
Gentile, G, et al. 2020 CURSAT ver. 2.1: A Simple, Resampling-Based, Program to
Generate Pseudoreplicates of Data and Calculate Rarefaction Curves. Journal of
Open Research Software, 8: 17. DOI: https://doi.org/10.5334/jors.260

Journal of
open research software

SOFTWARE METAPAPER

CURSAT ver. 2.1: A Simple, Resampling-Based, Program
to Generate Pseudoreplicates of Data and Calculate
Rarefaction Curves
Gabriele Gentile
Department of Biology, University of Rome Tor Vergata, Rome, IT
gabriele.gentile@uniroma2.it

CURSAT ver. 2.1 is an open-source code in QB64 basic, compilable into an executable file, that produces n
pseudoreplicates of an empirical data set. Both resamplings with and without replacement are allowed by the
software. The number (n) of pseudoreplicates is set by the user. Pseudoreplicates can be exported in a file
that can be opened by a spreadsheet. Thus, pseudoreplicates are permanently stored and available for the
calculation of statistics of interest and associated variance. The software also uses the n pseudoreplicate
data to reconstruct n accumulation matrices, appended in an output file. Accumulation has applicability
in cases in which repeated sample-based data must be evaluated for exhaustiveness. Many situations
involve repeated sampling from the same set of observations. For example, if data consist of species
occurrence, the software can be used by a wide spectrum of specialists such as ecologists, zoologists,
botanists, biogeographers, conservationists for biodiversity estimation. The software allows performing
accumulation irrespectively whether the input data set contains abundance (quantitative) or incidence
(binary) data. Accumulation matrices can be imported in statistical packages to estimate distributions of
successive pooling of samples and depict accumulation and rarefaction curves with associated variance.

CURSAT ver. 2.1 is released in two editions. Edition #1 is recommended for analysis, whereas Edition
#2 generates a log file in which the flow of internal steps of resampling and accumulation routines is
reported. Edition #2 is primarily designed for educational purposes and quality check.

Keywords: Saturation; accumulation; pseudoreplicates; rarefaction curves; repeated sampling; replacement;
non-random sampling; bootstrap; ecology; biogeography; species-area; zoology; botany; biodiversity;
diversity indices
Funding statement: The software was developed with no specific funds.

(1) Overview
Introduction
Many situations involve repeated sampling from the
same set of observations. For example, Ridenhour and
Grimmett [1] hypothesized the case of a professor who
“has a test bank of 100 questions for a particular course and
randomly chooses 25 of these questions for the final exam
each semester. A persistent but not very talented student
repeats the course several times. Obviously, the student has
no chance of having seen all the questions before taking the
course four times. What is the probability that the student
will have seen all the questions after k repetitions? That is,
what is the probability that the entire test bank will have
been exhausted after k repetitions?”. Clearly, we could also
reformulate the question as “how many k samples of
size n are necessary for the test bank to be exhausted?”.
This implies selecting k samples of size n from a population
containing N members. In similar cases, when N and n are

known, the issue can be tackled by using a probabilistic
approach [1].

When N and n are unknown accumulation
procedures allow the construction of rarefaction
(saturation) curves that may help to evaluate the
exhaustiveness of sampling.

In ecology, accumulation procedures associated with
resampling methods may offer support for measuring
biodiversity. In particular, assessing the number of species
that occur in a certain area (species richness) is a central
issue in ecology because such information participates
in defining a number of diversity estimators used in
describing and comparing profiles of biodiversity [2].
Estimators can be based on the abundance of individuals
belonging to a certain class (species) in a sample [3, 4].
Additionally, they can also be based on incidence, which
is the presence-absence data of a class (species) in a given
sample [5].

https://doi.org/10.5334/jors.260
mailto:gabriele.gentile@uniroma2.it

Gentile: CURSAT ver. 2.1Art. 17, page 2 of 10

Independently whether it is based on abundance or
incidence, the estimation of species richness depends on
sample size, due to both sampling effects and intrinsic
factors such as seasonality, species turnover, etc. As a
consequence of this, repeated sampling is expected to
increase the cumulative number of species observed in
a certain area. Thus, the successive pooling of samples
from a single location produces a species accumulation,
and a pattern of the species accumulation and rarefaction
curves may be described in several model-based ways [6,
7, 8, 9].

