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ugtm is a Python package that implements generative topographic mapping (GTM), a dimensionality 
reduction algorithm by Bishop, Svensén and Williams. Because of its probabilistic framework, GTM can 
also be used to build classification and regression models, and is an attractive alternative to t-distributed 
neighbour embedding (t-SNE) or other non-linear dimensionality reduction methods. The package is 
compatible with scikit-learn, and includes a GTM transformer (eGTM), a GTM classifier (eGTC) and a GTM 
regressor (eGTR). The input and output of these functions are numpy arrays. The package implements 
supplementary functions for GTM visualization and kernel GTM (kGTM). The code is under MIT license and 
available on GitHub (https://github.com/hagax8/ugtm). For installation instructions and documentation, 
cf. https://ugtm.readthedocs.io.
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(1) Overview
Introduction
ugtm (v2.0) is a package for multidimensional space 
analysis based on the generative topographic mapping 
(GTM). A complete documentation with API reference and 
tutorials is available online (https://ugtm.readthedocs.
io). GTM is a non-linear manifold-based dimensionality 
reduction method introduced by Bishop et al [1]. The ugtm 
package contains an implementation of GTM, and also 
kernel GTM (kGTM), the kernel version of the algorithm 
introduced by Olier et al [2].

GTM maps are similar to self-organizing maps [3] but 
provide a probabilistic framework that can be used to 
“color” the map and generate class maps or landscapes. 
These colored maps can then be used to build regression 
and classification models. GTM regression (GTR) [4] and 
GTM classification (GTC) [5] algorithms are implemented 
in ugtm. Considering that scikit-learn [6] is now widely 
used for machine learning tasks, ugtm provides scikit-
learn-compatible classes for data transformation (the 
eGTM transformer), classification (eGTC classifier), and 
regression (eGTR regressor).

Other implementations of the core algorithm of 
GTM are available online. The netlab package [7] 
implemented in Matlab was the first implementation 
with published source code. GTMapTool, a software 
written in Free Pascal, is available as a web application 
on the website of the Laboratoire de Chémoinformatique 
in Strasbourg (http://infochim.u-strasbg.fr/mobyle-cgi/
portal.py#forms::gtmaptool). ugtm provides a Python 
implementation of the core GTM algorithm similar to 
both netlab and GTMapTool, and also includes predictive 
modelling frameworks for classification and regression 
compatible with scikit-learn. The ugtm code, open to 
collaboration, is freely available on GitHub (https://
github.com/hagax8/ugtm) under MIT license.

Implementation and architecture
(1) Architecture
ugtm v2.0 is a package implemented in pure Python. 
The API reference is accessible online (https://ugtm.
readthedocs.io/en/latest/api.html). The main modules 
and their relationships are described in Figure 1. The eGTM, 
eGTC and eGTR classes implemented in ugtm_sklearn 
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inherit from scikit-learn classes TransformerMixin (eGTM), 
ClassifierMixin (eGTC), and RegressorMixin (eGTR).

(2) Installation
The ugtm package can be downloaded from PyPI using 
pip, by typing “pip install ugtm” in a terminal. In the 
Python console, the package can be imported by typing 
“import ugtm”.

(3) eGTM: GTM algorithm
The basic GTM dimensionality reduction is implemented 
into the scikit-learn-compatible eGTM class. The eGTM.
fit() function fits a GTM model to a data matrix 
(a numpy array). The eGTM.transform() function 
uses the fitted model to generate a 2D projection for new 
data (also a numpy array):

from ugtm import eGTM
import numpy as np

# Generate dummy train and test sets
X_train = np.random.randn(100, 50)
X_test = np.random.randn(50, 50)

# eGTM transformer: fit a map using X_train and
project X_test
eGTM().fit(X_train).transform(X_test,
model=”means”)

# Model with different hyperparameters
eGTM(k=10,m=5,s=1,regul=1).fit(X_train)

The four GTM hyperparameters (regul, k, m, and s) can be 
tuned: k is used for tuning the GTM resolution (a GTM 
map is discretized into a grid of [k, k] nodes), m is the 

number of RBF functions (defining an [m, m] grid), s is the 
RBF function width factor, and regul is the regularization 
coefficient. Implementation details can be found in the 
API description.

