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1 Introduction
Of the many research problems being pursued through 
simulations many are multiphysics multiscale in nature. 
Such problems typically need high performance comput-
ing (HPC) resources, and require more than one solver to 
properly model all phenomena of interest. The solvers 
often have divergent requirements of data layout, and 
place different demands on the underlying hardware and 
system software. However, for an integrated simulation, 
all the involved solvers need to be able to interoperate 
with one another. When we take into account the diversity 
of computing platforms and their typical shelf life into 
account, and compare that with the number of person 
years it takes to build a reliable multiphysics software, it 
becomes obvious that software engineering of such codes 
is as important as it is non trivial.

Among the present generation of multiphysics HPC 
simulation codes there are many that are built upon gen-
eral infrastructural frameworks. This is especially true 
of the codes that make use of structured adaptive mesh 
refinement (SAMR) because of unique demands placed 
on the framework of the code. They have varying degrees 
of abstractions between the infrastructure such as mesh 
management and I/O and the numerics of the physics 
solvers. In this experience report we detail the challenges 
faced, design choices made, and insights from two of 
such major software efforts, FLASH [1] and Chombo [2].

Both Chombo and FLASH are built on top of the same 
SAMR [3] principles, however, their architecture, purpose 

and reach are very different. Chombo is primarily an AMR 
library that comes with built in solver technologies. Typical 
Chombo users build application codes for their domains 
by treating Chombo as a toolbox. Therefore, Chombo has 
been the basis of such application codes as Bisicles[4], 
used for ice sheet modeling, ChomboCrunch[5], used for 
modeling pore scale reactive transport in carbon seques-
tration, CHARM [6, 7], used for cosmology, and several 
others (see [8]). About 15 active users have built their own 
applications on top of Chombo, and there are roughly 
200 casual users. FLASH, on the other hand, is a complete 
application code that can use Chombo as one of its mesh 
packages. FLASH has been applied to a variety of astro-
physics problems including super-novae, X-ray bursts, gal-
axy clusters, and stellar structure. It has also been used 
to model laser experiments and problems involving fluid-
structure interactions. More than 850 papers have been 
published that used FLASH to obtain all or part of their 
results for a combined authorship of roughly 1200. The 
basic component in FLASH is code unit that provides a 
specific functionality. Typical FLASH users combine capa-
bilities provided by the code in many different ways, cus-
tomize some of them and/or add relatively small amount 
of code of their own. Chombo expects its sophisticated 
users to modify some of its lower levels, FLASH takes a 
great deal of trouble to avoid such occurrences. Because 
of these differences in approach there are differences in 
the architecture of the two codes, however, their software 
engineering and sustainability practices are very similar. 
The target platforms for the two codes range from small 
applications running on workstations to large simulations 
running at scale on supercomputers such as Edison, the 
Cray machine at NERSC, and Mira, the BG/Q machine at 
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ANL. Both the codes support hybrid MPI/OpenMP paral-
lelization, neither code supports accelerators.

2 History
Chombo started as not-backward-compatible branch of 
the BoxLib Framework, a collection of tools to manage 
adaptive mesh. The reason for this bifurcation was to 
serve the divergent needs of two groups using BoxLib as 
their basic source. Chombo’s objective was to provide a 
general purpose tool that users could build upon without 
necessitating significant interactions with the core devel-
opers of the code. Therefore, it was found to be neces-
sary to articulate the interfaces clearly and explicitly. The 
Chombo team made significant changes to the API layers 
above BoxLib that were best suited for the purpose of 
generalization and to be able to leverage other supporting 
libraries and software packages (for example parallel I/O 
and visualization).

FLASH, on the other hand, started its life as an amalga-
mation of three independent codes written predominantly 
in f77 style [9]. From the beginning the main purpose was 
to be able to simulate phenomena of scientific interest as 
early as possible. The scientific objectives were the driv-
ers for the code development, and in the early stages less 
effort was expended on code architecture than on capabil-
ity addition. However, since the same code base was to be 
used for several different but similar applications, the con-
cept of reusable alternative code components became the 
basis for code architecture design. As the code and its user 
base grew, the need for a more coherent code architec-
ture became apparent. The architecture and modularity 
was achieved by unraveling the data structures and lateral 
dependencies over several design iterations. The current 
software infrastructure of the code has been stable for 
close to a decade.

