
Bisotti, M-A, et al. 2018 Fidimag – A Finite Difference Atomistic
and Micromagnetic Simulation Package. Journal of Open Research
Software, 6: 22. DOI: https://doi.org/10.5334/jors.223

Journal of
open research software

SOFTWARE METAPAPER

Fidimag – A Finite Difference Atomistic and
Micromagnetic Simulation Package
Marc-Antonio Bisotti1, David Cortés-Ortuño1, Ryan Pepper1, Weiwei Wang2, Marijan
Beg3, Thomas Kluyver1,3 and Hans Fangohr1,3

1	Faculty of Engineering and the Environment, University of Southampton, Southampton, SO17 1BJ, UK
2	Department of Physics, Ningbo University, Ningbo, 315211, CN
3	European XFEL, 22869 Schenefeld, DE
Corresponding author: Marc-Antonio Bisotti (mb8g11@soton.ac.uk)

Fidimag is an open-source scientific code for the study of magnetic materials at the nano- or micro-
scale using either atomistic or finite difference micromagnetic simulations, which are based on solving
the Landau-Lifshitz-Gilbert equation. In addition, it implements simple procedures for calculating energy
barriers in the magnetisation through variants of the nudged elastic band method. This computer software
has been developed with the aim of creating a simple code structure that can be readily installed, tested,
and extended. An agile development approach was adopted, with a strong emphasis on automated builds
and tests, and reproducibility of results. The main code and interface to specify simulations are written
in Python, which allows simple and readable simulation and analysis configuration scripts. Computationally
costly calculations are written in C and exposed to the Python interface as Cython extensions. Docker
containers are shipped for a convenient setup experience. The code is freely available on GitHub and
includes documentation and examples in the form of Jupyter notebooks.

Keywords: Python; Cython; finite differences; nanomaterials; micromagnetism; Landau-Lifshitz-Gilbert;
LLG; spin-transfer torque; micromagnetic simulations; domain walls; skyrmions; vortex; vortices
Funding Statement: We acknowledge financial support from EPSRC’s Centre for Doctoral Training in
Next Generation Computational Modelling, (EP/L015382/1), EPSRC’s Doctoral Training Centre in Complex
System Simulation (EP/G03690X/1), CONICYT Chilean scholarship programme Becas Chile (72140061),
Horizon 2020 European Research Infrastructure project OpenDreamKit (676541), National Natural Science
Foundation of China (11604169), and the Gordon and Betty Moore Foundation through Grant GBMF
#4856, by the Alfred P. Sloan Foundation and by the Helmsley Trust.

(1) Overview
Introduction
The simulation of magnetic materials falls into several
paradigms, depending on the length scales, materials and
phenomena of interest. For many materials, the spin of
atoms can be assumed to be localised around the atom,
and a classical approximation can be made in which
the atomic spin is treated as a point dipole – this is the
classical Heisenberg model. Because the atomic crystal
lattice of the material is considered, this discrete spin
model is commonly referred to as atomistic [1], even
though a semi-classical magnetic moment is assumed per
lattice site. The continuum limit of this theory, known as
micromagnetism, allows the computational treatment
of much larger systems, though this excludes the study
of materials which exhibit antiferromagnetism and
ferrimagnetism.

Fidimag is a software library which allows researchers
to model magnetic materials using both the classical

Heisenberg and micromagnetic models. Users of the
software provide the magnetic parameters of the material
under study, the system geometry, and a set of initial
conditions. The simulation can occur under different
kind of dynamics, with Fidimag implementing the
Landau-Lifshitz-Gilbert (LLG), the stochastic LLG (SLLG),
and several spin-transfer torque variations of the LLG
equation. From this initial setup, the user can then choose
to evolve the system either through time, and hence study
the magnetisation dynamics, or to “relax” the system to
find its metastable energy states. In addition, the software
implements the nudged elastic band method to find
minimum energy paths and the size of energy barriers
between different configuration states.

Fidimag has been used to obtain the results in several
scientific publications [2, 3, 4, 5]. The supplementary data
to ref. [4] demonstrates that with Docker, the process of
correctly reproducing the results can be simplified to a
single, reliable Makefile instruction [6].

https://doi.org/10.5334/jors.223
mailto:mb8g11@soton.ac.uk

Bisotti et al: Fidimag – A Finite Difference Atomistic and Micromagnetic Simulation PackageArt. 22, page 2 of 11

Standard Problem 4
The Micromagnetic Modeling Activity Group μmag has
defined a number of Standard Problems for the validation
and comparison of micromagnetic simulation software
[7]. The definitions of the problems and solutions from
different research groups have been published on its
website, and aim to show differences in approach between
different computational micromagnetic software. To this
end, we have compared Fidimag to the published results,
and these problems are also given as examples in the
Fidimag documentation.

