
Blanton, B and Lenhardt, C 2014 A Scientist’s Perspective on Sustainable
Scientific Software. Journal of Open Research Software, 2(1): e17, pp. 1-4,
DOI: http://dx.doi.org/10.5334/jors.ba

Software is at the core of most modern scientific activi-
ties. As societal awareness of, and impacts from, extreme
weather, disasters, and climate and global change con-
tinue to increase, scientific software is put more in the
spotlight because it is often used to understand, ana-
lyze, and predict these types of phenomena. Some of this
scientist-written research software has indirect impacts
on decision- and policy-making, and so reproducibility
of research results becomes an essential component to
establishing and maintaining credibility of both scientists
and scientific results. This is referred to as a crisis of cred-
ibility by Donoho [1], Stodden [2], and others. For results
to be independently reproducible, the software (and data)
should meet certain levels of best practices that help
ensure sustainable and open access to the software, data,
and results.

One aspect of the credibility crisis has been highlighted
in a recent article [3] that describes reasons for particular
software being chosen by scientists. These reasons include
that the “developer is well-respected” and on “recommen-
dation from a close colleague”. This taking of software for

granted, assuming that it performs as advertised and that
the software itself has been validated and results verified,
is one of several big hazards facing the entire scientific
community (others include data, methods, and results
openness and transparency, and competition of scarce
resources). Failure to adequately understand and address
this hazard and its potential consequences puts our col-
lective scientific credibility at substantial risk.

It is inevitable that scientific software will frequently
be taken for granted, requiring that some level of cred-
ibility risk being taken on. Not all scientists have the
same level of expertise in software development, compu-
tational sciences, and other related fields. This is hardly
a disparagement. As pointed out by Hanney et al [4], a
fundamental difference between science software devel-
opment and other software development enterprises is
that developers of science software generally need some
level of knowledge of the science domain. Degrees are
granted in the fields of computational sciences and
software engineering, and it may be unreasonable for
software engineers to become proficient in multiple sci-
entific domains throughout a career in software develop-
ment. In general, it is easier for scientists to acquire the
basics of writing functioning software (whether or not
they follow best practices) than for software engineers to
become adept in one or more scientific domain. This is
partly why so many scientists write their own computer

*	Renaissance Computing Institute, The University of North
Carolina at Chapel Hill, Chapel Hill, NC, USA
brian_blanton@renci.org

Corresponding author: Brian Blanton

ISSUES IN RESEARCH SOFTWARE

A Scientist’s Perspective on Sustainable Scientific
Software
Brian Blanton* and Chris Lenhardt*

Keywords: scientific software; credibility; credibility risk

Software underpins most of our daily activities, from banking and finance to interactions with the inter-
net, to weather forecasts and reports. Software also impacts individuals, groups, and societies through
policy implementation, since information for decision and policy making is frequently derived from soft-
ware ranging from climate and weather models to financial forecasting systems. One way to gauge the
extent to which specific software needs to be sustainable, accessible, and transparent essentially hinges
on the degree to which scientific analysis software, models, and model output are used to help inform and
guide policy. Climate models and related scientific results are perhaps the most obvious example of the
need for sustainable and transparent software, due in part to the public forum in which the results are
scrutinized and the implications on environmental management policy. Without almost ubiquitous adoption
of best practices for scientific software development, maintenance, and use, the credibility of scientific
results and of ourselves as scientists is substantially at risk; sustainable and transparent research pro-
cesses are thus at the heart of maintaining and increasing our collective reputations. [The authors want
to make clear that, by using climate models as an example of software with policy impacts, we are not
claiming that these models, are written with little “best practices” in mind, nor that they are inherently
unsustainable as software.]

Journal of
open research software

http://dx.doi.org/10.5334/jors.ba
mailto:brian_blanton@renci.org

Blanton and Lenhardt: A Scientist’s Perspective on Sustainable Scientific SoftwareArt. e17, page 2 of 4

programs. This is not a direct risk avoidance measure, but
rather a reaction to necessity. It likely results in a per-
ceived reduction in risk.

