
SOFTWARE

METAPAPER

Taskfarm: A Client/Server
Framework for Supporting
Massive Embarrassingly
Parallel Workloads

MAGNUS HAGDORN

NOEL GOURMELEN

ABSTRACT
Taskfarm is a client/server framework that can be used to keep track of massive
embarrassingly parallel workloads. The system is split up into two packages: (1) a flask
server that hands out new tasks via HTTP and (2) a python client that requests and
updates tasks. The server stores task progress in a database. This system has been
designed to manage a satellite data processing workflow with hundreds of thousands
of tasks with variable compute costs. It can be used for any problem that can be solved
using a task farm.

CORRESPONDING AUTHOR:

Magnus Hagdorn

School of GeoSciences,
University of Edinburgh, GB

magnus.hagdorn@ed.ac.uk

KEYWORDS:
open source; high
performance computing;
client/server framework; task
farm; embarrassingly parallel
workload

TO CITE THIS ARTICLE:
Hagdorn M, Gourmelen N
2023 Taskfarm: A Client/Server
Framework for Supporting
Massive Embarrassingly
Parallel Workloads. Journal of
Open Research Software, 11: 1.
DOI: https://doi.org/10.5334/
jors.393

*Author affiliations can be found in the back matter of this article

mailto:magnus.hagdorn@ed.ac.uk
https://doi.org/10.5334/jors.393
https://doi.org/10.5334/jors.393
https://orcid.org/0000-0003-3346-9289

2Hagdorn and Gourmelen Journal of Open Research DOI: 10.5334/jors.393

(1) OVERVIEW
INTRODUCTION
Broadly speaking there are three approaches to
distributing work for parallel computing: 1) decomposing
computations, 2) decomposing data and 3) decomposing
tasks [3]. Tightly coupled problems such as matrix–
matrix computations fall into the first category and
are typically solved using shared memory systems.
Partial differential equations arising for example in fluid
dynamics are an example of the second category. They
are typically solved by decomposing the domain and
distributing data across the nodes of the parallel system.
Processing 1000s of images to extract some quantity is
an example of the third category where each image can
be processed independently. Loosely coupled problems
can be solved using a task farm [1] where one process,
the farmer, hands out tasks to the workers. There is no
communication between the workers and tasks can be
solved in any order. The problem is solved once all tasks
have been processed. Problems like this are also know as
embarrassingly parallel workloads.

Task farms come in all sizes. Resizing a few files can
be done with a shell loop sending each process into the
background. If a few hundred images need to be resized a
tool like GNU parallel can be used. Larger problems involving
multiple nodes in a cluster need some form of coordination:
a farmer process keeps track of all the tasks and hands
out new tasks to workers running on different nodes. The
farmer needs to be able to communicate with the workers
to give them new tasks. One approach to do this is to write
a parallel program using MPI. One MPI process is the farmer
that sends a new task to a worker process upon request.
Workers can also notify the farmer on progress of each task.

Using MPI has the advantage that it is available and
well understood on scientific HPC clusters and integrates
well with middleware such the grid engine or SLURM.
It has the disadvantage that one process needs to be
dedicated to handing out tasks. More critically, MPI
programs tend to have a fixed number of processes and
depending on the cluster, requesting a large MPI job
might take a long time. Furthermore, there is an issue
with resilience where a single failure arising for example
through resource limits being exceeded or a hardware
failure takes down the entire task farm. An MPI task
farm does not make as much use of the embarrassingly
parallel nature of the problem as it could.

Another approach to implementing a task farm on a
cluster is to make use of the middleware and use array
jobs. Array jobs are used to schedule the same program
with a different job ID. Each job can then figure out what
task it needs to run from the job ID. This approach has
the advantage that the task farm can grow and shrink
dynamically depending on the availability of cluster
resources. It has the disadvantage that keeping track
of overall progress becomes difficult when individual
process are expected to occasionally fail. Also some tasks

might be so small that the scheduling overhead is much
larger than the task itself.

This paper describes a framework that can be used to
create a task farm. It was designed to grid raw satellite
data. The dataset consists of time-dependent observation
of ice elevation obtained from CryoSat interferometric
radar altimeter [9]. This dataset is used with success to
determine change in ice mass and ice dynamic, and to
determine the contribution of land-ice masses to sea
level change [7, 8, 6]. CryoSat data are pre-processed
using a swath processing algorithm [5] which enhanced
data coverage. The data are then processed into rates of
elevation change using a plane fit approach [4].