For illustration, we show here the solution of Standard
Problem #4. In this example, the magnetisation reversal

dynamics of a bar of Permalloy with the dimensions
500 × 125 × 3 nm are computed. First, a relaxed ‘s-state’
is obtained in the absence of an applied magnetic
field. It is plotted in Figure 1a. In a second simulation,
a Zeeman field is applied that causes a reversal of
the average magnetisation direction over the span
of a few hundred picoseconds. Figure 1b shows the
magnetisation configuration when the z-component of
the spatially averaged magnetisation direction crosses
0. The system can be considered in equilibrium after
a nanosecond and the corresponding magnetisation
state is plotted in Figure 1c. The code used is printed
in Listing 1.

import os
import matplotlib.pyplot as plt
import numpy as np
from fidimag.micro import Sim, UniformExchange, Demag, Zeeman
from fidimag.common import CuboidMesh
from fidimag.common.constant import mu_0

mesh = CuboidMesh(nx=200, ny=50, nz=1, dx=2.5, dy=2.5, dz=3, unit_length=1e-9)

A = 1.3e-11
Ms = 8.0e5
alpha = 0.02
gamma = 2.211e5
mT = 0.001 / mu_0

def compute_initial_magnetisation():
	 sim = Sim(mesh, name=‘problem4_init’)
	 sim.driver.set_tols(rtol=1e-10, atol=1e-10)
	 sim.driver.alpha = 0.5
	 sim.driver.gamma = gamma
	 sim.Ms = Ms
	 sim.do_precession = False # saves time - not interested in dynamics here
	 sim.set_m((1, 0.25, 0.1))
	 sim.add(UniformExchange(A))
	 sim.add(Demag())
	 sim.relax(dt=1e-13, stopping_dmdt=0.01, max_steps=5000, save_m_steps=None, save_vtk_steps=None)
	 return sim.spin

def compute_dynamics(initial_magnetisation):
	 sim = Sim(mesh, name=‘problem4_dynamics’)
	 sim.set_m(initial_magnetisation)
	 sim.driver.set_tols(rtol=1e-10, atol=1e-10)
	 sim.driver.alpha = alpha
	 sim.driver.gamma = gamma
	 sim.Ms = Ms
	 sim.add(UniformExchange(A))
	 sim.add(Demag())
	 sim.add(Zeeman([-24.6 * mT, 4.3 * mT, 0], name=‘H’), save_field=True)

	 crossed_zero = False
	 ts = np.linspace(0, 1e-9, 201)
	 for t in ts:
		 sim.driver.run_until(t)
		 mx, my, mz = sim.compute_average()

		 print(“t = {:.3} ns\t mx = {:.3}”.format(t*1e9, mx))
		 if mx <= 0 and not crossed_zero:
			 print(“Crossed zero!”)
			 np.save(“problem4_m_when_mz_0.npy”, sim.spin)
			 crossed_zero = True
	 return sim.spin

def plot_quiver(m, filename):
	 m.shape = (50, 200, 3)
	 skip = 5
	 m = m[1::skip, 1::skip]

	 xyz = mesh.coordinates
	 xyz.shape = (50, 200, 3)
	 xyz = xyz[1::skip, 1::skip]

Bisotti et al: Fidimag – A Finite Difference Atomistic and Micromagnetic Simulation Package Art. 22, page 3 of 11

Listing 1: Solution to the standard problem #4. The simulation defined in the function compute_initial_
magnetisation returns the relaxed magnetisation configuration in absence of an applied magnetic field. In the
function compute_dynamics that makes up the second simulation, the magnetic field that causes the magnetisation
reversal is added on line 42. The snapshots in Figure 1 were made using the code in the function plot_quiver.

(a)

(b)

(c)

Figure 1: Snapshots of the unit magnetisation. The plots were created with the code in the function plot_quiver
of listing 1. (a) The initial unit magnetisation of the bar of Permalloy described in standard problem #4. (b) The
magnetisation conguration at the moment of the reversal of the average magnetisation. (c) The magnetisation after
a nanosecond of simulation time has elapsed.