The issue of taking scientific software for granted essen-
tially becomes, “How should this risk be managed and
mitigated?” Hedging against this risk has several aspects,
most related to software development itself. In some
rough order of increasing complexity, these range from
adoption and adherence of software development best
practices, to peer-review of software, to formal training
in software engineering and related fields for scientists.
Ultimately, some balanced approach is needed that incor-
porates parts of the entire range of approaches, and the
goal should be to arm scientists with reasonable best-
practices and provide opportunities for collaborations
with professional software developers.

One software development path is as follows. Scientific
software might begin as a component of a research idea
funded and developed in response to an RFP or similar
request. The software is a by-product of the research efforts,
and since the research end-goal is delivery of “science”,
the software may be written in a get it done sense. Some
software emerges from this cookery as having substantive
value for other applications and research; continued devel-
opment of the software then typically occurs in sporadic
fits and with multiple developers (including students).

Occasionally, software developed largely in the scien-
tific and engineering research realm gains acceptance
and applicability in different sectors like applied research,
operations, or commercial and industry use. This happens
neither quickly nor by coincidence. Years of model/soft-
ware application establish a track record of success, and
(presumably) studies conducted with the model demon-
strate good predictive skill and consequently good rep-
resentations of the underlying physical laws and science
(such as the Navier Stokes or shallow-water equations for
hydrodynamic models). While not directly peer-reviewed
as a software construct, the results have been reasonably
well vetted in the community through the publication
and peer-review process.

Consider the following scenario: Flood insurance
is required for federally backed mortgage loans, with
rates essentially set according to maps that delineate
areas expected to flood with an annual chance of occur-
rence of 1%. Determining the spatial locations of these
zones requires knowledge of the flood hazard in an area,
detailed topographic elevations, and records of observed
events for developing the statistical models that represent
likely storm occurrences in a region. Most of the statisti-
cal and physics-based models used have their origins in
research, but the process of conducting the storm surge
and statistical study is largely ad hoc, even though there
are requirements for data management and archiving.
There is no requirement on the software design, mainte-
nance, and evolution, even though the ultimate results of
a flood insurance study are regulatory.

In a coastal flood insurance study, several numerical
models are used that simulate storm surge and wind-wave
responses to tropical cyclones and extra-tropical storms.

Because these computational and statistical studies of the
coastal environment need to resolve small scale features
that impose hydraulic constraints on the physical system,
we necessarily use models that are themselves research
tools into the physics and the numerical/computational
methods used to solve the problems on high-performance
computers. It is easy to see that this situation (using
sophisticated research software for results that become
regulatory) contains many of the issues associated with
sustainable software development and best-practices
adoption and adherence.

So, given the above use case, the need for sustainable
scientific software and development practices extends
well beyond just the credibility argument. Since issues
like insufficient documentation, limited test cases, and
software unavailability (e.g., in the case of proprietary
software or unwillingness to share) are significant barri-
ers to informed and intelligent science software usage,
the consensus is that adoption of, and adherence to, best
practices in scientific software development will substan-
tially increase intelligent software usage, thus promoting
a sustainable evolution of both the scientific software and
the science as encoded in the software. Best practices, for
example as described by G. Wilson [5], include designing
for people and not computers, defensive programming,
optimize only after the software has been validated, use
bugs as new test cases, and the use of software versioning
systems (e.g., Subversion, GitHub).

Perhaps the biggest problem inhibiting development
of sustainable science software is the tension and time
scale differences between get it done and get it done
right. This problem is directly related to how scientific
software development is funded, since this directly
impacts the extent to which best practices are adopted,
implemented, and maintained. Much scientific software
has been developed in an ad hoc manner, with an incon-
sistent funding stream, and with variable adherence to
and application of core software engineering best prac-
tices. This situation is exacerbated when the scientist is
also the software developer. This could be out of neces-
sity due to resource constraints, or because a scientist
likes writing software.

