
SOFTWARE METAPAPER

ABSTRACT
This paper presents an implementation in R of the Cluster Estimated Standard Errors 
(CESE) proposed by [12]. The method estimates the covariance matrix of the estimated 
coefficients of linear models in grouped data sets with correlation among observations 
within groups. Cluster Estimated Standard Errors (CESE) is an alternative solution for 
the classical Cluster Robust Standard Errors (CRSE) [8, 13, 15], which underestimates 
the standard errors in most of the situations encountered in practice [7].

CORRESPONDING AUTHOR:

Diogo Ferrari

Assistant Professor, 
Department of Political 
Science, University of 
California, Riverside, US

diogo.ferrari@ucr.edu

KEYWORDS:
Clustered robust standard 
errors; Clustered data; 
Confidence Intervals; 
Regression Analysis

TO CITE THIS ARTICLE:
Ferrari D 2021 CESER: An R 
Package to Compute Cluster 
Estimated Standard Errors. 
Journal of Open Research 
Software, 9: 32. DOI: https://
doi.org/10.5334/jors.355

DIOGO FERRARI 

CESER: An R Package to 
Compute Cluster Estimated 
Standard Errors

mailto:diogo.ferrari@ucr.edu
https://doi.org/10.5334/jors.355
https://doi.org/10.5334/jors.355
https://orcid.org/0000-0003-2454-0776


2Ferrari Journal of Open Research DOI: 10.5334/jors.355

(1) OVERVIEW
INTRODUCTION
A common problem in regression analysis that requires 
correction of the estimated standard errors of the 
regression coefficients is the correlation between the 
residuals in observations that share some observed 
grouping features. For instance, people that live in the 
same city, state, or country can display a more similar 
behaviour than people randomly sampled from different 
cities, states, or countries. The example extends for 
any data in which some observations have shared 
characteristics or belong to the same collective entity or 
institutional setting. For instance, people from the same 
school, patients from the same hospital, or groups of the 
same gender or race can behave more similarly than 
people across those groups. The within-group correlation 
can be caused by unobserved shared characteristics of 
the observations in the groups, such as some unobserved 
school-specific educational policies, or the unobserved 
patterns of behavior of doctors in different hospitals.

Non-zero within-group correlations violate a common 
assumption of classical multivariate regression models, 
namely that the residuals are independent, or simply 
uncorrelated. If one mistakenly assumes the residuals 
are independent/uncorrelated, the estimated standard 
errors of the regression coefficients will be biased 
downward, which leads to smaller estimated confidence 
intervals, and therefore higher chances to reject the 
hypothesis that the coefficients are null. It can misguide 
researchers and lead them to be overconfident that their 
working hypothesis of non-zero effect is true. We can see 
that easily with a simple example.

Suppose we estimate the following population 
regression model:

= b+ey X

where X ∈ (1, k), β ∈ (k+1) × 1, y ∈ , and the last element 
is the error (or deviance) term ε ∈ . We collect i = 1, …, n 
observations to estimate β, which gives the statistical 
equation for each i with the following residuals e:

= b + .i i iy X e

We usually take X as given (measured without error) and 
use the OLS estimator b̂  of β, which is obtained by finding 
the argument that minimizes the square residuals (e) 
between observed outcome (y) and the outcome if no 
error had occurred (Xβ):

ˆ argmin ) ( ) ( ).arg in ( mT Te e y X y Xb = = - b - b
b b

Assuming XTX is invertible, the first order condition gives 
the solution for that optimization problem:

-b= 1ˆ ( ) .T TX X X y

Up to this point, if we were simply computing an OLS 
point estimate of β using b̂ , no assumptions would be 

needed about the distribution of the residuals (ei). We 
impose assumptions about the distribution of e to go 
one step further and make inferences about b̂  and 
investigate its statistical properties.1 The distribution 
of our estimator b̂ , and therefore our inferences, 
comes from the assumptions about the distribution of 
e. Denote that distribution generically by f(e | θ), that 
is:

( )q|~ .e f e

We can easily derive the first and second moments of b̂ :

( ) ( ) ( ) ( )- - -
b = = b+ = b+

1 1 1ˆ     T T T T T TX X X y X X X X e X X X e

which gives:

	  m -
b = b q = b+ q1ˆ[ | , ] ( ) [ | ]T TX X X X e � (1)

and

	  - -
b

S = b q = q1 1
ˆ

ˆar[ | , ] ( ) ar[ ] ( ) .|T T TX X X X e X X X � (2)

