
Dubey, A et al 2014 Software Abstractions and Methodologies for HPC 
Simulation Codes on Future Architectures. Journal of Open Research 
Software, 2(1): e14, pp. 1-5, DOI: http://dx.doi.org/10.5334/jors.aw

1 Introduction
Large, complex, multi-scale, multi-physics simulation 
codes, running on high performance computing (HPC) 
platforms, have become essential to advancing science 
and engineering in many fields. Progress in computational 
science, together with the adoption of high-level frame-
works and modular approaches, have enabled large code 
development efforts such as FLASH [1, 8, 11], Cactus [5, 7], 
Enzo [6, 13, 14] and the Lattice QCD code suite [2, 3, 4]. 
FLASH was originally designed for simulating astrophysi-
cal phenomena dominated by compressible reactive flows 
that had multiple physical scales and therefore required 
adaptive mesh refinement (AMR). FLASH has extensible 

architecture which has allowed its user community to 
extend to high-energy-density physics, computational 
fluid dynamics, and fluid-structure interactions through 
the addition of needed capabilities within the existing 
framework. Cactus was designed as a general-purpose 
software framework for high-performance computing 
with AMR as one of its features. The first set of applica-
tions that used the framework were astrophysical simula-
tions of compact objects involving general relativity (GR) 
such as black holes and neutron stars. While the Cactus 
framework is generic, its most prominent user today is the 
Einstein Toolkit [9, 12, 16], a large set of physics modules 
for relativistic astrophysics simulations. Enzo is a stan-
dalone application code that was originally designed to 
simulate the formation of large-scale cosmological struc-
ture, such as clusters of galaxies and the intergalactic 
medium. The Lattice QCD code suite consists of library 
modules that can be used by higher level applications in 
lattice field theory.

These codes simulate multi-scale, multi-physics phe-
nomena with unprecedented fidelity on petascale plat-
forms, and are used by large communities. And yet, the 
model fidelity achieved so far marks only the beginning. 
The quest for better understanding demands even higher 
model fidelity with fewer approximations, which can trans-
late to adding more terms in the equation, using better 
and therefore more demanding algorithms, or increasing 

*	Lawrence Berkeley National Laboratory, Berkeley, CA, USA 
adubey@lbl.gov

†	Louisiana State University, Baton Rouge, LA, USA 
sbrandt@cct.lsu.edu, knarf@cct.lsu.edu

‡	Boston University, Boston, MA, USA
§	NCSA, University of Illinois at Urbana-Champaign, Champaign, 
IL, USA

‖	Argonne National Laboratory, Chicago, IL, USA
¶	University of Chicago, Chicago, IL, USA
**	University of Oregon, Eugene, OR, USA
††	Michigan State University, East Lansing, MI, USA
Corresponding author: Anshu Dubey

ISSUES IN RESEARCH SOFTWARE

Software Abstractions and Methodologies for HPC 
Simulation Codes on Future Architectures
Anshu Dubey*, Steve R. Brandt†, Richard Brower‡, Merle Giles§, Paul Hovland‖, Donald 
Q. Lamb¶, Frank Löffler†, Boyana Norris**, Brian W. O'Shea††, Claudio Rebbi‡, Marc Snir‖, 
Rajeev Thakur‖ and Petros Tzeferacos¶

Keywords: programming abstractions

Simulations with multi-physics modeling have become crucial to many science and engineering fields, and 
multi-physics capable scientific software is as important to these fields as instruments and facilities are 
to experimental sciences. The current generation of mature multi-physics codes would have sustainably 
served their target communities with modest amount of ongoing investment for enhancing capabilities. 
However, the revolution occurring in the hardware architecture has made it necessary to tackle the paral-
lelism and performance management in these codes at multiple levels. The requirements of various levels 
are often at cross-purposes with one another, and therefore hugely complicate the software design. All 
of these considerations make it essential to approach this challenge cooperatively as a community. We 
conducted a series of workshops under an NSF-SI2 conceptualization grant to get input from various 
stakeholders, and to identify broad approaches that might lead to a solution. In this position paper we 
detail the major concerns articulated by the application code developers, and emerging trends in utiliza-
tion of programming abstractions that we found through these workshops.