The task farm framework needs to

•	 handle 100 000s of tasks
•	 keep track of the status of each task
•	 make full use of the embarrassingly parallel nature of

the problem
•	 be able to handle tasks of varying computational

complexity
•	 be able to identify and restart individual tasks that

might have failed

IMPLEMENTATION AND ARCHITECTURE
The requirements of making full use of the embarrassingly
parallel nature of the problem and being able to easily
track the status of individual tasks and the entire problem
suggests a web application backed by a database. Web
applications can scale to thousands of request per
second. Each client requests a new task and updates
it via HTTP requests. The clients are thus completely
independent of each other. The role of the farmer is
completely decoupled from the project and moved into
the web application. A special client can be used to query
the state of each task or the entire project by querying
the database. What follows is a detailed description of
the task farm server web application and the task farm
python client.

The task farm server can support multiple runs. A run
consists of a number of tasks that need to be completed
to solve some problem. A UUID is automatically assigned
to a new run. Each task is a single item of work that forms
part of a run. A task is identified by its number starting
from 0 for the first task of a run to numTasks-1 for the
last task. Each task can be in one of the following states:

waiting: the task is waiting to be scheduled,
computing: the task is being computed, and
done: the task is completed.

The task table also records the percentage completed,
the start time and the time when a task was last updated.

The taskfarm server only stores the state of each task.
It is up to the clients to manage any data access that
they need to process the tasks.

3Hagdorn and Gourmelen Journal of Open Research DOI: 10.5334/jors.393

The source code of both the server and client package
is available on github. Installable packages are also
available via pypi.org. The packages are called taskfarm
and taskfarm-worker, respectively.

TASK FARM SERVER
The task farm server is a RESTful [2] python web
application based on the flask framework. It uses the
SQLAlchemy python database toolkit together with the
flask-sqlalchemy module to handle database operations.
SQLAlchemy supports many database backends. For
testing the single file database engine SQLite is sufficient.
For production runs with multiple flask workers PostgreSQL
should be used. PostgreSQL supports row locking and
thus multiple workers can access the database safely.

The database connection is configured by setting the
DATABASE_URL environment variable, e.g.

export DATABASE_URL=sqlite:///app.db
or
export DATABASE_URL=postgresql://user:pw@host/db

where user is the database user, pw the associated
password, host the host name of the machine running
the postgres server and db the name of the database
to connect to. If you are using postgres you will need to
create a database first. The database is automatically
created if you are using sqlite. Once the database
connection has been configured the database needs to
be initialised by running

adminTF –init-db

All REST API calls to the task farm server are authenticated.
Task farm users are created using

adminTF -u username -p password

where username is the name of the user and password
the associated password.

The flask application uses the flask-httpauth module
for basic HTTP authentication. Initially, the user is
authenticated using the password. On success, a token
is returned which is used for all further authentication.

Table 1 shows a summary of all REST API calls. Data
are exchanged using JSON objects. See the online
documentation for details of the API.1

Flask applications come with a built-in lightweight
server which is sufficient for testing. In production, a
flask application should be run through a WSGI server.
The flask documentation gives details for the many
options available. One option is to use the Gunicorn
WSGI server.

Installation of the taskfarm server requires a database
and a webserver. The repository on github contains
configuration files to run the web application including
database and webserver as a containerised service using
docker. Detailed installation instructions can be found
online.2

TASK FARM CLIENT
Rather than calling the HTTP API directly you can use the
task farm client which is also implemented in python. It
provides a set of proxy classes that perform the HTTP API
calls to the task farm server. It also comes with a tool
that can be used to manage runs.

A new run can be created by instantiating a TaskFarm
object with the number of tasks passed as a parameter.

Each worker process needs to instantiate a
TaskFarmWorker object using a username and password
and the UUID of the run. This registers the worker
with the task farm server. The TaskFarmWorker object
provides an iterator that is used to obtain new tasks to
be processed. The server only hands out tasks that are
in the waiting state. Once a task has been handed out it
is in the computing state. It is up to the client to update
the server with the task’s progress and finally mark it as
completed. Once a task has been completed it is in the
done state.