3 Software Design Choices
The software design choices of the two codes were dic-
tated by a combination of their expected roles and tar-
get communities, and their starting point. As mentioned 
earlier, Chombo set out to be a library of AMR technolo-
gies and solvers on top of which application codes could 
be built, whereas FLASH aimed to provide end-to-end 
simulation solution with customizability. In keeping with 
these different aims Chombo’s APIs can interact with the 
client code at many different levels from the highest to a 
fairly low level. FLASH, on the other hand, publishes all of 
its API at the highest level and hides the hierarchy within 
a unit from the users. Chombo’s architecture is layered 
while in FLASH the units are treated as peers which inter-
operate with one another. Within a unit though, there 
is layering within FLASH’s architecture as well. This was 
done to facilitate possible exploitation of third party 
software for some desired capabilities. The FLASH archi-
tecture, therefore, recognizes the concept of a “kernel”, 
which lies at the lower layer and is not subject to the 
code’s architecture rules or coding standards. An inter-
mediate wrapper layer provides a separation between the 
unit’s API and the kernel. In Chombo customization gets 

easier as one moves up in the layered architecture, it is 
most challenging at the level of base classes. In FLASH 
customizability is achieved through a specialized unit 
designed to provide an encapsulated space for user code, 
and the degree of customizability is flat across the entire 
code base. In Chombo, the API of a class rarely changes, 
in FLASH additions to the API of a unit can happen when 
a capability addition demands such a modification. In 
Chombo a capability addition usually means a new class, 
in FLASH it can mean many different things. It could be a 
new unit, a new subunit within a unit or a new alternative 
implementation of a unit.

In addition to their different roles, one other major dif-
ference influenced the design choices of the two codes, 
and that was the language. Chombo, being a C++ code, 
has the advantage of language supported object oriented 
features, while FLASH, having a great deal of Fortran 
legacy code in its core, had to devise customized ways 
of imposing principles of object oriented design on top 
of non-object-oriented code kernels. This was achieved 
through the use of unix directory structure and a limited 
domain-specific-language (DSL) for configuration. This 
difference is reflected in ways that encapsulation and 
abstractions play out in the two codes. In Chombo, the 
classes are direct translations of mathematical abstrac-
tions, while the units in FLASH are specific capabilities 
whether physics such as hydrodynamics, or infrastruc-
ture such as mesh management. A unit in FLASH can 
encompass multiple mathematical abstractions, which 
often become the basis for separating sub-units within 
a unit. Chombo enjoys the benefits of strong typing 
provided by the language in keeping the code relatively 
clean and free of bugs. FLASH relies on a collection of 
homegrown scripts to do the same, though not as effec-
tively. However, sometimes the advantage is that coding 
standard can be short circuited for debugging purposes; 
something that is much harder to do with language 
imposed constraints.

Because of having the framework in C++, and being a 
library for scientists, Chombo has to ensure interoperabil-
ity between Fortran and C++. The reasons are a mix of the 
user profiles (many have an already existing Fortran code 
with which they want to use AMR), and the relative ease 
of obtaining better performance with multidimensional 
arrays in Fortran. The generic interface, of passing values 
by reference, works but tends to be error-prone. Chombo 
solves this problem by providing a DSL only for the C++/
Fortran interface. FLASH does not face this problem to 
the same extent because majority of its production grade 
mesh infrastructure and solvers are Fortran. Only the I/O 
is predominantly C, but because users rarely interface 
with it directly, providing Fortran wrappers proves to be 
an adequate solution.

4 Software Process
It is in the software engineering and the software process 
that these two codes, and many other codes of similar vin-
tage, have a lot in common. Most codes started with CVS 
for version control and then transitioned to subversion. 
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Neither Chombo nor FLASH have yet moved to newer 
decentralized versioning systems, primarily because they 
have not yet found a centralized repository to be a serious 
hindrance in their code management. Neither code has 
seriously considered decentralization of the repository for 
two reasons. One is gate-keeping for quality control and 
the other is the expectation that the next iteration of both 
codes will be far more disruptive, and therefore a more 
logical choice for adopting new development and distri-
bution models.