Journal of
open research software

http://dx.doi.org/10.5334/jors.aw
mailto:adubey@lbl.gov
mailto:sbrandt@cct.lsu.edu
mailto:knarf@cct.lsu.edu


Dubey et al: Software Abstractions and Methodologies for HPC Simulation Codes on Future ArchitecturesArt. e14, page 2 of 5 

the resolution of the discretization. Usually an advance-
ment in the simulation technology involves some combi-
nation of the three factors mentioned above. Therefore 
increasing the capabilities of these codes and maintaining 
their ability to utilize more compute resources of future 
platforms are as crucial to these communities as contin-
ued improvements in instruments and facilities are to 
experimental scientists.

The current generation of mature multi-physics codes 
exhibit an awareness of the importance of software engi-
neering and most have evolved software maintainability 
strategies. Many packages have strong enough software 
process, and under normal circumstances they would have 
sustainably served their target communities with modest 
amount of ongoing investment for enhancing capabilities. 
However, the revolution occurring in the hardware archi-
tecture has completely altered the landscape for scientific 
computing. A code designed for distributed memory bulk 
synchronous model of parallelism will not only fail to run 
faster on future platforms, it might actually run slower. 
This is because the speedup that came automatically with 
increase in the processor speed has already come to an 
end. That was followed by the multicore era, which gave 
higher node performance by exploiting a modest amount 
of on-node parallelism. Codes could still achieve respecta-
ble performance either by using flat MPI (one MPI rank per 
core) or a hybrid model of distributed and shared memory 
parallelism, most often MPI with OpenMP. However, the 
current generation of machines could very well be the last 
to have homogeneous multi-core parallelism. Even among 
the current machines, many use some combination of 
cores and accelerators as their computing units. The trend 
towards hardware heterogeneity seems likely to accelerate 
as processor clock speeds are reduced for energy efficiency.

Because of this ongoing fundamental paradigm shift in 
the hardware, there are many more degrees of freedom in 
the scientific software design space. The parallelism needs 
to be tackled at multiple levels and the energy constraints 
dictate minimization of data movement and increasing 
data reuse. These requirements are often at cross-pur-
poses with one another, and therefore further complicate 
the software design. All of these considerations make it 
essential to approach this challenge cooperatively as a 
community. We need to develop common abstractions, 
frameworks, programming models and software develop-
ment methodologies that can be applied across a broad 
range of complex simulation codes, and common soft-
ware infrastructure to support them. We believe that such 
an infrastructure is critical to the deployment of existing 
as well as new large, multi-scale, multi-physics codes on 
future HPC platforms. Furthermore, such an infrastruc-
ture should be assembled by a collaborative effort of the 
teams that develop and maintain such codes – that is, by 
the people that own the problem, not by people that own 
solutions looking for a problem.

2 HPC Software Concerns
The needs of the expert programmers who are develop-
ing complex, high-performance simulation codes are 
quite different than the needs of the broader community. 

Furthermore, the number of such software developers is 
small; their needs are therefore often ignored. There is a 
need to foster cooperation among the small number of 
teams that develop such codes, leading to a more viable 
ecosystem; and cooperation of these teams with com-
puter science researchers and vendors, leading to a better 
understanding of the needs of this small community. Also, 
there is usually a gap between computer science research 
in areas such as code abstractions and transformations 
and high-level scientific application software. The gap 
exists for many reasons, including lack of communication 
between the communities involved, limits on extensibil-
ity and adaptability of scientific software, and differing 
real and perceived requirements by different application 
domains. It would be beneficial to the applications com-
munities to overcome these and other barriers to finding 
and implementing broad, reusable solutions and common 
software infrastructure.

A similar transformation took place in the 1990s when 
the groups developing large scientific codes recognized 
the need for adopting software engineering practices to 
sustain code reliability in face of rapid capability growth. 
Each group went its own way and customized some of 
the prevalent ideas for its own use, many times develop-
ing their own tools. However, a close examination of the 
adopted practices reveals a surprising number of common-
alities; component based architecture, object-oriented 
design, version control, coding standards, unit testing, 
regression testing, verification frameworks, release poli-
cies, contribution policies etc. A shared infrastructure 
would not only have reduced development costs, but 
would have facilitated code sharing.