There is naturally a spectrum of scientists’ participation
in software development activities. Toward one end, sci-
entists remain somewhat distanced from software devel-
opment activities, but rather cede software responsibility
to software experts. This requires substantial planning
of research activities within which software best prac-
tices and engineering are given equal weight to scientific
development. It is possible that this approach may only
be practicable when the science and software engineering
are co-funded, wherein science and software are funded
within project grants at relatively equal levels of effort.
Co-funding, however, implies a co-dependence between
the groups, which ultimately depends on sustained
funding for the co-development of scientific software.
Sustainability of the software then implies and requires
sustained funding. Additionally, professional software
development is generally expensive and time consuming.

Blanton and Lenhardt: A Scientist’s Perspective on Sustainable Scientific Software Art. e17, page 3 of 4

Research project budgets generally cannot withstand this
level of cost, unless they are co-funded. In the academic,
scientific area, co-funded development is rare and will
likely remain so without direct and explicit acknowledge-
ment of the problem at the highest levels.

The other extreme is for scientists to become fully
engaged in the software development process from incep-
tion and design through an agile (where software is itera-
tively and incrementally written and tested frequently)
development and delivery. Scientists become relatively
expert in software engineering best practices, an approach
advocated by some and instanced in several science cur-
ricula in the US and Europe.

Both of these extremes are relevant and important, pri-
marily because some scientists like writing software and
would prefer to be deeply involved in its development,
and some scientists don’t like writing software. In terms
of sustainable and reusable scientific software, it ulti-
mately doesn’t matter which path is taken. What matters
is that some approach is adopted by individual projects,
and the end product is the result of best practices, regard-
less of who carried out the development. Some level of
expertise is essential for scientists to work within the
computational and software development communities.
Many scientists write good software by following best
practices, but errors are inevitable. Following best prac-
tices will make errors in the software easier to find and
correct, and generally these will be found much earlier in
the software lifetime.

Fortunately, good software can and does emerge from
the relatively ad hoc process of code development, either
because at some point the software and supporting infra-
structure is completely overhauled with best-practices
and software engineering at the forefront, or because
some level of good design was adopted early in the pro-
cess. Many of the numerical models used for coastal ocean
research (from process-based studies to forecasting of
coastal ocean response to weather and climate) have been
developed in this manner, with differing levels of best-
practices strategies (e.g., HYCOM, ROMS, ADCIRC).

One specific idea to increase reproducibility of research
results is to adopt a peer-review process for the software
used in scientific research, analogous to that in the pro-
posal review and publishing process. If peer-review of
scientific results and the software itself becomes a require-
ment for publication and is fully implemented, then this
would certainly promote early adoption of best practices.
There are, however, several factors that complicate this.
This implies that a research project and results could be
rejected if best practices are not adhered to even if the
results are sound. This also implies that best practices
and standards be proposed, vetted, approved, adopted,
and enforced. Who would constitute a set of peers for a
review? The pool of potential reviewers that are expert
enough in both software engineering and the science
domain will be a very small group. How would a review
process fit into an agile development cycle? Would each
cycle be reviewed? How would this level of involvement
be funded? The authors’ worry is that only the co-funding

model will work, which ultimately does not seem sustain-
able as a specific project ends but the software continues
to evolve and grow.

NSF-funded projects can and should lead the way as
to how software can be developed to simultaneously
achieve research goals and produce sustainable, reusable
software. The advent of funded software institutes such as
the Water Science Software Institute [6] and the Institute
for Sustainable Earth and Environmental Software, a
part of the NSF’s Cyberinfrastructure Framework for 21st
Century Science and Engineering CIF21 [7], is clearly an
effort to promote and instantiate software development
and engineering best practices (among other cyberin-
frastructure related concepts) in the academic research
culture. An additional need is for all directorates, divi-
sions, and offices to recognize and acknowledge the
importance of the issue, subsequently require a soft-
ware development and sustainability plan analogous
to the data management plan, and (most importantly)
enthusiastically fund software (and data management)
activities explicitly. And, of course, to adopt standards
for both data and software against which the software
can be valued.