METHOD URL DESCRIPTION

POST /api/run create a new run

GET /api/runs get a list of all runs

POST /api/runs/UUID/restart restart all tasks of a run UUID

GET /api/runs/UUID/tasks/ID get information of task with ID of run UUID

PUT /api/runs/UUID/tasks/ID update task with ID of run UUID

POST /api/runs/UUID/task request a task for run UUID

GET /api/runs/UUID get information about run UUID

DELETE /api/runs/UUID delete run UUID

GET /api/token get the authentication token

POST /api/worker create a worker

Table 1 Task farm server REST API URLs.

http://pypi.org

4Hagdorn and Gourmelen Journal of Open Research DOI: 10.5334/jors.393

A skeleton worker might look like:
from taskfarm_worker import TaskFarmWorker

connect to taskfarm
tf = TaskFarmWorker (‘user’,’secret’,

‘da8eb1c10eac4cefb39c8889d6d7170a’,
url_base=’http://localhost:5000/api/’)

print (tf.percentDone)

loop over the tasks
for t in tf.tasks:

print (“worker ␣{}␣ processing task ␣{}”
.format (tf.worker_uuid,t))

do some work
update the percentage done
tf.update (50)
do some more work and update percentage
tf.update (100)
mark task as completed
tf.done ()

The TaskFarm class can also be used to query an existing
run. Class attributes are used to provide information on
how many tasks have been completed and how many
tasks are being computed.

There is no way of automatically detecting a crashed
worker. So some tasks might never be marked as
completed. The restart method can be used to mark all
tasks in the computing state as waiting.

The manageTF utility can be used to create new runs,
list existing runs and query a particular run. It can also be
used to reset a run or delete it.

QUALITY CONTROL
Both server and client come with a test suite that can be
automatically run using pytest. The task farm server API
is tested using the flask-testing unit testing framework.

The client test suite uses the requests-mock package to
mock the API calls. Both server and client documentation
is generated using sphinx.

The server and client packages are supported via their
github issue trackers.

The taskfarm-worker package contains an example
script that configures a task farm run and launches a
number of task farm workers. This script can be used to
investigate the overhead of tracking tasks. The task farm
server is launched using the Gunicorn WSGI server with
1, 2, 4, 8 and 16 worker processes. Gunicorn redirects
incoming requests to one of the workers which in turn
is directly connected to a postgres database server
hosted on a different virtual machine. A number of task
farm clients are used to complete a run consisting of
256 tasks. Each client requests a new task. It then sends
ten progess updates to the server and finally marks it as
complete. Figure 1 shows the average time each client
takes until all tasks are completed and the average time
to update the server with the progress of a task.

This test does not involve any computation so the
runtime depends on the network and how fast the
webserver can process requests and how fast the flask
workers can communicate with the database server.
Performance clearly depends on the webserver when
only 1 or 2 Gunicorn workers are used. The overall
runtime does not improve significantly when more
than 4 workers are used. When more than 16 task
farm clients are used (see Figure 1b) update time
increase even for 16 Gunicorn workers. This suggests
that the postgres database struggles to keep up with
the updates from the Gunicorn workers. These tests
are clearly unrealistic since no computational work is
done by any of the tasks and task farm requests will
happen at the same time. For more realistic examples
the computational effort should be much larger than
the communication effort.

Figure 1 (a) The average time taken by each worker process to solve a total of 256 tasks when the task farm server uses 1, 2, 4, 8 or
16 worker processes. (b) The average time it takes to update the progress of a task.

5Hagdorn and Gourmelen Journal of Open Research DOI: 10.5334/jors.393

(2) AVAILABILITY
OPERATING SYSTEM
Both the task farm server and client packages are
pure python packages, so they should run on any
operating system that supports python. The system
has been tested on Scientific Linux 7 and Ubuntu
20.04 systems.

PROGRAMMING LANGUAGE
Both task farm server and client require python 3.

ADDITIONAL SYSTEM REQUIREMENTS
The task farm server needs to communicate with a
database. For testing purposes SQLite is sufficient. For
production runs a postgres database should be used.
Other databases with SQLAlchemy support might work
as well. Also for production a WSGI server together with
a webserver should be used.

DEPENDENCIES
Task Farm Server

•	 flask
•	 flask-sqlalchemy
•	 flask-httpauth
•	 flask-testing
•	 itsdangerous
•	 passlib
•	 authlib

Task Farm Client

•	 requests
•	 requests-mock
•	 testtools
•	 fixtures

LIST OF CONTRIBUTORS
Magnus Hagdorn

SOFTWARE LOCATION
Task Farm Server
Archive

Name: zenodo
Persistent identifier: https://doi.org/10.5281/

zenodo.7010122
Licence: GPL-3
Publisher: Magnus Hagdorn
Version published: 0.4.0
Date published: 19/08/2022
Name: PyPI
Persistent identifier: https://pypi.org/project/

taskfarm/
Licence: GPL-3
Version published: 0.4.0
Date published: 19/08/2022

Code repository
Name: github
Persistent identifier: https://github.com/mhagdorn/

taskfarm
Licence: GPL-3
Date published: 19/08/2022

Task Farm Client
Archive

Name: zenodo
Persistent identifier: https://doi.org/10.5281/

zenodo.7010132
Licence: GPL-3
Publisher: Magnus Hagdorn
Version published: 0.4.0
Date published: 19/08/2022
Name: PyPI
Persistent identifier: https://pypi.org/project/

taskfarm-worker/
Licence: GPL-3
Version published: 0.4.0
Date published: 19/08/2022