A data point can be represented in 3 ways using GTMs: 
responsibilities, means and modes. Responsibilities 
represent the probability distribution of a data point 
on the map; each data point is associated with a 
vector of k2 responsibilities (k2 = number of nodes 
on the GTM grid). In neural network terminology, a 
responsibility vector is called a feature vector and 
can be seen as a processed representation of a datum. 
These responsibilities can be used to compute the 
mean position of a data point on a GTM, or its mode 
(the node with largest responsibility).

(4) eGTC and eGTR: classification and regression 
using GTM
The eGTC and eGTR classes implement GTM-based 
classification and regression algorithms. eGTC and eGTR 
algorithms are based on class maps and landscapes, which 
are different ways of coloring a GTM. GTM class maps are 
constructed using discrete labels and GTM landscapes 
using continuous labels. New data can be projected onto 
these colored maps to predict labels. A GTM landscape for 
the S curve dataset is shown in Figure 2, and a GTM class 
map for the UCI handwritten digits dataset [8] in Figure 3, 
with other data projections using t-distributed stochastic 
neighbor embedding (t-SNE) [9], multidimensional scaling 
(MDS) [10] and locally linear embedding (LLE) [11]. The 
visualizations were produced using ugtm, scikit-learn [6] 
and altair [12].

Figure 1: Graph of ugtm v2.0 modules: (1) ugtm_classes: classes for generative topographic mapping (GTM) models, 
(2) ugtm_core: kernel GTM (kGTM) and GTM core functions, (3) ugtm_gtm: expectation-maximization algorithm for 
GTM, (4) ugtm_kgtm: expectation-maximization algorithm for kGTM, (5) ugtm_landscape: functions for colouring 
maps, (6) ugtm_predictions: GTM-based prediction algorithms, (7) ugtm_sklearn: sklearn-compatible eGTM 
transformer, eGTC classifier, and eGTR regressor, (8) ugtm_preprocess: preprocessing functions for data scaling and 
PCA preprocessing, using sklearn, (9) ugtm_plot: plotting functions for GTM maps, using matplotlib and mpld3, 
(10) ugtm_crossvalidate: cross-validation workflows.
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The eGTC.fit() and eGTR.fit() functions 
take as input two numpy arrays: a data matrix and a 
corresponding label vector. The eGTC.transform() 
and eGTR.transform() functions return predicted 
outcomes as numpy arrays:
from ugtm import eGTC, eGTR
import numpy as np

# Generate dummy train and test sets
X_train = np.random.randn(100, 50)
X_test = np.random.randn(50, 50)

y_train = np.random.choice([1, 2, 3], size=100)

# eGTC: predict labels for X_test
y_pred = eGTC().fit(X_train,y_train).
transform(X_test)

# eGTR: predict labels for X_test
y_pred = eGTR().fit(X_train,y_train).
transform(X_test)

(5) External resources
The package uses the following external resources:

Figure 2: Generative topographic mapping (GTM) representations of the S curve dataset (downloaded from sklearn): 
mean positions, modes, and landscape for continuous labels. The code to reproduce this plot is accessible online 
(https://ugtm.readthedocs.io/en/latest/visualization_examples.html). The GTM projection can be compared to 
t-distributed stochastic neighbor embedding (t-SNE), multidimensional scaling (MDS) or locally linear embedding 
(LLE). The axes x1 and x2 are latent axes found by the corresponding algorithm.

Figure 3: GTM representations of the hand-written digits dataset (digits 0 to 5, from the UCI database): mean positions, 
modes, and class map for discrete labels. The code to reproduce this plot is accessible online (https://ugtm.readthedocs.
io/en/latest/visualization_examples.html). The GTM projection can be compared to t-distributed stochastic neighbor 
embedding (t-SNE), multidimensional scaling (MDS) or locally linear embedding (LLE). The axes x1 and x2 are latent 
axes found by the corresponding algorithm.
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1.	scikit-learn [6], a machine learning library that 
also provides data preprocessing and statistical 
evaluation functions.

2.	numpy and scipy [13–15], the main scientific 
packages in Python, used here for linear algebra 
operations and statistics.

3.	matplotlib [16], used to construct plots.
4.	mpld3 (http://mpld3.github.io/), which bridges 

matplotlib and the javascript library D3.js [17] to 
generate interactive web visualizations.