References
1.	 Donoho, D, Maleki, A, Rahman, I U, Shahram, M

and Stodden, V 2009 Reproducible research in com-
putational harmonic analysis. Computing in Science
and Engineering, 11(1): 8–18. DOI: http://dx.doi.
org/10.1109/MCSE.2009.15

2.	 Stodden, V 2010 The Scientific Method in Practice:
Reproducibility in the Computational Sciences. MIT
Sloan Research Paper No. 4773–10. DOI: http://dx.doi.
org/10.2139/ssrn.1550193

3.	 Joppa, L, McInerny, G, Harper, R, Salido, L, Takeda,
K, O’Hara, K, Gavaghan, D and Emmott, S 2013
Troubling trends in scientific software use. Science,
340(6134): 814–815. DOI: http://dx.doi.org/10.1126/
science.1231535

4.	 Hannay, J, MacLeod, C, Singer, J, Langtangen, H
P, Pfahl, D and Wilson, G 2009 How do scientists
develop and use scientific software? In: Proceedings of
the 2009 ICSE Workshop on Software Engineering for
Computational Science and Engineering, SECSE ’09,
Washington, DC, USA, IEEE Computer Society, pp. 1–8.

5.	 Wilson, G, Aruliah, D, Brown, C, Chue Hong, N,
Davis, M, Guy, R, Haddock, S, Huff, K, Mitchell,
I, Plumbley, M, Waugh, B, White, E and Paul, W
2014 Best Practices for Scientific Computing. PLoS Biol
ogy,12(1): e1001745. DOI: http://dx.doi.org/10.1371/
journal.pbio.1001745

6.	 Ahalt, S, Band, L, Christopherson, L, Idaszak, R,
Lenhardt, C, Minsker, B, Palmer, M, Shelley, M,
Tiemann, M and Zimmerman, A 2014 Water Science
Software Institute: Agile and open source scientific
software development. IEEE Computing in Science and
Engineering (CiSE), 6(3): 18–26.

7.	 See: http://www.nsf.gov/cise/aci/cif21/CIF21Vision-
2012current.pdf

http://dx.doi.org/10.1109/MCSE.2009.15
http://dx.doi.org/10.1109/MCSE.2009.15
http://dx.doi.org/10.2139/ssrn.1550193
http://dx.doi.org/10.2139/ssrn.1550193
http://dx.doi.org/10.1126/science.1231535
http://dx.doi.org/10.1126/science.1231535
http://dx.doi.org/10.1371/journal.pbio.1001745
http://dx.doi.org/10.1371/journal.pbio.1001745
http://www.nsf.gov/cise/aci/cif21/CIF21Vision2012current.pdf
http://www.nsf.gov/cise/aci/cif21/CIF21Vision2012current.pdf

Blanton and Lenhardt: A Scientist’s Perspective on Sustainable Scientific SoftwareArt. e17, page 4 of 4

How to cite this article: Blanton, B and Lenhardt, C 2014 A Scientist’s Perspective on Sustainable Scientific Software. Journal
of Open Research Software, 2(1): e17, pp. 1-4, DOI: http://dx.doi.org/10.5334/jors.ba

Published: 9 July 2014

Copyright: © 2014 The Author(s). This is an open-access article distributed under the terms of the Creative Commons
Attribution 3.0 Unported License (CC-BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited. See http://creativecommons.org/licenses/by/3.0/.

 	 OPEN ACCESS Journal of Open Research Software is a peer-reviewed open access journal published by
Ubiquity Press.

http://dx.doi.org/10.5334/jors.ba
http://creativecommons.org/licenses/by/3.0/