An alternative to model-based ways to estimate
accumulation and rarefaction curves is provided by
resampling. Resampling with or without replacement
has become one of the most widely used measures of
statistical support in several disciplines, especially when
the analytical estimation of the variance of statistics
of interest is not possible. The second option is usually
preferred over the first, because resampling with
replacement (bootstrap) may suffer some underestimation
respect to resampling without replacement. However, the
variance among randomizations estimated via resampling
without replacement approaches zero, when reaching the
last accumulation level, whereas variance estimated via
bootstrap does not suffer from such an effect [10].

Resampling produces what is defined as a pseudoreplicate
data set in which columns of the original data matrix may
be represented multiple times, not at all, or simply in a
different order. Each pseudoreplicate can be analyzed
using the same statistics as for the original data matrix.
Reiteration for a number of times creates a distribution of
the statistics investigated. Such distribution may serve as
a basis for statistical testing.

Three major schemes of resampling are known:
bootstrap, jackknife, and shuffling. Bootstrapping implies
resampling with replacement, whereas jackknifing and
shuffling do not. Bootstrapping produces pseudoreplicate
data sets in which columns of the original data matrix
may be represented multiple times or not at all. By
jackknifing, a proportion of columns in the original data
set are deleted and not replaced whereas the shuffling
procedure simply changes the order by which columns
are represented in the pseudoreplicate data set, without
deleting any columns. Bootstrapping and jackknifing tend
to produce similar results [11].

Resampling methods assume that elements in a data
set must be identically and independently distributed.
Such an assumption may be unrealistic, although
random resampling would allow such conditions to be
met [11].

CURSAT ver. 2.1 is a simple open-source software that
allows the generation of exportable pseudoreplicate
data sets and, in combination with commonly used
statistical packages, the construction of accumulation
and rarefaction curves and associated sample variance
by using a rarefaction-by-resampling approach. Such
an approach is not novel and has already been applied
in ecology and genetics (e.g., [12, 13]). In fact, several R
packages and software implement resampling rarefaction
approaches such as the specaccum function in vegan R

package [14], mothur [15], the EstimateS program [16],
iNEXT R package [17], and RTK [18].

Whereas CURSAT ver.2.1 is not meant to compete with
other more comprehensive and mature software available,
especially when dealing with extremely large data sets, it
enables to extract replicated data matrices, while other
packages do not. Admittedly, for programmers, R requires
minor programming efforts to export replicated data
matrices resulting from resampling routines. However,
CURSAT ver. 2.1 may still prove handy because it does not
require previous experience in R or other programming
software. It can be run as an executable file and allows
the user to save both pseudoreplicate and accumulation
data in separate files. This is a valuable feature because
pseudoreplicate data may be imported into a spreadsheet
and be subsequently used for the calculation of diversity
indices or other statistics with associated resampling-
based variance in case analytical variance can not be
estimated. By exporting pseudoreplicate data sets, the user
has the possibility to estimate different statistics using
the same pseudoreplicate data set. Additionally, runs are
reproducible because the user can set a seed number.

To promote a full understanding of procedures
followed by the software during calculations, extended
remarks (REM lines) are provided in the source code.
The REM lines in the source code explain and describe
what is performed by subsequent lines of instructions.
Additionally, a second edition (Edition #2) of the
software is provided. Edition #2 generates a log file
where intermediate matrices created and used by the
software during resampling and accumulation routines
are appended and saved at each replicate. This may prove
useful for check-quality and educational purposes.

Implementation and architecture
CURSAT ver. 2.1 is a short open-source code written in
basic (QB64), compilable into an executable file. It uses a
random sampling approach and allows the user to choose
between two options: 1) resampling with replacements
(bootstrap) and 2) resampling without replacement
(shuffling).

The software produces n resampled replicates
of n × n objects-by-sample matrix. The matrix may
incorporate quantitative or qualitative data. In fact, cells
may contain counts of individuals per object (abundance)
or presence/absence (binary) data. This software is
primarily designed to address questions such as: “how
many sampling events are necessary to maximize the
chance to sample all objects?” or “how many sampling
events are necessary to collect a representative sample of
objects?”.

For example, let’s consider the following case, very
common in ecological studies. We know that 12 species
(objects) occur at a certain location. We sampled that
location 10 times and each time we found a certain
number of species, according to the following scheme:
in the 12 × 10 matrix, species are a-l (rows) and sampling
events are 1–10 (columns). The presence and absence
(incidence) of each species in each sampling event is
represented by 1 and 0, respectively as in Table 1.

