
Gaspar, H A 2018 ugtm: A Python Package for Data Modeling and
Visualization Using Generative Topographic Mapping. Journal of Open
Research Software, 6: 26. DOI: https://doi.org/10.5334/jors.235

Journal of
open research software

SOFTWARE METAPAPER

ugtm: A Python Package for Data Modeling and
Visualization Using Generative Topographic Mapping
Héléna Alexandra Gaspar1,2

1	Social, Genetic and Developmental Psychiatry (SGDP) Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College
London, UK

2	National Institute for Health Research Biomedical Research Centre, South London and Maudsley National Health Service Trust, UK
hgaspar.chemoinfo@gmail.com

ugtm is a Python package that implements generative topographic mapping (GTM), a dimensionality
reduction algorithm by Bishop, Svensén and Williams. Because of its probabilistic framework, GTM can
also be used to build classification and regression models, and is an attractive alternative to t-distributed
neighbour embedding (t-SNE) or other non-linear dimensionality reduction methods. The package is
compatible with scikit-learn, and includes a GTM transformer (eGTM), a GTM classifier (eGTC) and a GTM
regressor (eGTR). The input and output of these functions are numpy arrays. The package implements
supplementary functions for GTM visualization and kernel GTM (kGTM). The code is under MIT license and
available on GitHub (https://github.com/hagax8/ugtm). For installation instructions and documentation,
cf. https://ugtm.readthedocs.io.

Keywords: generative topographic mapping; dimensionality reduction; machine learning; data visualization;
data analysis; regression; classification
Funding statement: HG acknowledges funding from the US National Institute of Mental Health
(PGC3: U01 MH109528).

(1) Overview
Introduction
ugtm (v2.0) is a package for multidimensional space
analysis based on the generative topographic mapping
(GTM). A complete documentation with API reference and
tutorials is available online (https://ugtm.readthedocs.
io). GTM is a non-linear manifold-based dimensionality
reduction method introduced by Bishop et al [1]. The ugtm
package contains an implementation of GTM, and also
kernel GTM (kGTM), the kernel version of the algorithm
introduced by Olier et al [2].

GTM maps are similar to self-organizing maps [3] but
provide a probabilistic framework that can be used to
“color” the map and generate class maps or landscapes.
These colored maps can then be used to build regression
and classification models. GTM regression (GTR) [4] and
GTM classification (GTC) [5] algorithms are implemented
in ugtm. Considering that scikit-learn [6] is now widely
used for machine learning tasks, ugtm provides scikit-
learn-compatible classes for data transformation (the
eGTM transformer), classification (eGTC classifier), and
regression (eGTR regressor).

Other implementations of the core algorithm of
GTM are available online. The netlab package [7]
implemented in Matlab was the first implementation
with published source code. GTMapTool, a software
written in Free Pascal, is available as a web application
on the website of the Laboratoire de Chémoinformatique
in Strasbourg (http://infochim.u-strasbg.fr/mobyle-cgi/
portal.py#forms::gtmaptool). ugtm provides a Python
implementation of the core GTM algorithm similar to
both netlab and GTMapTool, and also includes predictive
modelling frameworks for classification and regression
compatible with scikit-learn. The ugtm code, open to
collaboration, is freely available on GitHub (https://
github.com/hagax8/ugtm) under MIT license.

Implementation and architecture
(1) Architecture
ugtm v2.0 is a package implemented in pure Python.
The API reference is accessible online (https://ugtm.
readthedocs.io/en/latest/api.html). The main modules
and their relationships are described in Figure 1. The eGTM,
eGTC and eGTR classes implemented in ugtm_sklearn

https://doi.org/10.5334/jors.235
mailto:hgaspar.chemoinfo@gmail.com
https://github.com/hagax8/ugtm
https://ugtm.readthedocs.io
https://ugtm.readthedocs
http://infochim.u-strasbg.fr/mobyle-cgi/portal.py#forms::gtmaptool
http://infochim.u-strasbg.fr/mobyle-cgi/portal.py#forms::gtmaptool
https://github.com/hagax8/ugtm
https://github.com/hagax8/ugtm
https://ugtm.readthedocs.io/en/latest/api.html
https://ugtm.readthedocs.io/en/latest/api.html

Gaspar: ugtmArt. 26, page 2 of 5

inherit from scikit-learn classes TransformerMixin (eGTM),
ClassifierMixin (eGTC), and RegressorMixin (eGTR).