Almost all the current generation multiphysics capable 
codes have composability with interoperating components 
built into them. FLASH and Chombo are no exceptions. 
They both aim to serve science domains with many diver-
gent solver needs and therefore the ability to orchestrate 
applications out of a combination of many moving parts is 
a necessity. Both the codes have been largely successful in 
realizing the separation of concerns between the numeri-
cal and parallel complexity through modularization and 
adoption of such component based architectures.

Both the codes have ongoing verification practices 
that ensure code quality and robustness. They both have 
nightly regression testing on multiple platforms and 
policies about addressing any failures in testing [9]. Also, 
regular testing is not the complete verification story for 
either code. There are different levels of testing for dif-
ferent purposes, for example targeted verification on a 
platform before a simulation campaign. Both codes pub-
lish and enforce their coding standards and have well 
defined policies about external contributions. Such poli-
cies are an important part of the gate-keeping strategies 
that balance the code growth and community invest-
ment with maintaining the code quality. Both codes 
conduct periodic training for new users and developers 
because the underlying AMR and solver technologies are 
inherently complex. Both codes firmly resist the notion 
of providing black-box solutions for any except the most 
trivial applications because it is very easy to obtain bad 
scientific results if the user does not understand the 
involved methods or is not careful with the quirks of the 
involved technology.

Documentation is extremely important in both the 
efforts and it exists in several forms. The importance of 
extensive documentation cannot be over-emphasized. 
Any complex code with many components cannot, by 
definition, have any developer that understands all 
aspects of the code. When there is a transient developer 
population, which happens often in academic and labora-
tory environments, the code base simply cannot be main-
tained without adequate documentation, because some 
of the expertise is also then transient. A well documented 
code section can be maintained by non-experts with gen-
eral know-how of the code, whereas undocumented code 
will eventually die once the related expertise has gone 
from the team. Since both codes also routinely receive 
code contributions from external users, a clearly writ-
ten developer’s guide is also a necessity. It provides the 
added advantage of helping the learning curve of new  
team members.

5 Insights
In this section we share some of our more general insights 
gained during the evolution of the two code projects that 
might be of benefit to other projects. A more detailed dis-
cussion from FLASH can be found in [10], though many 
of the lessons learned described there apply to both the 
codes equally. The most important contributor to success-
ful infrastructure building of both Chombo and FLASH 
was an earlier investment in framework research. That 
investment, erroneously, is assumed to have mostly been 
a failure because several of those frameworks did not 
survive. What is often overlooked is that even the failed 
frameworks contributed to the body of knowledge that 
was utilized in building backbone frameworks for all the 
large scale multiphysics codes that have had any degree 
of success in their respective communities. The codes 
themselves also benefitted from the availability of long 
term sustained funding in the initial stages to devote to 
framework development. Resources could be allocated 
for designing the code architecture and the appropriate 
mechanisms for ongoing code maintenance and verifica-
tion. And there were experiences and literature to consult. 
The outcome in both instances has been software that has 
been available for about a decade and has been growing 
with its users community. It is fair to say that software pro-
jects without such support struggle a great deal more in 
achieving longevity. Both projects have also hugely ben-
efitted from having members of the team that can com-
municate with domain experts, computer scientists and 
numerical analysts. Teams with such broad and cross-cut-
ting expertise are consistently better able to absorb the 
loss of specific expertise.

A well designed software architecture that allows easy 
interoperability among various solvers is just the starting 
point in sustainable software design. No software being 
used is ever in a stationary state. As the acquired knowl-
edge grows, so do the algorithms and the demands placed 
on the solvers. Sometimes the solvers need to change to 
accommodate the findings, at others new solvers need to 
be added as models are refined based upon the findings 
from the simulations. It is, therefore, equally important to 
design the software with extensibility and flexibility built 
into its architectural framework. From the reusability 
perspective also supporting many different applications 
is desirable even though it places more demands on the 
software design.

Another extremely useful insight from applications 
with components that place diverse demands on the sys-
tem is that composability in software requires a careful 
balancing act. Deep optimization of individual compo-
nents is rarely the best option, it can sometimes even be 
detrimental to the overall performance. One must also 
consider sub-optimal solutions for individual components 
in order to achieve optimal overall performance. Chombo 
and FLASH achieve good overall performance by dictating 
a common basic data layout to all participating solvers and 
mesh components even though it might be suboptimal 
for some of the components. FLASH’s mesh infrastructure 
owns the data layout and the data, it only hands it over the 
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to the physics units to operate on. Chombo does not out-
right own the data itself, but by owning the data layout it 
imposes similar discipline on the client code. Such judi-
cious trade-off between maintainability, portability and 
performance has been the hallmark of these and many 
other successful SAMR codes.