Assumptions about f(e | θ) will give the small sample 
properties of the estimator b̂ . The classical assumption 
is that all residuals e comes from the same normal 
distribution with mean zero, and that they are 
uncorrelated. That is:

	  s2(0, ) ~ e I � (3)

If we assume that [e | θ] = 0, as in the expression (3), 
then b̂ is unbiased ([ b̂ | X, θ] = β), and its standard error 
is simply:

	 s-b = 1 2ˆ ˆ( ) ( )Tse X X � (4)

with the estimated variance of e given by [8]:

s
- b - b

=
- +

2
ˆ ˆ( ) ( )

ˆ .
( 1)

Ty X y X
n K

Equation (4) provides the exact confidence interval for b̂ :

	
ˆ ˆ ˆ ˆ ˆ[ ] ( se( ), se( )).**CI t tb = b- b b+ b � (5)

In the expression (5), the value of t comes from a 
t-distribution and it is given by:

a< = -( |) 1 .|p T t

The common practice is to choose α = 0.05, which gives 
the 95% confidence interval of b̂.

The standard output of the lm() function to estimate 
linear models in R assumes the zero-mean normal 
distribution with uncorrelated residuals, which gives the 
estimated standard errors shown in equation (4) above 
[21, 3, 18].

https://doi.org/10.5334/jors.355
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The clustering problem emerges in grouped data. 
Consider that each observation i belongs to a group g 
that there are G groups in the data; and that the error 
terms, (e), for individual observations in the same group 
are correlated. Following the examples above, let us say 
that multiple observations come from the same schools, 
hospitals, or countries. It is likely that the assumption 
of independence of the residuals is violated because 
individuals of the same group probably share some 
unobserved characteristics that affect their behavior, 
which creates a non-zero correlation between the 
residuals within the observed groups. Then, keeping 
all the other assumptions of the classical regression 
model, the distribution of the disturbances can be more 
generally denoted by:

 S(0, ). ~ e

In this case the standard errors of b̂  under the 
assumption of independence or zero correlation of 
the residuals (se( b̂ )) differ from the standard errors 
computed when the within-group correlations are taken 
into account (seg(b̂ )):

s- - -b = ¹ S = b1 2 1 1ˆ ˆ ˆˆ( ) ( ) ( ) ( )( ) ( )T T T T
gse X X X X X X X X se

Typically, se(b̂) < seg(b̂). It means that assuming 
uncorrelated residuals produces confidence intervals 
of b̂ that are smaller than the true ones, and that the 
researcher will be overconfident about the range of 
values of the linear coefficients that seem consistent 
with the data.

There are some approaches to deal with that problem. 
One is to adjust the confidence intervals. Imbens 
and Kolesar [11] adjust the number of the degree of 
freedom of the t-distribution, producing larger values 
of t used to construct the confidence intervals. Another 
approach uses bootstrap methods [2, 9, 15, 19] (see 
also [17]). For lack of space, below we review briefly 
only two other approaches, the Cluster Robust Standard 
Errors (CRSE), which is widely-used by practitioners, 
and the Cluster Estimated Standard Errors (CESE) 
proposed by Jackson [12], whose implementation in 
R is originally presented in this paper, alongside an 
applied example and a brief discussion of cases in 
which one of these two methods, crse or cese, may be  
preferred.

CLUSTERED STANDARD ERRORS CORRECTIONS
Cluster Robust Standard Errors (CRSE)
The crse is the routine solution used by researchers to 
deal with the estimation of clustered standard errors 
in grouped data [5, 20, 13, 7]. If the individual-level 
observations are divided into groups g (e.g., schools, 

countries, etc.), and g = 1, …, G, we can rewrite the 
estimated variance of b̂  in equation (2) as:

	
- -

b

=

é ù
ê úS = Sê ú
ê úê úë û
å1 1

1

ˆ ˆ( ) ( )
G

T T T
g g g

g

X X X X X X � (6)

The key problem is how to estimate ˆ
gS , the variance-

covariance matrix of the residuals for group g. The crse 
solution is to use the raw estimated residuals from the 
OLS estimates of β, and compute ˆ

gS  using yg and Xg, 
the output variable and the covariates, respectively, of 
observations in group g. It gives the crse estimator SCRSEˆ

g  
as follows:

S = - b - b =CRSEˆ ˆ ˆ( )( )T T
g g g g g g gy X y X e e

In practice, to compute the crse we don’t need to 
estimate Σg. We just need to compute the covariance 
matrix of the scores =ˆ T

g g gs X e  for each group g, and 
use S =ˆT T T

g g g g g g gX X X e e X . The R package sandwich 
provides some functions to estimate clustered standard 
errors using the crse solution [22], and the package 
clubSandwich provides many other functionalities, 
including some to improve performance with small 
samples [16].