(2) Installation
The ugtm package can be downloaded from PyPI using
pip, by typing “pip install ugtm” in a terminal. In the
Python console, the package can be imported by typing
“import ugtm”.

(3) eGTM: GTM algorithm
The basic GTM dimensionality reduction is implemented
into the scikit-learn-compatible eGTM class. The eGTM.
fit() function fits a GTM model to a data matrix
(a numpy array). The eGTM.transform() function
uses the fitted model to generate a 2D projection for new
data (also a numpy array):

from ugtm import eGTM
import numpy as np

Generate dummy train and test sets
X_train = np.random.randn(100, 50)
X_test = np.random.randn(50, 50)

eGTM transformer: fit a map using X_train and
project X_test
eGTM().fit(X_train).transform(X_test,
model=”means”)

Model with different hyperparameters
eGTM(k=10,m=5,s=1,regul=1).fit(X_train)

The four GTM hyperparameters (regul, k, m, and s) can be
tuned: k is used for tuning the GTM resolution (a GTM
map is discretized into a grid of [k, k] nodes), m is the

number of RBF functions (defining an [m, m] grid), s is the
RBF function width factor, and regul is the regularization
coefficient. Implementation details can be found in the
API description.

A data point can be represented in 3 ways using GTMs:
responsibilities, means and modes. Responsibilities
represent the probability distribution of a data point
on the map; each data point is associated with a
vector of k2 responsibilities (k2 = number of nodes
on the GTM grid). In neural network terminology, a
responsibility vector is called a feature vector and
can be seen as a processed representation of a datum.
These responsibilities can be used to compute the
mean position of a data point on a GTM, or its mode
(the node with largest responsibility).

(4) eGTC and eGTR: classification and regression
using GTM
The eGTC and eGTR classes implement GTM-based
classification and regression algorithms. eGTC and eGTR
algorithms are based on class maps and landscapes, which
are different ways of coloring a GTM. GTM class maps are
constructed using discrete labels and GTM landscapes
using continuous labels. New data can be projected onto
these colored maps to predict labels. A GTM landscape for
the S curve dataset is shown in Figure 2, and a GTM class
map for the UCI handwritten digits dataset [8] in Figure 3,
with other data projections using t-distributed stochastic
neighbor embedding (t-SNE) [9], multidimensional scaling
(MDS) [10] and locally linear embedding (LLE) [11]. The
visualizations were produced using ugtm, scikit-learn [6]
and altair [12].

Figure 1: Graph of ugtm v2.0 modules: (1) ugtm_classes: classes for generative topographic mapping (GTM) models,
(2) ugtm_core: kernel GTM (kGTM) and GTM core functions, (3) ugtm_gtm: expectation-maximization algorithm for
GTM, (4) ugtm_kgtm: expectation-maximization algorithm for kGTM, (5) ugtm_landscape: functions for colouring
maps, (6) ugtm_predictions: GTM-based prediction algorithms, (7) ugtm_sklearn: sklearn-compatible eGTM
transformer, eGTC classifier, and eGTR regressor, (8) ugtm_preprocess: preprocessing functions for data scaling and
PCA preprocessing, using sklearn, (9) ugtm_plot: plotting functions for GTM maps, using matplotlib and mpld3,
(10) ugtm_crossvalidate: cross-validation workflows.

Gaspar: ugtm Art. 26, page 3 of 5

The eGTC.fit() and eGTR.fit() functions
take as input two numpy arrays: a data matrix and a
corresponding label vector. The eGTC.transform()
and eGTR.transform() functions return predicted
outcomes as numpy arrays:
from ugtm import eGTC, eGTR
import numpy as np

Generate dummy train and test sets
X_train = np.random.randn(100, 50)
X_test = np.random.randn(50, 50)

y_train = np.random.choice([1, 2, 3], size=100)

eGTC: predict labels for X_test
y_pred = eGTC().fit(X_train,y_train).
transform(X_test)

eGTR: predict labels for X_test
y_pred = eGTR().fit(X_train,y_train).
transform(X_test)