Gentile: CURSAT ver. 2.1 Art. 17, page 3 of 10

The data matrix is the input information for CURSAT
ver. 2.1. Because of the limitation of Basic language,
CURSAT ver. 2.1 accepts blanks or commas as separators in
the input file. An incidence matrix is used in the example
mentioned above, but an abundance matrix may also
be used indifferently because the software will handle it
when constructing accumulation matrices.

The functional structure of the software is summarized
in the flow chart in Figure 1.

Resampling with replacement (Bootstrap)
After loading the rectangular input data matrix D,
previously dimensioned by the user, CURSAT ver. 2.1
starts the bootstrap by first randomly choosing a number
corresponding to one of the columns of D. Subsequently,
CURSAT ver. 2.1 extracts from D the elements of that
column and starts constructing the bootstrapped data
matrix ND using data in D. ND and D matrices have the
same dimension. The process is repeated for the number
of replicates set by the user.

Table 1: Incidence matrix.

1 2 3 4 5 6 7 8 9 10

a 1 0 1 1 0 0 0 1 1 0

b 1 1 0 0 0 0 1 1 0 0

c 0 0 0 1 0 1 1 0 1 1

d 0 0 0 0 1 0 1 0 1 0

e 0 0 1 1 0 0 0 1 0 0

f 1 1 0 0 1 0 0 1 0 1

g 0 0 1 1 1 0 0 0 1 0

h 1 1 0 1 0 0 1 1 0 1

i 1 0 0 0 1 1 0 1 0 1

j 0 0 1 1 0 0 1 0 1 0

k 0 0 1 1 0 1 0 1 0 1

l 1 1 1 0 0 0 1 1 0 0

Figure 1: Functional structure of CURSAT ver.2.1.

Gentile: CURSAT ver. 2.1Art. 17, page 4 of 10

Resampling without replacement (Shuffling)
Similarly to the bootstrap routine, after loading the
rectangular input data matrix D, CURSAT ver. 2.1
generates a random number comprised between 1 and
the maximum number of columns of D, to construct a
row vector F with as many elements as the number of
columns of D. Such a process occurs within a cycle that
accepts only non-replicated numbers. The vector F stores
the shuffling order. The remaining part of the routine is
similar to the bootstrap routine. CURSAT ver. 2.1 extracts
the elements of each column from D, following the order
stored in F, and starts constructing the resampled data
matrix ND using data in D. ND and D matrices have the
same dimension. Again, the process is repeated as many
times as the number of replicates set by the user.

Accumulation
To perform accumulation, for each resampling replicate,
CURSAT ver. 2.1 constructs the matrix W where, for
each row, each ith element is the cumulative sum of
the first to the ith element of the corresponding row in
ND. Matrix W is converted into the binary matrix B by
replacing each element larger than 0 with 1. The matrix
B is not an incidence matrix sensu stricto. In fact, matrix
B does not respond to the question: “Is object x present
in each sampling event?”, but rather it answers the
question: “Is object x present in the cumulative sample
after n sampling events?”. In the last step, for each

column of B, elements are cumulatively summed and
the accumulation matrix is generated. The stratagem
to use matrices W and B is instrumental to correctly
perform accumulation, irrespectively whether the
input file (matrix D) contains abundance or incidence
data.

Number of pseudoreplicates and repeatability
The number (n) of pseudoreplicates is set by the
user. A scalar seed is also set by the user, to allow
repeatability.

The software appends the n replicated data matrices in
an output file (named by the user) as in Figure 2.

Correspondent n sample-based object accumulation
matrices are also generated and appended in a file named
by the user, as in Figure 3. For an easy import of both
pseudoreplicate data and accumulation matrices into
a spreadsheet, tabulations are used as separators in the
output files. Both pseudoreplicate data and accumulation
files provide a full report of the run. The first column of
each pseudoreplicate data matrices is a label that marks
the resample replicate during which the pseudoreplicate
was generated.

Similar information is reported in the first column of
each of the accumulation matrices generated. In these
matrices sampling events and associated cumulative
number of objects (species in the example) are reported in
the second and third columns, respectively. Such a file can

Figure 2: File pseud_incidence_boot.txt opened in Microsoft Excel. It consists of the output file with 100 bootstrapped
pseudoreplicates of the original dataset in the file incidence.txt. The first column is a label that marks the resample
replicate during which the pseudoreplicate was generated. Only the first two replicates are shown.