To understand the kind of change software must undergo 
to adapt to new computing platforms, we first consider the 
current characteristics of the codes in our target commu-
nity. They are typically implemented in one or more of C, 
C++, or Fortran. Parallel computations are implemented 
primarily using MPI, OpenMP, or a hybrid approach. 
Underlying many of the simulation implementations are 
a variety of mesh types (Eulerian or Lagrangian), with or 
without adaptive refinement support, and a number of 
implicit and explicit solvers with one or more implemen-
tations of each method. Some implementations dispense 
with meshes completely and take a purely particles based 
approach, while some others combine both mesh and 
particles. Application-specific (I/O-intensive) checkpoint-
ing schemes are typically used for fault tolerance and to 
provide restart capabilities. Some simulation codes rely on 
externally developed numerical libraries, while others are 
mostly self-contained, with few external dependencies.

The report of the 2011 Workshop on Exascale 
Programming Challenges [10] discusses in depth many of 
the challenges that scientific software is facing in the near 
future, ranging from programming models to runtime sys-
tems. Many of these challenges are not limited to extreme 
scales and are present even now in every scale. We briefly 
overview these software challenges.

•	 Numerical methods and frameworks. Certain 
disruptive architecture changes may require rethink-



Dubey et al: Software Abstractions and Methodologies for HPC Simulation Codes on Future Architectures Art. e14, page 3 of 5

ing of numerical approaches. Identifying the right 
methods for our target communities will be critical 
in assessing where the applied mathematics research 
and development will be required to effectively use 
future platforms. A number of numerical frameworks 
provide some means of integrating the new solutions 
and hiding the code and underlying data structure 
changes from applications. Therefore, adapting the 
framework, where possible, to new platforms is one 
way in which multiple applications can successfully 
migrate to new paradigms without significant reim-
plementation of application code.

•	 Programming Models. The programming model 
(e.g., MPI) used in a particular application and its sup-
porting infrastructure is a fundamental, pervasive 
aspect of the implementation. Switching between 
programming models is labor-intensive and may 
require significant redesign of key algorithms, as well 
as massive code rewrites. At the same time, it is dif-
ficult to estimate a priori the benefits of moving to 
a different programming model, for example, when 
switching from a pure distributed memory MPI-based 
implementation to a model that supports a global 
shared memory view.

•	 Programming Languages. The high level program-
ming languages that currently prevail in scientific 
computing were adequate when there was reason-
able homogeneity in the basic abstract machine 
model across platforms, and the codes themselves 
used homogeneous models. With the advent of 
more capable machines the modeling is likely to 
get more demanding with diverse solvers that will 
need to interoperate. Heterogeneity in the abstract 
machine models will make the languages such as C/
C++/FORTRAN too low level to meet the needs of 
performance portability and interoperability. While 
languages like Python address the latter, they do not 
provide adequate solution for the former. There is 
need for moving the programming abstractions a 
level higher with either richer instrinsics or embed-
ded domain specific languages that expose the 
semantics, which when combined with code trans-
formation and auto-tuning back-ends for different 
platform architectures can provide a good solution. 
A significant challenge moving forward is the mixing 
of abstractions in a single application in a type-safe, 
high-performance manner; in a large, multi-compo-
nent application, there is no single “perfect” high-
level abstraction.

•	 Performance Portability. Effective utilization of 
HPC resources is historically a balancing act between 
portability and performance. On one hand, extensive 
performance optimizations of certain key computa-
tions are crucial for achieving good performance on 
a certain platform. On the other hand, making such 
changes permanent negatively impacts code read-
ability and performance on other platforms. it is 
important to identify and eliminate barriers to ena-
bling greater flexibility in choosing among different 
optimized implementations. Another critical aspect 

of future performance portability is the ability to sup-
port different levels and types of parallelism.

•	 Resilience. Current codes rely on checkpointing for 
error recovery. This solution, however, will be prohibi-
tively expensive on large-scale systems; hence, new 
ways of ensuring resilience are required which may 
involve changes in programming models, runtimes, 
and application design and implementation.