	 plt.figure(figsize=(12, 3))
	 plt.axes().set_aspect(‘equal’)
	 plt.quiver(xyz[:,:,0], xyz[:,:,1],
			 m[:,:,0], m[:,:,1], m[:,:,1],
			 pivot=‘mid’, scale=45, cmap=plt.get_cmap(‘jet’), edgecolors=‘None’)
	 c = plt.colorbar()
	 plt.xlabel(“x (nm)”)
	 plt.ylabel(“y (nm)”)
	 c.set_label(“m_y (1)”)
	 plt.clim([0, 1])
	 plt.xlim([0, 500])
	 plt.ylim([0, 125])
	 plt.savefig(filename)

if __name__ == ‘__main__’:
	 m0_file = “problem4_m0.npy”
	 if not os.path.exists(m0_file):
		 m0 = compute_initial_magnetisation()
		 np.save(m0_file, m0)
	 else:
		 m0 = np.load(m0_file)

	 mf_file = “problem4_mf.npy”
	 if not os.path.exists(mf_file):
		 mf = compute_dynamics(m0)
		 np.save(mf_file, mf)
	 else:
		 mf = np.load(mf_file)

	 plot_quiver(m0, “problem4_m0.pdf”)
	 plot_quiver(np.load(“problem4_m_when_mz_0.npy”), “problem4_m_when_mz_0.pdf”)
	 plot_quiver(mf, “problem4_mf.pdf”)

Bisotti et al: Fidimag – A Finite Difference Atomistic and Micromagnetic Simulation PackageArt. 22, page 4 of 11

The evolution of the spatially averaged magnetisation
is shown in Figure 2 with a comparison with the same
simulation run with OOMMF. This comparison is performed
regularly as part of Fidimag’s automated testing.

Computational simulations of magnetic materials
At the atomic level, the magnetic effects in magnetic
materials originate from two angular momentum terms
from electrons: their orbital motion around the nucleus
and, mainly, from a quantum property of electrons called
spin.1 Within a semi-classical model, the sum of their
contributions can be described by a three dimensional
vector Si = μisi representing a magnetic moment (a magne-
tic dipole) μi for every atom i, with a specific direction si.
This idea originates from Heisenberg’s model Hamiltonian
to describe magnetic interactions [8, 9]. In magnetic solids,
atoms arrange in a lattice with a specific periodic crystal
geometry. For example, a cubic lattice is made of repeated
cells where atoms and their corresponding magnetic
moments lie at the corners of this cubic cell.

An atom is at the scale of a few Angstrom, thus in large
systems, which are at the nano-scale, it would be necessary
to describe the system using thousands of spins, which
is computationally expensive. Therefore, it is possible to
approximate the material as a continuum, where the field
from discrete magnetic moments turns into a continuum
field called magnetisation that depends on the space
coordinates r, assuming that neighbouring spins do not
change drastically in direction [8, 9]. This means the
limit from the discrete atoms into the space dependent
field si → M(r)/Ms = m(r). The magnitude of the field
is measured through the saturation magnetisation Ms,
which is defined as a magnetic moment per unit volume,
i.e. Ms = μ/ΔV, with ΔV as the volume of a unit cell of
the discrete crystal lattice. This theory of magnetism
in the continuum limit is known as micromagnetics.
Numerically, the magnetisation field can be discretised
into a mesh of magnetic moments Mi.

To describe a magnetic system, we firstly specify its
geometry. If we simulate this system using a discrete spin
model, we have to generate a lattice of magnetic moments
with a specific arrangement of atoms (according to the
crystal symmetry) such that they describe this geometry.
In the case of micromagnetics we use the finite differences
numerical technique, thus the sample is discretised into
cuboids and each one of them represents a volume with
uniform magnetisation inside that volume.

Dynamics
Magnetic phenomena emerge from the interactions
between magnetic moments and their interaction with
external and internal magnetic fields, the later including
dipolar interactions and anisotropic interactions, among
others. These interactions depend on the material and
specify the total energy of the system. In general, the
spins perform a precessional motion following directions
set by the magnetic interaction. The dynamics of the
magnetic moments is given by the Landau-Lifshitz-Gilbert
(LLG) equation [8, 9]. Within the discrete spin model this
dynamical equation for a single spin s, reads:

	 G
eff eff     

s
s H s s H

   t
,� (1)

at zero temperature, where Heff is an effective field that
contains the sum of every magnetic interaction present in
the system, γ is the Gilbert gyromagnetic ratio constant,
which sets the time scale of the spin motion, and
0 ≤ aG ≤ 1 is the Gilbert damping. The first term in equation
1 describes a precessional motion of spins around the
effective field and the second term is a dissipative term
that make spins follow the effective field direction.

In micromagnetics this equation has the same structure:

	 G
eff eff

s

     
M

M H M M H
  

 t
.� (2)

Figure 2: The components of the average magnetisation over time as computed with Fidimag and by OOMMF.