Gentile: CURSAT ver. 2.1 Art. 17, page 5 of 10

be imported in statistical packages to estimate distributions
of successive pooling of samples and depict accumulation
and rarefaction curves. The graphs in Figure 4 were
obtained using Statistica ver. 8 (StatSoft, Inc).

Quality control
CURSAT ver. 2.1 is written in basic (QB64). QB64 is not
a cross-platform software per se. However, the QB64
programming language as released at https://www.qb64.

Figure 3: Accumulation data file accum_incidence_boot.txt opened in Microsoft Excel. It consists of the output file
with 100 accumulation replicates based on the bootstrap of the original dataset in the file incidence.txt. The first
column marks the resample replicate during which the accumulation was generated. In the second and third
columns, sampling events and the associated cumulative number of objects are respectively reported. Only the first
two replicates are shown.

Figure 4: Accumulation curves (as indicated by black dots) obtained from 100 pseudoreplicates, with seed
number = 12348695. The input file was abundance.txt. Bootstrap (A) and resampling without replacement (B)
graphs. Dots indicate mean values. Whiskers indicate 2 × standard deviation. Only for reference purposes, logarithmic
regression lines are drawn (red) and regression equations are reported. As expected, when using the same seed
number, the files abundance.txt and incidence.txt produced identical results (not shown, but see also output files).

https://www.qb64.org/

Gentile: CURSAT ver. 2.1Art. 17, page 6 of 10

org/ is provided with stable builds in Microsoft Windows
32bit and 64bit, Linux, Apple Mac, and Chrome OS.

Instructions about how to install QB64 on Windows,
Linux, and MacOS can be found at the website: https://
www.qb64.org/wiki/QB64_FAQ#Q:_How_do_I_install_
QB64_on_Windows.2C_Linux.2C_macOS.3F.  Further
instructions can be found in the README file associated
with CURSAT ver. 2.1.

Once that QB64 has been installed on the desired
Operating Systems, the source code (file with extension
.bas) of CURSAT ver.2.1 can be loaded in QB64 environment
and be compiled into an executable file that runs under
the specific Operating Systems.

CURSAT ver. 2.1 was originally written using QB64 for
Microsoft Windows 64bit. However, I also successfully
compiled and run it using QB64 for Apple Mac under
MacOS Mojave 10.14.5.

During the run, a bootstrap-replicate counter informs
about the status of the run. Once the run has ended, the
software informs the user and reports the names of files
where output data are saved, along with information
about the duration of the run. Files can be opened using
a text editor or a spreadsheet and can be inspected for
consistency and used for later analyses.

The software is provided in two editions. Edition #1 is
recommended for analysis purposes. Edition #2 adds a log
file (named by the user) where information used by the
software (matrices D, ND, W, B, and F in the source code)
generated and used during resampling and accumulation
routines is stored and saved. Such information may
prove useful for users to identify whether the software
is operating as expected. Additionally, the possibility to
check on intermediate steps of the software may also be
useful for educational purposes.

Figure 5 illustrates in detail the way the program works.
The source code of both editions is extensively commented.
Each routine and relevant steps are anteceded by REM
lines. Edition #2 has been used, along with vWATCH64 ver.
1.104, (https://www.qb64.org/vwatch/) for debugging.

Testing
The software is provided with example sample files,
used for testing, and correspondent output files. The
input file abundance.txt is a 12 × 10 rectangular matrix
of abundances, whereas incidence.txt (see Table 1) is
the incidence data matrix derived from abundance.
txt. The file data.txt (as per the example in Figure 5) is
also provided, along with output files accum_data_shuf.
txt, pseud_data_shuf.txt, data_shuf_log.txt, and other files.

The database in the file seedbank.txt provided along
with EstimateS ver. 9.1.0 [15] was also used for testing.
The original file was slightly edited to meet the input
requirements of CURSAT v.2.1. The edited file is here
provided. The file consists of an abundance matrix with
34 rows and 121 columns. All input files were used to
test CURSAT v.2.1. For each input file, 100 replicates were
obtained by resampling with and without replacement.
All runs were all performed with seed = 12348695. Results
from using the database in the file seedbank.txt are shown
in Figure 6.

Output files, including log files, as resulting from the
different runs are provided along with the code and
Windows executables. Multiple runs using the same seed
number produced, as expected, the same results.

The software was also tested by using a 1000 × 1000
data matrix as in the file 1000.txt provided as well, along
with the code.