Djogbenou et al. [4] demonstrate the asymptotic 
validity under general conditions for the crse solution. 
Some limits include poor reliability of the estimated 
errors if the number of clusters is small and sensitivity 
both to heterogeneity across clusters and variability of 
cluster sizes. Djogbenou et al. [4] provide an extensive 
treatment of the topic. The crse can be biased downward 
for small samples and possibly for large samples as well 
and seriously underestimate the true standard errors 
in many cases [15, 7, 14]. Jackson [12] also shows 
other conditions that lead the SCRSEˆ

g  to provide values 
that underestimate the true bS , and therefore the 
confidence intervals of the regression coefficients. The 
author proposes an alternative approach to estimate Σg 
called cese, which I discuss next.

Cluster Estimated Standard Errors (CESE)
Jackson [12] proposes an approach labeled cese 
to estimate the standard errors in grouped data 
with within-group correlation in the residuals. The 
approach is based on the estimated expectation 
of the product of the residuals. Assuming that the 
residuals have the same variance-covariance matrix 
within the groups, if we denote by σig = s2

g  and ρig = ρg 
the variance and the covariance, respectively, of the 
residuals within the group g, then the expectation of 
the product of the residuals is given by (see [12] for  
details):
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[ ] ( ) ( ) ( )

( ) ( )

[
]

T T T T
g g g g g g g g g g g g g g g g g

G
T T T T

g g g g g g

g

e e I P I P P P

X X X X X X X X � (7)

where ιg is a unitary column vector, Ig is a g × g identity 
matrix, and ( ) 1T T

g g gP X X X X
-

= . Equation (7) can be 
rewriten concisely as:

	
2

1 2 .g g g g gQ Q    � (8)

The equation above explicitly shows that the expectation 
of the cross-product of the residuals is a function the 
data through Q1g and Q2g and the unknown variance s2

g 
and correlation ρg of the residuals eg in each group g. The 
cese solution is to explore the linear structure of equation 
(8) and to estimate s2

g  and ρg as if the estimated values 
of T

g ge e  were random deviances from their expectations. 
Denote ξ that deviance. Then

	


s

= +x

= +r +x

=S +x

2
1 2

[ ]

.

 T T
g g g g

g g g g

g

e e e e

Q Q
� (9)

The estimates of s2
g  and ρg are obtained using the OLS 

estimator. That is, if we denote sW = r2( , )Tg g g , q1g (or q2g) 
the vectorized diagonal and lower triangle of Q1g (or Q2g) 
stacked into a ng(ng + 1)/2 column vector, qg = [q1g, q2g], 
and seg the corresponding elements of T

g ge e  stacked into 
a column vector as well, then the OLS cese estimator 

sW = r2ˆ ˆ ˆ( , )Tg g g  of the variance and correlation of the 
residuals in group g is given by

ˆ argmin( ) ( ). T
g eg g g eg g g

g

s q s qW = - W - W
W

As pointed above for the OLS estimator of β, if we assume 
that T

g gq q  is invertible, the first order condition gives:

	
-W = 1ˆ ( ) .T T

g g g g egq q q s � (10)

We can rewrite the equation (10) as:

	

1
2

1 1 1 2 1

2 1 2 2 2

ˆ
.

ˆ

T T T
g g g g g egg
T T T

g g g g g g eg

q q q q q s

q q q q q s

-é ù é ùé ùs ê ú ê úê ú = ê ú ê úê úr ê ú ê úê úë û ë û ë û
� (11)

As explained above for the OLS estimates of β, 
the estimators of s2

g  and ρg do not require per se 
any assumption on ξ, unless we want to construct 
confidence intervals for the estimates of those 
parameters.

The cese is attractive when its assumptions hold 
and the crse is believed to be unreliable. Jackson [12] 
shows that cese produces larger standard errors for the 

coefficients and much more conservative confidence 
intervals than the crse, which  is  known  to  be biased 
downward in the cases mentioned above. cese is also 
less sensitive to the number of clusters and to the 
heterogeneity of the clusters, which can be a problem 
for both crse and bootstrap methods.