(5) External resources
The package uses the following external resources:

Figure 2: Generative topographic mapping (GTM) representations of the S curve dataset (downloaded from sklearn):
mean positions, modes, and landscape for continuous labels. The code to reproduce this plot is accessible online
(https://ugtm.readthedocs.io/en/latest/visualization_examples.html). The GTM projection can be compared to
t-distributed stochastic neighbor embedding (t-SNE), multidimensional scaling (MDS) or locally linear embedding
(LLE). The axes x1 and x2 are latent axes found by the corresponding algorithm.

Figure 3: GTM representations of the hand-written digits dataset (digits 0 to 5, from the UCI database): mean positions,
modes, and class map for discrete labels. The code to reproduce this plot is accessible online (https://ugtm.readthedocs.
io/en/latest/visualization_examples.html). The GTM projection can be compared to t-distributed stochastic neighbor
embedding (t-SNE), multidimensional scaling (MDS) or locally linear embedding (LLE). The axes x1 and x2 are latent
axes found by the corresponding algorithm.

https://ugtm.readthedocs.io/en/latest/visualization_examples.html
https://ugtm.readthedocs.io/en/latest/visualization_examples.html
https://ugtm.readthedocs.io/en/latest/visualization_examples.html

Gaspar: ugtmArt. 26, page 4 of 5

1.	scikit-learn [6], a machine learning library that
also provides data preprocessing and statistical
evaluation functions.

2.	numpy and scipy [13–15], the main scientific
packages in Python, used here for linear algebra
operations and statistics.

3.	matplotlib [16], used to construct plots.
4.	mpld3 (http://mpld3.github.io/), which bridges

matplotlib and the javascript library D3.js [17] to
generate interactive web visualizations.

Quality control
Several examples are provided in the online documentation
(https://ugtm.readthedocs.io). Unit tests were conducted
using the unittest Python package. The test scripts are
available on GitHub (https://github.com/hagax8/ugtm/
tree/master/tests). The main test scripts are the core GTM
test (test_ugtm_gtm.py), the workflow test (test_ugtm_
workflow.py), and scikit-learn compatibility tests (test_
ugtm_sklearn.py):

1.	Core GTM algorithm (test_ugtm_gtm.py): the core
GTM test checks matrix dimensions, convergence
of the log likelihood function, and the projection
of new data on the map. If the training set and test
set are the same, responsibilities of the training
and test sets should also be the same.

2.	Scikit-learn-compatible classes (test_ugtm_sklearn.
py): these tests check the output dimensions of the
eGTM transformer, eGTC classifier and eGTR regres-
sor. It also checks for correct projection of new data
on the GTM map.

3.	Workflow test (test_ugtm_workflow.py): the work-
flow test script was designed to test all possible
workflows, for label-free data, categorical labels,
and continuous labels.

Supplementary tests were implemented for plots
(test_ugtm_plot.py), printing results (test_ugtm_write.
py), classification models (test_ugtm_GTC.py), regression
models (test_ugtm_GTR.py), and kernel algorithm
(test_ugtm_kgtm.py).

These tests were carried out with Python 2.7.14 and
Python 3.4.6 on Scientific Linux 6.6 and macOS High
Sierra 10.13.2.

(2) Availability
Operating system
ugtm was tested on Scientific Linux 6.6 and macOS High
Sierra 10.13.2 but not on Windows. ugtm is written in
pure Python and should be available on any operating
system supporting Python frameworks.

Programming language
Python >= 2.7 (tested on Python 3.4.6 and Python 2.7.14).

Additional system requirements
ugtm does not require any supplementary data.
The amount of required active memory depends on
the input data and on the map size (hyperparameters
k and m).

Dependencies
scikit-learn >= 0.20
numpy >= 1.13.1
matplotlib >= 2.0.2
scipy >= 0.19.1
mpld3 >= 0.3

List of contributors
Héléna A. Gaspar

Software location
Archive

Name: ugtm v2.0.0
�Persistent identifier: https://doi.org/10.5281/
zenodo.1489295
Licence: MIT
Publisher: Héléna A. Gaspar
Version published: 2.0.0
Date published: 15/11/2018

Code repository
Name: GitHub
Identifier: https://github.com/hagax8/ugtm
Licence: MIT
Date published: 15/11/2018

Language
ugtm was developed in English.