•	 Productivity and Maintainability. Alternative tech-
nical approaches to managing increased levels of paral-
lelism, heterogeneity, and other architectural features 
have different impacts on programming effort and 
software maintainability. Furthermore, complex codes 
do not allow easy testing of new concepts and thus 
slow down advances in both the scientific and numeri-
cal approaches. We must understand the current and 
desired mode of development in our target communi-
ties to guide the approach to design decisions.

We note that the same set of challenges largely apply to 
both physics-rich simulation codes and to the software 
that will analyze and/or visualize the massive amount 
of data produced. As a result, innovative analysis and 
visualization strategies (pioneered by, e.g., the yt toolkit 
[15]), may require that these tools are co-designed with 
each other and with the hardware platform, and careful 
thought must be given to how the different data access 
patterns of simulation vs. analysis/visualization tools will 
affect performance on many-core, heterogeneous comput-
ers. Furthermore, it may be that most simulation analysis 
must occur during simulation runtime rather than after 
the calculation is complete in order to maximize scientific 
yield and manage scarce storage resources.

3 Community Input
In order to facilitate exchange of information among 
various stakeholders and to find generally applicable solu-
tions to the software problems described above we have 
been conducting a series of workshops under the aegis 
of an NSF SI2 conceptualization grant. The first of these 
workshops brought together domain experts in several 
scientific fields: software developers who are involved in 
implementing and optimizing many of the large codes 
for these fields and sectors, researchers in applied com-
puter science, and hardware and software vendors. The 
domain experts and/or the code developers for the 
domain provided information about the current models 
and algorithms used in simulations with emphasis on 
the data structures, memory characteristics and commu-
nication patterns. They also spoke about the direction 
their research was going to take in near and far future, 
the limitations in their models and resources that they 
are faced with, and what they would like to achieve. They 
further spoke about the preparations they are making for 
the future, where their greatest challenges lie in making 
those preparations, and where they could be helped by a 
community based effort. The programming abstractions 
experts informed the attendees about the state-of-the-
art in their respective fields and the future trends. They 
were asked to speak about the degree of penetration that 



Dubey et al: Software Abstractions and Methodologies for HPC Simulation Codes on Future ArchitecturesArt. e14, page 4 of 5 

various tools developed by their communities have had 
among the scientific code developers, and the barriers to 
their adoption. Domain experts commented on the pros 
and cons of various models and abstractions discussed.

The second workshop focused on HPC in manufac-
turing. The adoption by the manufacturers of software 
developed in academic institutions is very limited even 
though these packages offer many capabilities desired 
by the manufacturers. The workshop, therefore, set out 
to find the barriers to adoption and what, if anything, 
would help.

The third workshop focused on major classes of numeri-
cal algorithms that are critical for scientific codes, and the 
codes used by the industry.

The common theme running through all the workshops 
was gathering a variety of perspectives and wish-lists and 
trying to understand how they could be used in develop-
ing possible approaches toward common abstractions and 
frameworks.

4 Emerging Themes and Recommendations
In the course of the year and a half during which the work-
shops were conducted a few themes emerged among the 
applications. Almost all applications have greater concern 
about heterogeneity than the scale of the machines. In 
general strong scaling challenges are receiving greater 
attention than weak scaling because they will be faced 
by everyone, not just those groups who are specialized 
to using HPC. All the applications groups expect their 
complexity to rise both for algorithms and for interaction 
between code components. All of the above issues have 
led to a growing acceptance among the scientists that dis-
ruptive changes to their software bases are inevitable, and 
that there is great uncertainty about what, if any, actions 
can be taken in the near future to mitigate the problem. 
Even the manufacturers, who tend to prefer not to oper-
ate at the bleeding edge, have recognized a cause for con-
cern regarding the sustainability of their software.