6 Future Prospects
The two codes discussed here, and other similar software 
packages, are in production in multiple disciplines, are 
prolific in producing scientific results, and are likely to 
continue to do so in the immediate future. They have 
reduced the barrier to entry into high performance com-
puting for a large number of users. They have also ena-
bled greater productivity among their user communities 
by eliminating the need for individual researchers to build 
their own infrastructure. The evidence of their usefulness 
is in the number of publications and dissertations that 
used these packages to obtain some or all of their results, 
and the constantly growing user communities. Though 
the packages are stable and extremely useful now, their 
future is less certain because of the ongoing revolution in 
hardware architecture.

In the era of cluster computing with fat nodes, distrib-
uted memory computing provided a near ideal program-
ming model where these sometimes conflicting require-
ments of performance, portability and maintainability 
could be balanced. The overheads of communication 
primitives and bulk synchronizations could be amortized 
over large computational units to the point where they 
did not significantly compromise performance. Also, 
since the node architectures were mostly homogeneous 
even across vendors, general algorithmic or data struc-
ture optimizations provided benefits across the board. 
Therefore, although the two codes followed different 
paths, and differ significantly in their details, they have 
arrived at remarkably similar software architecture solu-
tions conceptually. Their current success combined with 
the uncertainty in the HPC landscape at present has 
induced hesitancy in prioritizing the infrastructure refac-
toring by the funding agencies. This could not only halt, 
but possibly even reverse the gains made by these, and 
other codes in fostering a community approach to devel-
oping and using codes.

The frequent assertion that the code developers will 
rewrite their codes for the target platforms is valid only 
for software with relatively small code bases. When the 
algorithms are well understood, and refactoring the code 
is likely to take only a few person-months there is nothing 
to be gained by anticipating trouble and preparing for it 
ahead of time. However, codes like Chombo and FLASH 
have hundreds of thousands of lines of code, and there-
fore the amount of rewriting needed to obtain reasonable 
performance on each new heterogeneous target platform 
could take several person years. The only solution is to re-
architect the codes in ways that can utilize higher level 
abstractions such as code transformation, auto-tuning 
and runtime management to shield them from platform 
specific details. Our combined experience indicates that 

bugs get eliminated from the code over several years of 
production use, therefore writing similar codes from 
scratch is not a solution either. Building, maintaining and 
orchestrating such codes has been challenging in the past, 
and their utilization of HPC resources has always been 
a balancing act between portability and performance. 
Increasing heterogeneity has moved this beyond a balanc-
ing act to a question of whether the codes will be able to 
effectively use future HPC resources at all.

Many efforts are underway to develop programming 
models and tools to help scientific software develop-
ment. That may be a good solution for the far future, but 
the need for refactoring codes is more immediate, and 
new technologies take time to mature. What often gets 
overlooked in the discussion is that the present code base 
is already facing heterogeneity and hyper-parallelism. 
Therefore the redesign and re-architecting of code frame-
works should begin now, especially because a consensus 
is beginning to emerge about the conceptual design that 
would allow the codes to work well on several genera-
tions of heterogeneous platforms without the constant 
need to rewrite. With the right kind of refactoring these 
codes can continue to serve their communities for many 
more years.

References
1.	 Dubey, A, Antypas, K, Ganapathy, M K, Reid, L B, 

Riley, K, Sheeler, D, Siegel, A and Weide K 2009 
Extensible component-based architecture for FLASH, 
a massively parallel, multiphysics simulation code. 
Parallel Computing, 35(10–11): 512–522. DOI: http://
dx.doi.org/10.1016/j.parco.2009.08.001

2.	 Colella, P, Graves, D T, Keen, N D, Ligocki, T J, 
Martin, D F, McCorquodale, P W, Modiano, D, 
Schwartz, P O, Sternberg, T D and Van Straalen, B 
2009 Chombo software package for AMR applications 
design document. Technical report, Lawrence Berkely 
National Laboratory, Applied Numerical Algorithms 
Group, Computational Research Division.