Such a matrix is an abundance matrix generated by
Microsoft Excel in two steps. In the first step, a random
incidence matrix 1000 × 1000 was created. In a second
step, elements = 1 were replaced with integer numbers
randomly chosen between 1 and 30.

In such a way, the expected accumulation curve for
both resampling procedures should predict full saturation
after 10 replicates, with the following mean values
(rounded to the integer value) from replicate 1 through
10, respectively: 500, 750, 875, 938, 969, 984, 992, 996,
998, 999. One hundred replicates were generated for both
bootstrap and shuffling. Accumulation curves are shown
in Figure 7. Means observed and restricted standard
deviations demonstrate that expectations were met in
both cases (Figure 7A and B). For comparison, the same
bootstrap analysis was also run by using EstimateS 9.1.0.
CURSAT ver.2.1 and EstimateS 9.1.0 generated very similar
results (Figure 7C).

(2) Availability
Operating system
The Windows executable file was successfully tested for
functionality under Microsoft Windows 7 and 10 64 bit.
The Apple Mac executable ran properly under MacOS
Mojave 10.14.5.

Programming language
The source code of CURSAT ver. 2.1 is written in QB64
ver.0.960 basic. Syntax used by QB64 may slightly differ
from other versions of the basic language (e.g. QB4.5,
GWbasic), requiring some adjustments.

Additional system requirements
Once compiled into a Microsoft Windows 64 bit executable,
and irrespective whether running random resampling with
or without replacement, Edition #1 required less than
20000 Kb of memory and less than 1 minute to generate
10000 bootstrapped pseudoreplicates of a 12 × 10
incidence matrix, on an Intel® Core™ i7 CPU 860 at 2.80
Ghz, with 4.0 Gb RAM and Windows 7 64 bit. The size of
the generated data and accumulation pseudoreplicates
files was 3770 Kb and 865 Kb, respectively.

Edition #1 required approximately 10 seconds to
generate 100 pseudoreplicates of a 100 × 100 data matrix.
Such time increased to approximately 2 minutes and 20
seconds for Edition #2. In these last two cases, the size of
pseudoreplicate and accumulation data files was 3975 Kb
and 175 Kb, respectively. The log file generated by Edition
#2 was 75034 Kb.

When using the abundance dataset in 1000.txt,
Edition #1 generated 2 files with 100 pseudoreplicate and
accumulation data in 23 minutes, irrespectively whether
bootstrap or shuffling were performed. Bootstrap and

https://www.qb64.org/
https://www.qb64.org/wiki/QB64_FAQ#Q:_How_do_I_install_QB64_on_Windows.2C_Linux.2C_macOS.3F
https://www.qb64.org/wiki/QB64_FAQ#Q:_How_do_I_install_QB64_on_Windows.2C_Linux.2C_macOS.3F
https://www.qb64.org/wiki/QB64_FAQ#Q:_How_do_I_install_QB64_on_Windows.2C_Linux.2C_macOS.3F
https://www.qb64.org/vwatch/

Gentile: CURSAT ver. 2.1 Art. 17, page 7 of 10

shuffling were conducted simultaneously on the same
computer. Both procedures generated output files of
1.9 Kb and 42 Mb for pseudoreplicate and accumulation
data, respectively.

A 1000 × 1000 data matrix was the largest data set used
for the speed test of CURSAT ver.2.1. The software can
handle larger matrices of data, but this is time-consuming.

Dependencies
No library is required. No previous knowledge of the
BASIC language or QB64 environment is required to
run CURSAT ver. 2.1, as the executable file, can run as
“stand-alone” software. No official support is provided,
but users are welcome to contact the author for trouble
shooting.

Figure 5: An example of a log file generated by running Edition #2, illustrating in detail the algorithm used by CURSAT
ver. 2.1. The input data matrix D (top-left) in the file data.txt was used in this example. Only outcomes of replicate
n.1 from a shuffling procedure are shown because the procedure is very similar for bootstrap. For each resampling
replicate, a pseudoreplicate data matrix (ND) is generated by extracting the elements from a column of the input
matrix D, according to the shuffling order stored in vector F. In this example, elements in column #1 of ND are
extracted from column #4 of the input matrix D (green); subsequently, elements in column #2 of ND are extracted
from column #2 of the input matrix D (orange), and so on. A new matrix (W) is then constructed by cumulatively
summing elements of the pseudoreplicate data ND matrix by row (see asterisks). Finally, the matrix B (same
dimensions as W) is constructed from matrix W, by replacing elements >0 with 1. This is instrumental to correctly
perform accumulation irrespectively whether the input file contains abundance (as in this case) or incidence data. The
accumulation replicates are constructed by cumulatively summing elements of matrix B by column (see files data_
shuf_log.txt and accum_data_shuf.txt). The accumulation replicates are not stored in memory, but they are printed in
the output file meanwhile they are created.