Two dominant themes are also emerging with regard 
to programming abstractions for taking the codes to the 
next generation; code transformation and asynchronous 
runtime management. While the individual tools and 
compilers for providing these functionalities will be dif-
ferent, the applications will have to provide footholds 
for the related abstractions. It is known that fine-grain 
parallelism could impose data and housekeeping over-
heads, therefore constraints on the location of data and 
operations on it have to be relaxed so that auto-tuning 
tools can rearrange them as needed. Similarly, it is known 
that bulk synchronous processing makes the worst use of 
the network, imposes the harshest performance penal-
ties on algorithms, and may not scale. Therefore in addi-
tion to relaxing control on where data resides and who 
executes it, constraints have to be relaxed also on when 
a task executes. The applications can do so by taking the 
separation of concerns a step further than they already 
do, that of separating numerical and parallel complexity. 
They have to leave data-staging and assembly to the infra-
structure and expose minimum computation units, both 
spatial and temporal, that can be exploited by the code 

transformation tools. The applications also have to explic-
itly articulate the dependencies within the code to plug in 
dynamic task scheduling.

Because of the above considerations, the re-factorization 
and transformations which are needed are at the funda-
mental implementation design level in the codes and the 
libraries. The data layout, the wrapper layers, and the com-
munication channels between different code components 
have to be designed with an awareness of the semantics 
of the programming abstractions using asynchronous 
task management and code transformations. Such refac-
toring is also likely to pay dividends in other ways such as 
reliability and resiliency of the code. It is imperative that 
support is provided for refactoring of the mature codes 
that are already serving their communities well in this 
manner because the changes to the architecture of most 
codes will be highly disruptive and therefore labor inten-
sive. The alternative, code development from scratch, 
might succeed in a few instances, but is unlikely to meet 
with broad success. The reasons are: (1) an unconstrained 
design space has a potential to not converge, as happened 
to many high level frameworks 12–15 years ago, (2) code 
verification during refactoring remains tractable when 
solutions can be compared against a known set of solvers, 
and (3) to build a robust multiphysics code is long and 
arduous process, most mature codes have taken 5–8 years 
to arrive at the level of confidence that they now enjoy. We 
believe a judicious combination of disruptive and incre-
mental changes are the optimal way to continue to serve 
the cause of science.

References
1.	 FLASH user’s guide Available at: http://flash.uchi-

cago.edu/site/flashcode/user_support/flash4_ug
2.	 The chroma library for lattice field theory Avail-

able at: http://usqcd.jlab.org/usqcd-docs/chroma
3.	 Quda: A library for qcd on gpus Available at: http://

lattice.github.com/quda
4.	 Usqcd sofware releases Available at: http://usqcd.

jlab.org/usqcd-software
5.	 Allen, G, Benger, W, Goodale, T, Hege, H-C, Lanfer-

mann, G, Merzky, A, Radke, T, Seidel, E, and Shalf, J 
2000 The cactus code: a problem solving environment 
for the grid. In: The Ninth International Symposium on 
High-Performance Distributed Computing, 2000. Pro-
ceedings, Pittsburgh, PA in August 2000, pp. 253–260.

6.	 Bryan, G L, Norman, M L, O’Shea, B W, et al 2014 
ENZO: An Adaptive Mesh Refinement Code for Astro-
physics. The Astrophysical Journal Supplement, 211(2): 
19.

7.	 Cactus developers 2013 Cactus Computational 
Toolkit. Available at: http://www.cactuscode.org/

8.	 Dubey, A, Antypas, K, Ganapathy, M K, Reid, L B, 
Riley, K, Sheeler, D, Siegel, A and Weide, K 2009 
Extensible component-based architecture for FLASH, a 
massively parallel, multiphysics simulation code. Paral-
lel Computing, 35(10–11): 512–522.

9.	 EinsteinToolkit maintainers 2013 Einstein Toolkit: 
Open software for relativistic astrophysics. Available 
at: http://einsteintoolkit.org/

http://flash.uchicago.edu/site/flashcode/user_support/flash4_ug
http://flash.uchicago.edu/site/flashcode/user_support/flash4_ug
http://usqcd.jlab.org/usqcd-docs/chroma
http://lattice.github.com/quda
http://lattice.github.com/quda
http://usqcd.jlab.org/usqcd-software
http://usqcd.jlab.org/usqcd-software
http://www.cactuscode.org/
http://einsteintoolkit.org/