However, it is important to notice, that the cese is not 
a replacement for the crse because these two methods 
are based on different parametric assumptions. 
The CESE requires some assumptions that can be 
considered stronger than the CRSE approach, as 
equations (7) to (11) indicate (see more details in 
[12]). Each approach may be better suited to different 
situations. One example is the CESE assumption that 
the residuals have the same variance-covariance 
matrix within the groups. For instance, if we cluster by 
geographic location, but individual data is observed at 
different points in time as in Bertrand et al. [1], then 
the assumption of the same within-cluster residual 
variation is probably violated, and we would have to 
cluster the standard errors by time as well. Another 
example: When one uses fixed-effect models for the 
clusters, and the correlation of the residuals comes 
only from cluster-level effect, the cluster fixed effects 
explain all the variation in at the cluster-level, and the 
term ρg will be close to zero. In that case, CESE may 
be a less appealing alternative. However, when the 
limitations of the CRSE discussed above are a problem, 
the CESE is a better choice and produces more 
conservative standard errors.

I implemented CESE in R. It is available in the package 
named ceser. The next section presents some details 
of the implementation as well as an example ilustrating 
how to use the software in practice.

IMPLEMENTATION AND ARCHITECTURE
Computing the CESE
The package ceser provides a function vcovCESE() that 
takes the output of the function lm() (or any other that 
produces compatible outputs) and computes the Cluster 
Estimated Standard Errors (CESE). The basic structure of 
the function is:

R> vcovCESE(mod, cluster = NULL, type=NULL)

The parameter mod receives the output of the lm() 
function. The parameter cluster can receive a right-
hand side R formula with the summation of the variables 
in the data that will be used to cluster the standard 
errors. For instance, if one wants to cluster the standard 
errors by country, one can use:

R> vcovCESE(..., cluster = ~ country, ...)

To cluster by country and gender, simply use (note that 
it means that each cluster contains observation for one 
gender and one country):
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R> vcovCESE(..., cluster = ~ country + gender, ...)

The parameter cluster can also receive, instead of a 
formula, a string vector with the name of the variables 
that contain the groups to cluster the standard errors. If 
cluster = NULL, each observation is considered its own 
group to cluster the standard errors.

The parameter type receives the procedure to use for 
heterokedasticity correction. Heterokedasticity occurs 
when the diagonal elements of Σ are not constant 
across observations. The correction can also be used 
to deal with underestimation of the true variance of 
the residuals due to leverage produced by outliers. The 
package includes five types of correction. In particular, 
type can be either “HC0”, “HC1”, “HC2”, “HC3”, and 
“HC4” [10]. Denote ec the corrected residuals. Each 
option produce the following corretion:

d

=

æ ö÷ç ÷ç= ÷ç ÷÷ç -è ø

æ ö÷ç ÷ç= ÷ç ÷ç ÷÷-çè ø

æ ö÷ç ÷= ç ÷ç ÷÷ç -è ø
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e e
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e e
h

where k is the number of covariates, hii is the ith diagonal 
element of the matrix P = X(XTX)–1XT), and d =min(4, )i ii

n
h

k
.

The estimation also corrects for cases in which r s> 2
g g . 

Following Jackson [12], we use s = r +2ˆ ˆ( 0.02)g g  in those 
cases.

Example with application
In applied regression analyses, the practioner is usually 
interested in estimating the linear coefficients and their 
standard errors to evaluate if the confidence interval of the 
point estimates of the coefficients includes the null value. 
It means that two quantites of interest are b̂  and se(b̂).

In this section, we compare the standard output of 
the lm() function with the standard errors of the linear 
coefficients produced by the CRSE, as computed by 
the widely used R package sandwich [22], and those 
produced by the ceser package, which contains my 
implementation of the CESE method proposed by Jackson 
[12]. As discussed in the previous section, in general 
the CESE should be more conservative, produce larger 
estimates of the standard errors, and result in wider 
confidence intervals.