Code repository
Name: github
Persistent identifier: https://github.com/mhagdorn/

taskfarm-worker
Licence: GPL-3
Date published: 19/08/2021

LANGUAGE
English

(3) REUSE POTENTIAL

Any embarrassingly parallel problem can be solved with a task
farm approach. This project has been designed with a very
large number of non-homogeneous tasks in mind. However,
this approach can also be used for smaller, homogeneous
problems. The task farm client communicates with the
server via HTTP using a RESTful API. Although this client is
implemented in python it could also be implemented in
another language with a suitable HTTP client library.

NOTES
1	 https://taskfarm.readthedocs.io/.
2	 https://taskfarm.readthedocs.io/en/latest/installation.html.

ACKNOWLEDGEMENTS

The authors would like to thank Chris Hill for trying out the
installation instructions and the anonymous reviewers
for their very helpful comments.

https://doi.org/10.5281/zenodo.7010122
https://doi.org/10.5281/zenodo.7010122
https://pypi.org/project/taskfarm/
https://pypi.org/project/taskfarm/
https://github.com/mhagdorn/taskfarm
https://github.com/mhagdorn/taskfarm
https://doi.org/10.5281/zenodo.7010132
https://doi.org/10.5281/zenodo.7010132
https://pypi.org/project/taskfarm-worker/
https://pypi.org/project/taskfarm-worker/
https://github.com/mhagdorn/taskfarm-worker
https://github.com/mhagdorn/taskfarm-worker
https://taskfarm.readthedocs.io/
https://taskfarm.readthedocs.io/en/latest/installation.html

6Hagdorn and Gourmelen Journal of Open Research DOI: 10.5334/jors.393

FUNDING STATEMENT

This work was supported by European Space Agency
contract CryoTop evolution 4000116874/16/I-NB.

COMPETING INTERESTS

The authors have no competing interests to declare.

AUTHOR AFFILIATIONS
Magnus Hagdorn
School of GeoSciences, University of Edinburgh, GB

Noel Gourmelen orcid.org/0000-0003-3346-9289
School of GeoSciences, University of Edinburgh, GB

REFERENCES

1.	 Aldinucci M, Danelutto M. Stream parallel skeleton

optimization. In Proceedings of the 11th IASTED

International Conference on Parallel and Distributed

Computing and Systems, MIT. 1999; 955–962. IASTED/ACTA

press.

2.	 Amundsen M, Ruby S, Richardson L. RESTful Web APIs.

O’Reilly; 2013.

3.	 Dowd K, Severance C. High Performance Computing.

O’Reilly, 2nd edition; 1998.

4.	 Foresta L, Gourmelen N, Pálsson F, Nienow P,

Björnsson H, Shepherd A. Surface elevation change

and mass balance of icelandic ice caps derived from

swath mode cryosat-2 altimetry. Geophysical Research

Letters. 2016; 43. ISSN 19448007. DOI: https://doi.