3.	 Berger, M J and Colella, P 1989 Local adaptive mesh 
refinement for shock hydrodynamics. Journal of Com-
putational Physics, 82(1): 64–84. DOI: http://dx.doi.
org/10.1016/0021-9991(89)90035-1

4.	 Cornford, S L, Martin, D F, Graves, D T, Ranken, D 
F, LeBrocq, A M, Gladstone, R M, Payne, A J, Ng, E 
G and Lipscomb, W H 2011 Adaptive mesh, finite-
volume modeling of marine ice sheets. Journal of Com-
putational Physics, [submitted].

5.	 Molins, S, Trebotich, D, Steefel, C I and Shen, C 2011 
An investigation of the effect of pore scale flow on aver-
age geochemical reaction rates using direct numerical 
simulation. Water Resources Research, [submitted].

6.	 Miniati, F and Colella, P 2007 Block structured adap-
tive mesh and time refinement for hybrid, hyper-
bolic + N-body systems. Journal of Computational 
Physics, 227(1): 400–430, 2007. DOI: http://dx.doi.
org/10.1016/j.jcp.2007.07.035

7.	 Miniati, F and Martin, D F 2011 Constrained-trans-
port magnetohydrodynamics with adaptive mesh 

http://dx.doi.org/10.1016/j.parco.2009.08.001
http://dx.doi.org/10.1016/j.parco.2009.08.001
http://dx.doi.org/10.1016/0021-9991(89)90035-1
http://dx.doi.org/10.1016/0021-9991(89)90035-1
http://dx.doi.org/10.1016/j.jcp.2007.07.035
http://dx.doi.org/10.1016/j.jcp.2007.07.035


Dubey and Van Straalen: Experiences from Software Engineering of  
Large Scale AMR Multiphysics Code Frameworks

Art. e7, page 5 of 5

refinement in CHARM. The Astrophysical Journal  
Supplement Series, 195(1): 5. DOI: http://dx.doi.
org/10.1088/0067-0049/195/1/5

8.	 Chombo - software for adaptive solutions of partial 
differential equations. Available at: https://commons.
lbl.gov/display/chombo/Applications

9.	 Dubey, A, Antypas, K, Calder, A C, Daley, C, Fryx-
ell, B, Gallagher, J B, Lamb, D Q, Lee, D, Olson, K, 
Reid, L B, Rich, P, Ricker, P M, Riley, K M, Rosner, R, 
Siegel, A, Taylor, N T, Timmes, F X, Vladimirova, N, 

Weide, K and ZuHone, J 2013 Evolution of FLASH, a 
multiphysics scientific simulation code for high per-
formance computing. International Journal of High 
Performance Computing Applications. DOI: http://
dx.doi.org/10.1177/1094342013505656

10.	Dubey, A, Weide, K, Lee, D, Bachan, J, Daley, C,  
Olofin, S, Taylor, N, Rich, P M and Reid, L B 2013 
Ongoing verification of a multiphysics community 
code: FLASH. Software: Practice and Experience. DOI: 
http://dx.doi.org/10.1002/spe.2220.

How to cite this article: Dubey, A and Van Straalen, B 2014 Experiences from Software Engineering of Large Scale AMR 
Multiphysics Code Frameworks. Journal of Open Research Software, 2(1): e7, pp. 1-5, DOI: http://dx.doi.org/10.5334/jors.am

Published: 9 July 2014

Copyright: © 2014 The Author(s). This is an open-access article distributed under the terms of the Creative Commons 
Attribution 3.0 Unported License (CC-BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original author and source are credited. See http://creativecommons.org/licenses/by/3.0/.
 

 	         OPEN ACCESS Journal of Open Research Software is a peer-reviewed open access journal published by 
Ubiquity Press.

http://dx.doi.org/10.1088/0067-0049/195/1/5
http://dx.doi.org/10.1088/0067-0049/195/1/5
https://commons.lbl.gov/display/chombo/Applications
https://commons.lbl.gov/display/chombo/Applications
http://dx.doi.org/10.1177/1094342013505656
http://dx.doi.org/10.1177/1094342013505656
http://dx.doi.org/10.1002/spe.2220
http://dx.doi.org/10.5334/jors.am
http://creativecommons.org/licenses/by/3.0/