Gentile: CURSAT ver. 2.1Art. 17, page 8 of 10

Figure 6: Accumulation curves (black dots) obtained from 100 pseudoreplicates. The database as in the file seedbank.txt was
used. CURSAT ver. 2.1 (A) and (B) and EstimateS 9.1.0 (C) and (D) were tested for bootstrap and shuffling. Bootstrap
and shuffling graphs are on the left and right sides, respectively. Dots indicate mean values. Standard deviation (2×) is
indicated by continuous black lines. Logarithmic regression lines are drawn (red) and regression equations reported.
CURSAT ver. 2.1 and EstimateS 9.1.0 produced similar results. For EstimateS 9.1.0 the cumulative n. of species (objects)
has been calculated using S Mean ± (2 × bootstrap/shuffling SD (runs)) from the EstimatesS 9.1.0 output.

Figure 7: Accumulation curves (black dots) obtained from 100 pseudoreplicate data. The input data was the abundance
1000 × 1000 matrix as in the file 1000.txt. CURSAT ver. 2.1 (A) and (B) and EstimateS 9.1.0 (C) and (D) were tested
for bootstrap and shuffling. Bootstrap and shuffling graphs are on the left and right sides, respectively. Dots indicate
mean values. Standard deviation (2×) is indicated by whiskers. Logarithmic regression lines are drawn (red) and
regression equations are shown. To improve clarity, only cumulative data the first 20 sampling events are here
reported. As expected in the case of a random matrix, both bootstrap and shuffling produced almost the same results.
For EstimateS 9.1.0 the cumulative n. of objects has been calculated using S Mean ± (2 × bootstrap/shuffling SD
(runs)) from the EstimatesS 9.1.0 output.

Gentile: CURSAT ver. 2.1 Art. 17, page 9 of 10

List of contributors
The software was entirely created by the author.

Software location
Archive

Name: Zenodo
Persistent identifier: 10.5281/zenodo.3700081
Licence: MIT License
Publisher: Gabriele Gentile
Version published:
Date published: 06/03/2020

Code repository
Name: GitHub
�Identifier: https://github.com/gabrio62/CURSAT-
ver.​2.1
Licence: MIT License
Date published: 06/03/2020

Language
English

(3) Reuse potential
The software can be used by ecologists, biogeographers,
zoologists, botanists, conservationists but it also has
general applicability in all cases in which data matrices
from repeated sampling have to be evaluated by a
resampling/rarefaction approach. For example, CURSAT
ver. 2.1 has been recently used to account for a possible
bias in the number of haplotypes caused by unequal
sample size, in a genetic study of hemoparasites of
Galápagos iguanas (Fulvo et al., submitted).

CURSAT ver. 2.1 can be used to perform random
resampling with and without replacement of every kind
of rectangular matrix. Thus, the possibility to extract
pseudoreplicates of original data and easily import
them into a spreadsheet allows calculating several
different kinds of statistics and their associated variance.
Variance estimated by a random sampling approach with
replacements may provide a valid alternative in case
the analytical derivation of asymptotic distribution and
variance is not possible.

Edition #2 may be used to illustrate the internal
steps of the software. This can be useful for educational
purposes.

Following the suggestion of one of the reviewers a
command-line version to facilitate the integration of
such a program in a pipeline could be implemented in a
more advanced version of the software, along with a batch
mode allowing the user to run multiple files on the same
run.

Additional Files
The additional files for this article can be found as follows:

•	 Supplementary file 1. CURSAT v.2.1 zipped pack-
age including README, codes, example files. DOI:
https://doi.org/10.5334/jors.260.s1

•	 Supplementary file 2. Input and Output files in rar
archive. DOI: https://doi.org/10.5334/jors.260.s2

•	 Supplementary file 3. CURSAT ver.2.1 Edition 1
source code. DOI: https://doi.org/10.5334/jors.260.s3

•	 Supplementary file 4. CURSAT ver.2.1 Edition 2
source code. DOI: https://doi.org/10.5334/jors.260.s4

•	 Supplementary file 5. CURSAT ver.2.1 Edition 1
executable. DOI: https://doi.org/10.5334/jors.260.s5

•	 Supplementary file 6. CURSAT ver.2.1 Edition 2
executable. DOI: https://doi.org/10.5334/jors.260.s6

•	 Supplementary file 7. Readme file for CURSAT ver.
2.1. DOI: https://doi.org/10.5334/jors.260.s7

Acknowledgements
I am grateful to a very special person who provided me a
Commodore64 to learn basic programming language.