To ilustrate how to use the ceser package, and to 
compare the three estimates of the standard errors 

(raw, CRSE, and CESE), we use the data set dcese 
provided with the ceser package. The data set was 
used in Jackson [12] and comes from Elgie et al. [6].  
It contains information of 310 (i = 1, …, 310) 
observations across 51 countries (g = 1, …, 51). The 
outcome variable is the number of effective legislative 
parties (enep). The explanatory variables are: the 
number of presidential candidates (enpc); a measure 
of presidential power (fapres); the proximity of 
presidential and legislative elections (proximity); the 
effective number of ethnic groups (eneg); the log of 
average district magnitudes (logmag); an interaction 
term between the number of presidential candidates 
and the presidential power (enpcfapres = enpc × 
fapres), and another interaction term between the 
log of the district magnitude and the number of 
ethnic groups (logmag_eneg = logmag × eneg). Elgie et 
al. [6] present regression analyses showing a strong 
relationship between enpc and fapres, enpc, and their 
interaction. The effective number of legislative parties 
increases with the number of presidential candidates, 
but decreases with presidential power. The interactive 
term has a positive coefficient, implying the negative 
association between the number of legislative parties 
and presidential power attenuates as the number of 
candidates increases. They use a variety of standard 
errors corrections, including CRSE. We reproduce 
their study here, and include the estimation of the 
standard errors using CESE as in Jackson [12].

Let us start with the functions that provide the 
variance covariance matrix of the estimated coefficients 

b̂. For all the examples below, we use the HC3 correction. 
The Table 1 below uses also HC1 for comparison. Let us 
start by loading the package and the data:

R> library(ceser)
R> data(dcese)

Before estimating the linear model, we need to sort 
the data using the cluster variables (this is necessary 
to estimate the CESE using the ceser package, but it is 
not necessary to estimate the CRSE using the sandwish 
package). In our example, we will cluster the data by 
country. Hence:

R> dcese = dcese[order(df$country), ]

Estimate the linear model using the lm() function.

R> mod = lm(enep �~ enpc + fapres + enpcfapres 
+ proximity + eneg + logmag 
+ logmag_eneg , data=dcese)

The estimated raw values of the variance covariance 
matrix obtained by running the standard R function from 
the stats package [18] are:

R> vcov (mod)
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(Intercept) enpc fapres enpcfapres proximity

(Intercept) О.34193 -О.О8О1О9 -О.О6498717 О.О2276О5 -О.О416369

enpc -О.О8О11 О.О35697 О.О24О1318 -О.О1О2825 О.ОО592О4

fapres -О.О6499 О.О24О13 О.О273425О -О.ОО9ОО18 -О.ООО4345

enpcfapres О.О2276 -О.О1О283 -О.ОО9ОО179 О.ОО3643О -О.ОО14388

proximity -О.О4164 О.ОО592О -О.ООО43452 -О.ОО14388 О.О776196

eneg -О.О358О -О.ОО1477 -О.ОО251785 О.ООО7О25 -О.ОО39О84

logmag -О.О5448 -О.ОО6981 О.ООО1742О О.ОО214ОО -О.ОО23836

logmag_eneg О.О2532 О.ОО1833 -О.ОООО7513 -О.ООО7721 -О.ООО9О86

eneg logmag logmag_eneg

(Intercept) -О.О358О5О -О.О544826 О.О2532О42

enpc -О.ОО14768 -О.ОО698О9 О.ОО183259

fapres -О.ОО25179 О.ООО1742 -О.ОООО7513

enpcfapres О.ООО7О25 О.ОО214ОО -О.ООО77214

proximity -О.ОО39О84 -О.ОО23836 -О.ООО9О86О

eneg О.О218856 О.О222887 -О.О119О289

logmag О.О222887 О.О6О6796 -О.О2995518

logmag_eneg -О.О119О29 -О.О299552 О.О1778317

The CRSE, using countries as the grouping variable, obtained using the vcovCL() function of the sandwich package [22] 
are:

R> library(sandwich)
R> vcovCL(mod, cluster = ~country, type=“HC3”)

(Intercept) enpc fapres enpcfapres proximity

(Intercept) О.3764О9 -О.О929549 -О.О662О О.О22499 -О.О315432

enpc -О.О92955 О.О93О327 О.О5О81 -О.О26847 О.ОООО196

fapres -О.О66198 О.О5О8О8О О.О7437 -О.О24184 -О.О177849

enpcfapres О.О22499 -О.О268474 -О.О2418 О.О1О785 О.ОО2О836

proximity -О.О31543 О.ОООО196 -О.О1778 О.ОО2О84 О.1О29317

eneg О.ОО19О5 -О.О165885 -О.О2183 О.ОО7О97 -О.О2ОООО7

logmag -О.О3О573 -О.О6422О3 -О.О4945 О.О22924 -О.О285О4О

logmag_eneg -О.ОО2О75 О.О124О1О О.О2О94 -О.ОО7229 О.О317879

eneg logmag logmag_eneg

(Intercept) О.ОО19О5 -О.О3О57 -О.ОО2О75

enpc -О.О16589 -О.О6422 О.О124О1

fapres -О.О21832 -О.О4945 О.О2О94О

enpcfapres О.ОО7О97 О.О2292 -О.ОО7229

proximity -О.О2ООО1 -О.О285О О.О31788

eneg О.О27519 О.О6О41 -О.О39241

logmag О.О6О413 О.27344 -О.158О61

logmag_eneg -О.О39241 -О.158О6 О.12О629

In a similar fashion, the CESE are obtained by simply running the function vcovCESE() of the ceser package:

