peterson, J W, Permann, C J, Andrš, D,
Slaughter, A E and Miller, J M Jul. 2014 Continuous
integration for concurrent computational framework
and application development. Journal of Open Re-
search Software, 2(1): pp. 1–6, Article e10. DOI: http://
dx.doi.org/10.5334/jors.as

 4. https://github.com/idaholab/moose.
 5. https://about.gitlab.com.
 6. https://www.github.com/idaholab/stork.
 7. https://developer.github.com/v3.
 8. http://git-scm.com/book/en/v2/Git-Tools-Submodules.
 9. https://www.github.com/idaholab/pika.
10. Dabbish, L, Stuart, C, Tsay, J and Herbsleb, J 2012

Social coding in GitHub: Transparency and collabora-
tion in an open software repository. In Proceedings
of the ACM 2012 Conference on Computer Support-
ed Cooperative Work, ser. CSCW ’12. New York, NY,
USA: ACM, 2012, pp. 1277–1286. DOI: http://dx.doi.
org/10.1145/2145204.2145396

11. https://developer.github.com/v3/repos/statuses.
12. http://trac.edgewall.org.
13. https://www.mooseframework.org/wiki.
14. http://mooseframework.org/wiki/TrackedApps.

How to cite this article: Slaughter, A E, Peterson, J W, Gaston, D R, Permann, C J, Andrš, D and Miller, J M 2015 Continuous
Integration for Concurrent MOOSE Framework and Application Development on GitHub. Journal of Open Research Software, 3:
e14, DOI: http://dx.doi.org/10.5334/jors.bx

Published: 20 November 2015

Copyright: © 2015 The Author(s). This is an open-access article distributed under the terms of the Creative Commons
Attribution 3.0 Unported License (CC-BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited. See http://creativecommons.org/licenses/by/3.0/.

Journal of Open Research Software is a peer-reviewed open access journal published by
Ubiquity Press OPEN ACCESS

https://www.mooseframework.org
https://github.com/idaholab/moose/commit/961fcf567f2bf12c7782ce96ca550a23d56b8cce
https://github.com/idaholab/moose/commit/b4739561e5b56e43f3427d4cc91237d09be57800
https://github.com/idaholab/moose/commit/793e4ce631b7b3c671bc3ecff8e2c74c2b68eef0
http://books.google.com/books?vid=ISBN9780321336385
http://books.google.com/books?vid=ISBN9780321336385
http://dx.doi.org/10.5334/jors.bx
http://creativecommons.org/licenses/by/3.0/

	BMsec_devel
	BMsec_build
	BMsec_testing