Quality control
Several examples are provided in the online documentation 
(https://ugtm.readthedocs.io). Unit tests were conducted 
using the unittest Python package. The test scripts are 
available on GitHub (https://github.com/hagax8/ugtm/
tree/master/tests). The main test scripts are the core GTM 
test (test_ugtm_gtm.py), the workflow test (test_ugtm_
workflow.py), and scikit-learn compatibility tests (test_
ugtm_sklearn.py):

1.	Core GTM algorithm (test_ugtm_gtm.py): the core 
GTM test checks matrix dimensions, convergence 
of the log likelihood function, and the projection 
of new data on the map. If the training set and test 
set are the same, responsibilities of the training 
and test sets should also be the same.

2.	Scikit-learn-compatible classes (test_ugtm_sklearn.
py): these tests check the output dimensions of the 
eGTM transformer, eGTC classifier and eGTR regres-
sor. It also checks for correct projection of new data 
on the GTM map.

3.	Workflow test (test_ugtm_workflow.py): the work-
flow test script was designed to test all possible 
workflows, for label-free data, categorical labels, 
and continuous labels.

Supplementary tests were implemented for plots 
(test_ugtm_plot.py), printing results (test_ugtm_write.
py), classification models (test_ugtm_GTC.py), regression 
models (test_ugtm_GTR.py), and kernel algorithm 
(test_ugtm_kgtm.py).

These tests were carried out with Python 2.7.14 and 
Python 3.4.6 on Scientific Linux 6.6 and macOS High 
Sierra 10.13.2.

(2) Availability
Operating system
ugtm was tested on Scientific Linux 6.6 and macOS High 
Sierra 10.13.2 but not on Windows. ugtm is written in 
pure Python and should be available on any operating 
system supporting Python frameworks.

Programming language
Python >= 2.7 (tested on Python 3.4.6 and Python 2.7.14).

Additional system requirements
ugtm does not require any supplementary data. 
The amount of required active memory depends on 
the input data and on the map size (hyperparameters 
k and m).

Dependencies
scikit-learn >= 0.20
numpy >= 1.13.1
matplotlib >= 2.0.2
scipy >= 0.19.1
mpld3 >= 0.3

List of contributors
Héléna A. Gaspar

Software location
Archive

Name: ugtm v2.0.0
�Persistent identifier: https://doi.org/10.5281/
zenodo.1489295
Licence: MIT
Publisher: Héléna A. Gaspar
Version published: 2.0.0
Date published: 15/11/2018

Code repository
Name: GitHub
Identifier: https://github.com/hagax8/ugtm
Licence: MIT
Date published: 15/11/2018

Language
ugtm was developed in English.

(3) Reuse potential
Support for ugtm is available on GitHub (https://github.
com/hagax8/ugtm) – users can post issues through the 
GitHub platform (https://github.com/hagax8/ugtm/
issues) or contribute directly to the code.

The eGTM (data transformation), eGTC (classification) 
and eGTR (regression) classes implemented in ugtm 
are fully compatible with scikit-learn and can be used 
in scikit-learn pipelines for visualization, regression or 
classification. GTM hyperparameters can be optimized 
using scikit-learn grid search for regression and 
classification tasks – examples are provided in the online 
documentation (https://ugtm.readthedocs.io).

Now that we have access to very large amounts of 
data, dimensionality reduction methods are becoming 
more and more popular. It is often necessary to get an 
overview of a dataset that exists in a space of hundreds 
or thousands of dimensions (data features). GTM can 
be a nice alternative to other dimensionality reduction 
algorithms such as t-SNE, MDS or LLE. It also provides 
a probabilistic framework that can be used to obtain a 
comprehensive overview of a dataset. For example, GTM 
can be useful to visualize and cluster multidimensional 
data for health research, and investigate very large datasets 
in chemistry or in genomics – single cell data, genotypes, 
endophenotypes, or polygenic risk scores. At the moment, 
t-SNE is very popular for these purposes but presents a 
major drawback: new data cannot be easily projected onto 
a pre-trained t-SNE map. Another possible application for 
GTM could be the visualization of feature vectors from 
deep neural networks. Hopefully, ugtm should make it 
easier to use GTM for these applications.
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ugtm also provides opportunities for further 
developments. Future enhancements could include the 
implementation of a mini-batch version (to process data 
block by data block) – for now, the entire data matrix 
is processed in one batch. A multispace version of GTM 
(Stargate GTM [18]) could also be added in the future, 
as well as data projection functions for the kernel GTM 
algorithm. Support for other probability distributions 
could also be included.
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