R> vcovCESE(mod, cluster = ~country, type=”HC3”)
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(Intercept) enpc fapres enpcfapres proximity

(Intercept) 1.598О4 -О.356589О -О.326О45 О.О928614 -О.О86959

enpc -О.35659 О.1254735 О.1О4834 -О.О3547О4 -О.ОО3333

fapres -О.326О4 О.1О48342 О.1432О6 -О.О389794 -О.О17879

enpcfapres О.О9286 -О.О3547О4 -О.О38979 О.О126978 О.ОО3218

proximity -О.О8696 -О.ОО33328 -О.О17879 О.ОО32179 О.139695

eneg -О.О8737 О.ОО28258 -О.ОО7О81 О.ОО1О94О -О.ОО568О

logmag -О.22422 О.ООО9845 О.ОО6688 О.ОО38О8О О.ОО9776

logmag_eneg О.О8381 -О.ОО5825О -О.О115ОО О.ООО8569 О.ОО4472

eneg logmag logmag_eneg

(Intercept) -О.О87372 -О.2242235 О.О838О93

enpc О.ОО2826 О.ООО9845 -О.ОО5825О

fapres -О.ОО7О81 О.ОО6688О -О.О115ОО4

enpcfapres О.ОО1О94 О.ОО38О8О О.ООО8569

proximity -О.ОО568О О.ОО97761 О.ОО44718

eneg О.О39433 О.О481561 -О.О231ОО3

logmag О.О48156 О.2244237 -О.1О48418

logmag_eneg -О.О231ОО -О.1О48418 О.О6О6626

Note that the estimated standard errors are ordered as expected. The raw standard errors are smaller than CRSE, which 
by its turn are smaller than CESE for almost all coefficients:

The standard errors for each method are:

R> sqrt(diag(vcov(mod)))

(Intercept) enpc fapres enpcfapres proximity

О.58475 О.18894 О.16536 О.О6О36 О.2786О

eneg logmag logmag_eneg

О.14794 О.24633 О.13335

R> sqrt(diag(vcovCL(mod, cluster=~country, type=“HC3”)))

(Intercept) enpc fapres enpcfapres proximity

О.6135 О.3О5О О.2727 О.1О39 О.32О8

eneg logmag logmag_eneg

О.1659 О.5229 О.3473

R> sqrt(diag(vcovCESE(mod, cluster=~country, type=“HC3”)))

(Intercept) enpc fapres enpcfapres proximity

1.2641 О.3542 О.3784 О.1127 О.3738

eneg logmag logmag_eneg

О.1986 О.4737 О.2463

Summary tables with the raw standard errors, CRSE, and CESE are easy to produce. The package lmtest is specially 
useful for that purpose. The package ceser integrates nicely with the lmtest package and the function coeftest() of 
that package, which can be used to create summary tables with the different standard errors. The raw estimates are:

R> summary(mod)

Call:
lm (formula = enep ~ enpc + fapres + enpcfapres + proximity +

eneg + logmag + logmag_eneg, data = dcese)

Residuals:
Min 1Q Median 3Q Max

-3.559 -О.819 -О.361 О.377 9.О39

https://doi.org/10.5334/jors.355
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Coefficients:

Estimate Std.Error t value Pr (>|t|)

(Intercept) 2.7О43 О.5848 4.62 О.ООООО56 ***

enpc О.3О4О О.1889 1.61 О.1О871

fapres -О.6118 О.1654 -3.7О О.ООО26 ***

enpcfapres О.2О78 О.О6О4 3.44 О.ООО66 ***

proximity -О.О224 О.2786 -О.О8 О.93589

eneg -О.О657 О.1479 -О.44 О.65748

logmag -О.1815 О.2463 -О.74 О.46193

logmag_eneg О.36О5 О.1334 2.7О О.ОО727 **

---

codes: О ‘***’ О.ОО1 ‘**’ О.О1 ‘*’ О.О5 ‘.’ О.1 ‘ ’ 1

Residual standard error: 1.65 on 291 degrees of freedom
Multiple R-squared: О.378, Adjusted R-squared: О.363
F-statistic: 25.3 on 7 and 291 DF, p-value: <О.ООООООООООООООО2