(3) Reuse potential
Support for ugtm is available on GitHub (https://github.
com/hagax8/ugtm) – users can post issues through the
GitHub platform (https://github.com/hagax8/ugtm/
issues) or contribute directly to the code.

The eGTM (data transformation), eGTC (classification)
and eGTR (regression) classes implemented in ugtm
are fully compatible with scikit-learn and can be used
in scikit-learn pipelines for visualization, regression or
classification. GTM hyperparameters can be optimized
using scikit-learn grid search for regression and
classification tasks – examples are provided in the online
documentation (https://ugtm.readthedocs.io).

Now that we have access to very large amounts of
data, dimensionality reduction methods are becoming
more and more popular. It is often necessary to get an
overview of a dataset that exists in a space of hundreds
or thousands of dimensions (data features). GTM can
be a nice alternative to other dimensionality reduction
algorithms such as t-SNE, MDS or LLE. It also provides
a probabilistic framework that can be used to obtain a
comprehensive overview of a dataset. For example, GTM
can be useful to visualize and cluster multidimensional
data for health research, and investigate very large datasets
in chemistry or in genomics – single cell data, genotypes,
endophenotypes, or polygenic risk scores. At the moment,
t-SNE is very popular for these purposes but presents a
major drawback: new data cannot be easily projected onto
a pre-trained t-SNE map. Another possible application for
GTM could be the visualization of feature vectors from
deep neural networks. Hopefully, ugtm should make it
easier to use GTM for these applications.

http://mpld3.github.io/
https://ugtm.readthedocs.io
https://github.com/hagax8/ugtm/tree/master/tests
https://github.com/hagax8/ugtm/tree/master/tests
https://doi.org/10.5281/zenodo.1489295
https://doi.org/10.5281/zenodo.1489295
https://github.com/hagax8/ugtm
https://github.com/hagax8/ugtm
https://github.com/hagax8/ugtm
https://github.com/hagax8/ugtm/issues
https://github.com/hagax8/ugtm/issues
https://ugtm.readthedocs.io

Gaspar: ugtm Art. 26, page 5 of 5

ugtm also provides opportunities for further
developments. Future enhancements could include the
implementation of a mini-batch version (to process data
block by data block) – for now, the entire data matrix
is processed in one batch. A multispace version of GTM
(Stargate GTM [18]) could also be added in the future,
as well as data projection functions for the kernel GTM
algorithm. Support for other probability distributions
could also be included.

Acknowledgements
Thanks to Prof. Alexandre Varnek and Prof. Igor I. Baskin
for their help in designing the GTC and GTR algorithms.

Competing Interests
The author has no competing interests to declare.

References
1.	 Bishop, C M, Svensén, M and Williams, C K I

1998 GTM: The Generative Topographic Mapping.
Neural Computation, 10(1): 215–34. DOI: https://doi.
org/10.1162/089976698300017953

2.	 Olier, I, Vellido, A and Giraldo, J 2010 Kernel
generative topographic mapping. ESANN 2010,
18th European Symposium on Artificial Neural
Networks, Bruges, Belgium, April 28–30, 2010,
Proceedings.

3.	 Kohonen, T 2001 Self-Organizing Maps. Springer
Science & Business Media. DOI: https://doi.
org/10.1007/978-3-642-56927-2

4.	 Gaspar, H A, Marcou, G, Horvath, D, Arault,
A, Lozano, S, Vayer, P, et al. 2013 Generative
topographic mapping-based classification models
and their applicability domain: Application to the
biopharmaceutics Drug Disposition Classification
System (BDDCS). Journal of Chemical Information
and Modeling, 53(12): 3318–25. DOI: https://doi.
org/10.1021/ci400423c

5.	 Gaspar, H A, Baskin, I I, Marcou, G, Horvath, D
and Varnek, A 2015 GTM-Based QSAR Models and

Their Applicability Domains. Molecular Informatics,
34(6–7): 348–56. DOI: https://doi.org/10.1002/
minf.201400153

6.	 Buitinck, L, Louppe, G, Blondel, M, Pedregosa,
F, Mueller, A, Grisel, O, et al. 2013. API design for
machine learning software: Experiences from the
scikit-learn project. arXiv [cs.LG].