org/10.1002/2016GL071485

5.	 Gourmelen N, Escorihuela MJ, Shepherd A, Foresta

L, Muir A, Garcia-Mondéjar A, Roca M, Baker SG,

Drinkwater MR. Cryosat-2 swath interferometric altimetry

for mapping ice elevation and elevation change. Advances

in Space Research. 2018; 62. ISSN 18791948. DOI: https://

doi.org/10.1016/j.asr.2017.11.014

6.	 Jakob L, Gourmelen N, Ewart M, Plummer S. Spatially and

temporally resolved ice loss in high mountain asia and

the gulf of alaska observed by cryosat-2 swath altimetry

between 2010 and 2019. Cryosphere. 2021; 15. ISSN

19940424. DOI: https://doi.org/10.5194/tc-15-1845-2021

7.	 Shepherd A, Ivins E, Rignot E, Smith B, Broeke MVD,

Velicogna I, Whitehouse P, Briggs K, Joughin I, Krinner

G, Nowicki S, Payne T, Scambos T, Schlegel N, Geruo A,

Agosta C, Ahlstrøm A, Babonis G, Barletta V, Blazquez

A, Bonin J, Csatho B, Cullather R, Felikson D, Fettweis X,

Forsberg R, Gallee H, Gardner A, Gilbert L, Groh A, Gunter

B, Hanna E, Harig C, Helm V, Horvath A, Horwath M, Khan

S, Kjeldsen KK, Konrad H, Langen P, Lecavalier B, Loomis B,

Luthcke S, McMillan M, Melini D, Mernild S, Mohajerani Y,

Moore P, Mouginot J, Moyano G, Muir A, Nagler T, Nield G,

Nilsson J, Noel B, Otosaka I, Pattle ME, Peltier WR, Pie N,

Rietbroek R, Rott H, Sandberg-Sørensen L, Sasgen I, Save

H, Scheuchl B, Schrama E, Schröder L, Seo KW, Simonsen

S, Slaters T, Spada G, Sutterley T, Talpe M, Tarasov L, Berg

WJVD, Wal WVD, Wessem MV, Vishwakarma BD, Wiese

D, Wouters B. Mass balance of the antarctic ice sheet from

1992 to 2017. Nature. 2018; 558. ISSN 14764687. DOI:

https://doi.org/10.1038/s41586-018-0179-y

8.	 Shepherd A, Ivins E, Rignot E, Smith B, van den Broeke M,

Velicogna I, Whitehouse P, Briggs K, Joughin I, Krinner

G, Nowicki S, Payne T, Scambos T, Schlegel N, Geruo

A, Agosta C, Ahlstrøm A, Babonis G, Barletta VR, Bjørk

AA, Blazquez A, Bonin J, Colgan W, Csatho B, Cullather

R, Engdahl ME, Felikson D, Fettweis X, Forsberg R,

Hogg AE, Gallee H, Gardner A, Gilbert L, Gourmelen N,

Groh A, Gunter B, Hanna E, Harig C, Helm V, Horvath A,

Horwath M, Khan S, Kjeldsen KK, Konrad H, Langen PL,

Lecavalier B, Loomis B, Luthcke S, McMillan M, Melini D,

Mernild S, Mohajerani Y, Moore P, Mottram R, Mouginot

J, Moyano G, Muir A, Nagler T, Nield G, Nilsson J, Noël B,

Otosaka I, Pattle ME, Peltier WR, Pie N, Rietbroek R, Rott

H, Sandberg Sørensen L, Sasgen I, Save H, Scheuchl B,

Schrama E, Schröder L, Seo KW, Simonsen SB, Slater T,

Spada G, Sutterley T, Talpe M, Tarasov L, van de Berg WJ,

van der Wal W, van Wessem M, Vishwakarma BD, Wiese

D, Wilton D, Wagner T, Wouters B, Wuite J. Mass balance

of the greenland ice sheet from 1992 to 2018. Nature.

2020; 579. ISSN 14764687. DOI: https://doi.org/10.1038/

s41586-019-1855-2

9.	 Wingham DJ, Francis CR, Baker S, Bouzinac C, Brockley

D, Cullen R, de Chateau-Thierry P, Laxon SW, Mallow U,

Mavrocordatos C, Phalippou L, Ratier G, Rey L, Rostan

F, Viau P, Wallis DW. Cryosat: A mission to determine the

fluctuations in earth’s land and marine ice fields. Advances

in Space Research. 2006; 37. ISSN 02731177. DOI: https://

doi.org/10.1016/j.asr.2005.07.027

https://orcid.org/0000-0003-3346-9289
https://orcid.org/0000-0003-3346-9289
https://doi.org/10.1002/2016GL071485
https://doi.org/10.1002/2016GL071485
https://doi.org/10.1016/j.asr.2017.11.014
https://doi.org/10.1016/j.asr.2017.11.014
https://doi.org/10.5194/tc-15-1845-2021
https://doi.org/10.1038/s41586-018-0179-y
https://doi.org/10.1038/s41586-019-1855-2
https://doi.org/10.1038/s41586-019-1855-2
https://doi.org/10.1016/j.asr.2005.07.027
https://doi.org/10.1016/j.asr.2005.07.027

7Hagdorn and Gourmelen Journal of Open Research DOI: 10.5334/jors.393

TO CITE THIS ARTICLE:
Hagdorn M, Gourmelen N 2023 Taskfarm: A Client/Server Framework for Supporting Massive Embarrassingly Parallel Workloads.
Journal of Open Research Software, 11: 1. DOI: https://doi.org/10.5334/jors.393

Submitted: 06 September 2021 Accepted: 29 November 2022 Published: 12 January 2023

COPYRIGHT:
© 2023 The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0
International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original
author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

Journal of Open Research Software is a peer-reviewed open access journal published by Ubiquity Press.

https://doi.org/10.5334/jors.393
http://creativecommons.org/licenses/by/4.0/