Competing Interests
The author has no competing interests to declare.

References
1.	 Ridenhour, J and Grimmett, D 2006 Sampling

and Related Binomial Identities. The College
Mathematics Journal, 37: 296–299. DOI: https://doi.
org/10.2307/27646360

2.	 Hill, M O 1973 Diversity and evenness: a unifying
notation and its consequences. Ecology, 54: 427–432.
DOI: https://doi.org/10.2307/1934352

3.	 Chao, A 1984 Nonparametric estimation of the
number of classes in a population. Scandinavian
Journal of Statistics, 11: 265–270.

4.	 Chao, A and Jost, L 2015 Estimating diversity and
entropy profiles via discovery rates of new species.
Methods in Ecology and Evolution, 6: 873–882.
DOI: https://doi.org/10.1111/2041-210X.12349

5.	 Chao, A 1987 Estimating the population size for captu
re-recapture data with unequal catchability. Biometrics,
43: 783–791. DOI: https://doi.org/10.2307/2531532

6.	 Colwell, R K, Mao, C X and Chang, J 2004
Interpolating, extrapolating, and comparing
incidence-based species accumulation curves. Ecology,
85: 2717–27. DOI: https://doi.org/10.1890/03-0557

7.	 Colwell, R K, Chao, A, Gotelli, N J, Lin, S-Y, Mao,
C X, Chazdon, R L and Longino, J T 2012 Models
and estimators linking individual-based and sample-
based rarefaction, extrapolation and comparison of
assemblages. Journal of Plant Ecology, 5: 3–21. DOI:
https://doi.org/10.1093/jpe/rtr044

8.	 Gotelli, N J and Colwell, R K 2011 Estimating species
richness. In Magurran, A E and McGill, B J (eds.),
Biological diversity: frontiers in measurement and
assessment, 39–54. New York, USA: Oxford University
Press.

9.	 Chao, A, Gotelli, N J, Hsieh, T C, Sander, E L, Ma,
K H, Colwell, R K and Ellison, A M 2014 Rarefaction
and extrapolation with Hill numbers: a framework for
sampling and estimation in species diversity studies.
Ecological Monographs, 84: 45–67. DOI: https://doi.
org/10.1890/13-0133.1

10.	Colwell, R K 2013 EstimateS 9.1.0 User’s Guide,
http://viceroy.colorado.edu/Est imateS​/Est i​
mateSPages/EstSUsersGuide/EstimateSUsersGuide.

https://doi.org/10.5281/zenodo.3700081
https://github.com/gabrio62/CURSAT-ver.2.1
https://github.com/gabrio62/CURSAT-ver.2.1
https://doi.org/10.5334/jors.260.s1
https://doi.org/10.5334/jors.260.s2
https://doi.org/10.5334/jors.260.s3
https://doi.org/10.5334/jors.260.s4
https://doi.org/10.5334/jors.260.s5
https://doi.org/10.5334/jors.260.s6
https://doi.org/10.5334/jors.260.s7
https://doi.org/10.2307/27646360
https://doi.org/10.2307/27646360
https://doi.org/10.2307/1934352
https://doi.org/10.1111/2041-210X.12349
https://doi.org/10.2307/2531532
https://doi.org/10.1890/03-0557
https://doi.org/10.1093/jpe/rtr044
https://doi.org/10.1890/13-0133.1
https://doi.org/10.1890/13-0133.1
http://viceroy.colorado.edu/EstimateS/EstimateSPages/EstSUsersGuide/EstimateSUsersGuide.htm#WhatEstimateSComputes
http://viceroy.colorado.edu/EstimateS/EstimateSPages/EstSUsersGuide/EstimateSUsersGuide.htm#WhatEstimateSComputes

Gentile: CURSAT ver. 2.1Art. 17, page 10 of 10

htm#WhatEstimateSComputes. Accessed on Feb
ruary 2nd 2020.