7.	 Nabney, I 2002 NETLAB: Algorithms for Pattern
Recognition. Springer Science & Business Media.

8.	 Dheeru, D and Taniskidou, E K 2017 UCI machine
learning repository (2017). URL: https://archive.ics.
uci.edu/ml.

9.	 van der Maaten, L and Hinton, G 2008 Visualizing
Data using t-SNE. Journal of Machine Learning
Research: JMLR, 9: 2579–605. Nov.

10.	Cox, T F and Cox, M A A 2000 Multidimensional
scaling. Chapman and hall/CRC.

11.	Roweis, S T and Saul, L K 2000 Nonlinear
dimensionality reduction by locally linear embedding.
Science, 290(5500): 2323–6. DOI: https://doi.
org/10.1126/science.290.5500.2323

12.	n.d. altair. Github.
13.	Oliphant, T E 2015 Guide to NumPy: 2nd Edition.

2 edition, CreateSpace Independent Publishing
Platform.

14.	Jones, E, Oliphant, T and Peterson, P 2001 SciPy:
Open Source Scientific Tools for Python.

15.	Oliphant, T E 2007 Python for Scientific Computing.
Computing in Science Engineering, 9(3): 10–20.
DOI: https://doi.org/10.1109/MCSE.2007.58

16.	Hunter, J D 2007 Matplotlib: A 2D Graphics
Environment. Computing in Science & Engineering, 9(3):
90–5. DOI: https://doi.org/10.1109/MCSE.2007.55

17.	Bostock, M n.d. D3.js – Data-Driven Documents.
https://d3js.org/ [accessed May 31, 2018].

18.	Gaspar, H A, Baskin, I I, Marcou, G, Horvath, D and
Varnek, A 2015 Stargate GTM: Bridging Descriptor
and Activity Spaces. Journal of Chemical Information
and Modeling, 55(11): 2403–10. DOI: https://doi.
org/10.1021/acs.jcim.5b00398

How to cite this article: Gaspar, H A 2018 ugtm: A Python Package for Data Modeling and Visualization Using Generative
Topographic Mapping. Journal of Open Research Software, 6: 26. DOI: https://doi.org/10.5334/jors.235

Submitted: 06 June 2018 Accepted: 27 November 2018 Published: 19 December 2018

Copyright: © 2018 The Author(s). This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

Journal of Open Research Software is a peer-reviewed open access journal published by
Ubiquity Press. OPEN ACCESS

https://doi.org/10.1162/089976698300017953
https://doi.org/10.1162/089976698300017953
https://doi.org/10.1007/978-3-642-56927-2
https://doi.org/10.1007/978-3-642-56927-2
https://doi.org/10.1021/ci400423c
https://doi.org/10.1021/ci400423c
https://doi.org/10.1002/minf.201400153
https://doi.org/10.1002/minf.201400153
https://archive.ics.uci.edu/ml
https://archive.ics.uci.edu/ml
https://doi.org/10.1126/science.290.5500.2323
https://doi.org/10.1126/science.290.5500.2323
https://doi.org/10.1109/MCSE.2007.58
https://doi.org/10.1109/MCSE.2007.55
https://d3js.org/
https://d3js.org/
https://doi.org/10.1021/acs.jcim.5b00398
https://doi.org/10.1021/acs.jcim.5b00398
https://doi.org/10.5334/jors.235
http://creativecommons.org/licenses/by/4.0/

	(1) Overview
	Introduction
	Implementation and architecture
	(1) Architecture
	(2) Installation
	(3) eGTM: GTM algorithm
	(4) eGTC and eGTR: classification and regression using GTM
	(5) External resources

	Quality control

	(2) Availability
	Operating system
	Programming language
	Additional system requirements
	Dependencies
	List of contributors
	Software location
	Archive
	Code repository

	Language

	(3) Reuse potential
	Acknowledgements
	Competing Interests
	References
	Figure 1
	Figure 2
	Figure 3