We can obtain the summary with CRSE by country by running:

R> library(lmtest)
R> coeftest(mod, vcov = vcovCL, cluster = ~ country, type=”HC3”)

t test of coefficients:

Estimate Std.Error t value Pr(>|t|)

(Intercept) 2.7О43 О.6135 4.41 О.ОООО15 ***

enpc О.3О4О О.3О5О 1.ОО О.32О

fapres -О.6118 О.2727 -2.24 О.О26 *

enpcfapres О.2О78 О.1О39 2.ОО О.О46 *

proximity -О.О224 О.32О8 -О.О7 О.944

eneg -О.О657 О.1659 -О.4О О.693

logmag -О.1815 О.5229 -О.35 О.729

logmag_eneg О.36О5 О.3473 1.О4 О.3ОО

---

codes: О ‘***’ О.ОО1 ‘**’ О.О1 ‘*’ О.О5 ‘.’ О.1 ‘ ’ 1

Similary, to use CESE instead of CRSE, simply run

R> coeftest(mod, vcov = vcovCESE, cluster = ~ country, type=”HC3”)

t test of coefficients:

Estimate Std.Error t value Pr (>|t|)

(Intercept) 2.7О43 1.2641 2.14 О.О33 *

enpc О.3О4О О.3542 О.86 О.391

fapres -О.6118 О.3784 -1.62 О.1О7

enpcfapres О.2О78 О.1127 1.84 О.О66 .

proximity -О.О224 О.3738 -О.О6 О.952

eneg -О.О657 О.1986 -О.33 О.741

logmag -О.1815 О.4737 -О.38 О.7О2

logmag_eneg О.36О5 О.2463 1.46 О.144

---

codes: О ‘***’ О.ОО1 ‘**’ О.О1 ‘*’ О.О5 ‘.’ О.1 ‘ ’ 1
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Table 1 shows how the confidence intervals differ for 
the different estimates of the standard error of the 
coefficients. The CRSE are shown with both the HC1 
and HC3 adjustments to the residuals. We can see how 
the CESE is more conservative, particulary for the two 
covariates, fapres (presidential power) and enpcfapres 
[the interaction between effective number of legislative 
parties (enpc) and presidential power (fapres)]. For them, 
the null value is consistent with the data when the CESE 
is used, but not if the other standard errors are adopted 
for the computation of the confidence intervals.

The user should note that the performance of the 
estimation is not yet optimized to handle large data sets. 
There are two reasons for the suboptimal performance. 
The first is that the current implementation uses only 
high-level functions in R. The second is that the software 
avoids storing large matrices by using some nested 
loops during the estimation. Future versions of the 
package will implement the core functions in C++ and 
provide compiled code with the package to improve 
the performance. Nevertheless, the package is fully 
functional, and the performance tests shows that on 
average the a data set with 1000 observations take 5.3 
seconds to estimate, with 3000 it takes 85 seconds, and 

with 5000 observations it takes around 5.5 minutes to 
compute the standard errors.

QUALITY CONTROL
The package has been thoroughly quality checked and 
tested. The package structure successfully passes all 
CRAN R CMD checks and all continuous integration 
checks implemented in Travis, including checks to build 
the package on Windows, Linux, and macOS. The results 
of the checks can be found on Travis website https://travis-

ci.org/github/DiogoFerrari/ceser.

(2) AVAILABILITY
OPERATING SYSTEM
CESER is written in R (>=2.1) and run in any operational 
system that supports R Statistical Software. R can be 
obtained freely from https://www.r-project.org/.

PROGRAMMING LANGUAGE
R Statistical Software 2.1 or higher.

ADDITIONAL SYSTEM REQUIREMENTS
There is no additional requirements.