11.	Egan, A N and Crandall, K A 2006 Theory of
Phylogenetic Estimation. In Fox, C W and Wolf, J
B (eds.), Evolutionary Genetics: Concepts and Case
Studies, 426–444. London: Oxford University Press.

12.	Benítez-Malvido, J, Dáttilo, W, Martínez-Falcón,
A P, Durán-Barrón, C, Venezuela, J, López, S and
Lombera, R 2016 The multiple impacts of tropical
forest fragmentationon arthropod biodiversity and
on their patterns of interactions with host plants.
PloSOne, 11: 1–15. DOI: https://doi.org/10.1371/
journal.pone.0146461

13.	Scotti, I, Montaigne, W, Cseke, K and Traissac, S
2013. RaBoT: a rarefaction-by-bootstrap method to
compare genome-wide levels of genetic diversity.
Annals of Forest Science, 70: 631–635. DOI: https://
doi.org/10.1007/s13595-013-0302-z

14.	Oksanen, J, Blanchet, F G, Kindt, R, Legendre, P,
O’Hara, R B, Simpson, G L, Solymos, P, Stevens,
M H H and Wagner, H 2010 Vegan: community
ecology package. R package version 1.17-4. http://cran.
r-project.org.

15.	Schloss, P D, Westcott, S L, Ryabin, T, Hall, J R,
Hartmann, M, Hollister, E B, Lesniewski, R A,
Oakley, B B, Parks, D H, Robinson, C J, Sahl, J W,
Stres, B, Thallinger, G G, Van Horn, D J and Weber,
C F 2009 Introducing mothur: open-source, platform-
independent, community-supported software for
describing and comparing microbial communities. App
lied and Environmental Microbiology, 75: 7537–7541.
DOI: https://doi.org/10.1128/AEM.01541-09

16.	Colwell, R K and Elsensohn, J E 2014 EstimateS
turns 20: statistical estimation of species richness and
shared species from samples, with non-parametric
extrapolation. Ecography, 37: 609–613. DOI: https://
doi.org/10.1111/ecog.00814

17.	Hsieh, T C, Ma, K H and Chao, A 2016 iNEXT:
An R package for rarefaction and extrapolation of
species diversity (Hill numbers). Methods in Ecology
and Evolution, 7: 1451–1456. DOI: https://doi.
org/10.1111/2041-210X.12613

18.	Saary, P, Forslund, K, Bork, P and Hildebrand,
F. 2017 RTK: efficient rarefaction analysis of large
datasets. Bioinformatics, 33: 2594–2595. DOI: https://
doi.org/10.1093/bioinformatics/btx206

How to cite this article: Gentile, G 2020 CURSAT ver. 2.1: A Simple, Resampling-Based, Program to Generate Pseudoreplicates of
Data and Calculate Rarefaction Curves. Journal of Open Research Software, 8: 17. DOI: https://doi.org/10.5334/jors.260

Submitted: 22 February 2019 Accepted: 25 June 2020 Published: 21 August 2020

Copyright: © 2020 The Author(s). This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

OPEN ACCESSJournal of Open Research Software is a peer-reviewed open access journal published by
Ubiquity Press.

http://viceroy.colorado.edu/EstimateS/EstimateSPages/EstSUsersGuide/EstimateSUsersGuide.htm#WhatEstimateSComputes
https://doi.org/10.1371/journal.pone.0146461
https://doi.org/10.1371/journal.pone.0146461
https://doi.org/10.1007/s13595-013-0302-z
https://doi.org/10.1007/s13595-013-0302-z
http://cran. r-project.org
http://cran. r-project.org
https://doi.org/10.1128/AEM.01541-09
https://doi.org/10.1111/ecog.00814
https://doi.org/10.1111/ecog.00814
https://doi.org/10.1111/2041-210X.12613
https://doi.org/10.1111/2041-210X.12613
https://doi.org/10.1093/bioinformatics/btx206
https://doi.org/10.1093/bioinformatics/btx206
https://doi.org/10.5334/jors.306
http://creativecommons.org/licenses/by/4.0/

	(1) Overview
	Introduction
	Implementation and architecture
	Resampling with replacement (Bootstrap)
	Resampling without replacement (Shuffling)
	Accumulation
	Number of pseudoreplicates and repeatability

	Quality control
	Testing

	(2) Availability
	Operating system
	Programming language
	Additional system requirements
	Dependencies
	List of contributors
	Software location
	Language

	(3) Reuse potential
	Additional Files
	Acknowledgements
	Competing Interests
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Table 1