Dubey et al: Software Abstractions and Methodologies for HPC Simulation Codes on Future Architectures Art. e14, page 5 of 5

How to cite this article: Dubey, A, Brandt, S R, Brower, R, Giles, M, Hovland, P, Lamb, D Q, Löffler, F, Norris, B, O’Shea, B W, 
Rebbi, C, Snir, M, Thakur, R and Tzeferacos, P 2014 Software Abstractions and Methodologies for HPC Simulation Codes on Future 
Architectures. Journal of Open Research Software, 2(1): e14, pp. 1-5, DOI: http://dx.doi.org/10.5334/jors.aw

Published: 9 July 2014

Copyright: © 2014 The Author(s). This is an open-access article distributed under the terms of the Creative Commons 
Attribution 3.0 Unported License (CC-BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original author and source are credited. See http://creativecommons.org/licenses/by/3.0/.
 

 	        OPEN ACCESS Journal of Open Research Software is a peer-reviewed open access journal published by 
Ubiquity Press.

10.	Exascale Programming Challenges Report 2011 
Ascr programming challenges for exascale computing. 
Available at: http://science.energy.gov/~/media/ascr/
pdf/program-documents/docs/ProgrammingChal-
lengesWorkshopReport.pdf

11.	Fryxell, B, Olson, K, Ricker, P, Timmes, F X, Zingale, 
M, Lamb, D Q, MacNeice, P, Rosner, R, Truran, J W 
and Tufo, H 2000 FLASH: An adaptive mesh hydrody-
namics code for modeling astrophysical thermonuclear 
flashes. The Astrophysical Journal Supplement, 131: 273–
334. DOI: http://dx.doi.org/10.1086/317361

12.	Löffler, F, Faber, J, Bentivegna, E, Bode, T, Diener, P, 
Haas, R, Hinder, I, Mundim, B C, Ott, C D, Schnetter, 
E, Allen, G, Campanelli, M and Laguna, P 2012 The 
Einstein Toolkit: A Community Computational Infrastruc-
ture for Relativistic Astrophysics. Classical and Quantum 
Gravity, 29(11): 115001. DOI: http://dx.doi.org/10.1088 
/0264-9381/29/11/115001

13.	Norman, M L, Bryan, G L, Harkness, R, Bordner, J, 
Reynolds, D, O’Shea, B and Wagner, R 2008 Simu-
lating Cosmological Evolution with Enzo In: Petascale 
Computing: Algorithms and Applications. Chapman & 
Hall/CRC, pp. 83–102. Arxiv preprint arXiv: 0705.1556.

14.	O’Shea, B W, Bryan, G, Bordner, J, Norman, M L, 
Abel, T, Harkness, R and Kritsuk, A 2005 Introduc-
ing Enzo, an AMR cosmology application. In: Plewa, T, 
Timur, L and Weirs, V G (eds.) Adaptive Mesh Refine-
ment – Theory and Applications, volume 41 of Lec-
ture Notes in Computational Science and Engineering. 
Springer.

15.	Turk, M J, Smith, B D, Oishi, J S, Skory, S, Skillman, 
S W, Abel, T and Norman, M L 2011 yt: A Multi-code 
Analysis Toolkit for Astrophysical Simulation Data. The 
Astrophysical Journal Supplement, 192: 9.

16.	Zilhão, M and Löffler, F 2013 An Introduction to the 
Einstein Toolkit. submitted to IJMPA. (arXiv:1305.5299).

http://dx.doi.org/10.5334/jors.aw
http://creativecommons.org/licenses/by/3.0/
http://science.energy.gov/~/media/ascr/pdf/program-documents/docs/ProgrammingChallengesWorkshopReport.pdf
http://science.energy.gov/~/media/ascr/pdf/program-documents/docs/ProgrammingChallengesWorkshopReport.pdf
http://science.energy.gov/~/media/ascr/pdf/program-documents/docs/ProgrammingChallengesWorkshopReport.pdf
http://dx.doi.org/10.1086/317361
http://dx.doi.org/10.1088/0264-9381/29/11/115001
http://dx.doi.org/10.1088/0264-9381/29/11/115001
http://lanl.arxiv.org/abs/1305.5299