COVARIATE STD. ERRORS

ESTIMATE RAW CRSEHC1 CRSEHC3 CESE

(Intercept) 2.7043 0.5848 0.4886 0.6135 1.2641

enpc 0.3040 0.1889 0.2517 0.3050 0.3542

fapres –0.6118 0.1654 0.2038 0.2727 0.3784

enpcfapres 0.2078 0.0604 0.0826 0.1039 0.1127

proximity –0.0224 0.2786 0.2544 0.3208 0.3738

eneg –0.0657 0.1479 0.1415 0.1659 0.1986

logmag –0.1815 0.2463 0.4387 0.5229 0.4737

logmag_eneg 0.3605 0.1334 0.2883 0.3473 0.2463

COVARIATE CONFIDENCE INTERVALS

ESTIMATE RAW CRSEHC1 CRSEHC3 CESE

(Intercept) 2.7043 (1.558, 3.85) (1.747, 3.662) (1.502, 3.907) (0.227, 5.182)

enpc 0.3040 (–0.066, 0.674) (–0.189, 0.797) (–0.294, 0.902) (–0.39, 0.998)

fapres –0.6118 (–0.936, –0.288) (–1.011, –0.212) (–1.146, –0.077) (–1.354, 0.13)

enpcfapres 0.2078 (0.089, 0.326) (0.046, 0.37) (0.004, 0.411) (–0.013, 0.429)

proximity –0.0224 (–0.568, 0.524) (–0.521, 0.476) (–0.651, 0.606) (–0.755, 0.71)

eneg –0.0657 (–0.356, 0.224) (–0.343, 0.212) (–0.391, 0.259) (–0.455, 0.324)

logmag –0.1815 (–0.664, 0.301) (–1.041, 0.678) (–1.206, 0.843) (–1.11, 0.747)

logmag_eneg 0.3605 (0.099, 0.622) (–0.205, 0.926) (–0.32, 1.041) (–0.122, 0.843)

Table 1 Comparing raw standard errors, CRSE, and CESE.

https://travis-ci.org/github/DiogoFerrari/ceser
https://travis-ci.org/github/DiogoFerrari/ceser
https://www.r-project.org/
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DEPENDENCIES
The package depends on the following R packages: 
magrittr, purrr, dplyr, tibble, lmtest.

LIST OF CONTRIBUTORS

•	 Diogo Ferrari, Department of Political Science, 
University of California, Riverside

•	 John E. Jackson, Department of Political Science, 
University of Michigan, Ann Arbor

SOFTWARE LOCATION
Archive

Name: Cluster Estimated Standard Errors in R (CESER)
Persistent identifier: 10.5281/zenodo.4107151

Licence: MIT
Publisher: Diogo Ferrari
Version published: v1.0.0
Date published: 10/19/2020

Code repository
Name: ceser
Identifier: https://doi.org/10.5281/zenodo.4107151

Licence: MIT
Date published: 10/19/2020

LANGUAGE
English

(3) REUSE POTENTIAL

Firstly, the adoption of methods that deal with clustered 
standard errors is ubiquitous in social sciences. Currently, 
available packages in R only provide traditional ways 
(CRSE) to estimate regression models with clustered 
standard errors, as discussed above. The CESER package 
provides an easy-to-use implementation of a new 
method, namely CESER, as proposed in Jackson [12]. 
It is important to note that the method implemented 
in our package is not bounded by any specific subfield. 
The package is of direct interest to any researcher using 
regression models.

The Cluster Estimated Standard Errors in R (CESER) 
package is fully compatible with other R packages widely 
used to compute regression models in economics, 
psychology, political science, sociology, and many other 
disciplines. Those packages include the built-in R module 
stats to complete linear models, as well as some 
extensions such as glm, lmtest, lme4. Researchers 
using those packages can seamlessly use our package to 
deal with clustered standard errors. The CESER package 
is well-documented and contains working examples 
for a copy-and-paste experimentation. Moreover, code 
examples are provided at the package author’s personal 

website, including a code vignette explaining the package 
usage. As presented in the paper, the output of the main 
estimation function follows standard R format and can 
be manipulated by popular external packages for data 
visualization and reports, including tidyverse, kable, pipe 
computing, and ggplot2. Hence, our package can easily 
be reused or extended.

There are three main options for those interested 
in extending or contributing to the package. First, we 
provide full open access to the source code in the 
package’s GitHub repository. Users can either open a 
ticket requesting extensions or suggesting changes. 
They can also make changes to their local version of the 
code and open a pull request for software extension or 
modification using the GitHub website. Finally, users are 
welcome to e-mail to the principal author and request 
further enhancements.

NOTE

1	 Note the assumptions about the distribution of e is needed 
upfront if we are deriving a maximum likelihood estimator (MLE) of 
β instead of the OLS estimator.
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