Bisotti et al: Fidimag – A Finite Difference Atomistic and Micromagnetic Simulation Package Art. 22, page 5 of 11

Fidimag can solve the non-linear differential equations
1 and 2, depending on the specified theoretical model.
Accordingly, it is necessary to specify an initial magnetic
configuration for the spin directions, and the magnetic
interactions involved in the system. Currently, Fidimag
has the following interactions implemented in the code,

Exchange Favours the parallel or anti-parallel align-
ment of neighbouring spins. The exchange can be
computed using nearest neighbour approximations in
the classical Heisenberg case. The continuum micro-
magnetic model only allows parallel alignment.
Dipolar interactions Product of the interaction of a
spin with the field generated from the other spins in
the system.
Dzyaloshinskii-Moriya Favours a canted alignment
between neighbouring spins.
Anisotropy Sets directions along which the system
energy decreases when spins align towards them.
Zeeman Product of the interaction of spins with an
external magnetic field.

The underlying equations that were used to implement
these interactions can be found in Ref. [10].

One method for finding energy minima in the system’s
energy landscape, which is implemented in the code, is to
evolve the system with the LLG equation, since the spins
will precess until a stable configuration is attained, i.e. a
local or global minimum of energy, that depends on the
initial magnetic configuration. We refer to this process as
relaxation.

Dynamical effects such as the generation of spin waves,
ferromagnetic resonance, domain wall motion, among
other multiple magnetism related phenomena, are also
given by the evolution of spins with the LLG equation.
Variations of this equation are obtained when applying
electric currents or temperature, which can also be
specified in the code. Fidimag supports the inclusion
of stochastic terms and spin-polarised currents in the
equation of motion. The terms and their corresponding
equations are shown in Ref. [11].

At zero temperature the length of the magnetic
moments and the magnetisation vector is fixed. This
condition must be specified in the equation of motion of
spins explained in the last section, which sets a constraint
to the spin length. Multiple magnetic phenomena can
be explained at a zero-temperature formalism thus the
majority of Fidimag’s equations are implemented in this
regime.

Although this constraint is implicit in the LLG equation,
numerically the spin length varies when integrated. To
address this problem, a correction term is added to the
right hand side of equations 1 and 2 in Fidimag (equation
4 in Ref. [12]) [13]. It is proportional to:

		  
2

21   
 

s
s s


t

.� (3)

and similar in the micromagnetic model, by setting
s → m. This term makes the spin length increase when

it is less than the unit and makes it decrease otherwise.
For time integration, Fidimag can use the CVODE solver
of the SUNDIALS suite [14] (wrapped via Cython) or the
Fortran codes bundled in Scipy’s [15] integrate.ode.
Fidimag also implements Heun’s method and the classic
fourth-order Runge-Kutta method. Because the time
integrators will need a varying amount of evaluations of
the right hand side function, i.e. the equation of motion
chosen in the last paragraph, it makes sense to partly
relinquish runtime control from the user to the time
integration. A so-called driver is in charge of coordinating
time integration and user needs. Time integration runs
uninterrupted for a specified amount of (simulated) time,
after which arbitrary code can be executed.

Nudged Elastic Band Method
Finding the lowest energy cost to drive a magnetic system
from one equilibrium state towards another, also known
as energy barrier, has become a relevant problem for
the analysis of the stability of magnetic structures. An
energy barrier is then associated to the transition path,
between two states, that requires the least energy. This is
important, for example, for the potential application of
a magnetic structure in a technological device since an
energy barrier can be used to estimate the lifetime of the
structure against energy fluctuations from excitations
such as thermal noise, present at finite temperatures. The
nudged elastic band method (NEBM) is a technique for the
calculation of minimum energy paths, and hence energy
barriers. It was first used in chemistry to study molecular
transitions [16]. It is based on fixing two equilibrium states,
which can be local or global minima, and making copies,
called images, of the system in different configurations
between these extrema. This sets a band of images and
each one of the images will have a different energy in the
energy landscape associated to the system. The algorithm
will iteratively find a path in the energy landscape that
decreases the energy cost of the band, trying to keep the
images equally spaced in the energy landscape using an
inter-image spring force, to avoid images move towards
the minima at the extremes of the band. After relaxation,
the minimum energy path will cross one or more maxima
of energy, which set the energy barrier magnitude. An
optimisation of the original algorithm has recently been
published by Bessarab et al. [17], where geodesic distances
are defined in the energy landscape. We have implemented
the NEBM in Fidimag, which can be used both within
micromagnetics and a discrete spin model. The optimised
version, called Geodesic NEBM is the one that performs
more efficiently, and combines Cartesian coordinates for
the description of the spins and geodesic distances in
the energy landscape. Original versions of the algorithm,
which only use Cartesian or spherical coordinates, can
present convergence issues for systems with more complex
magnetic configurations, such as vortices. To run a NEBM
simulation, it is necessary to specify two equilibrium
states, the number of images in between, and an initial
state for the internal images. This initial configuration can
be set by either manually creating a series of images in
different magnetic states or by using a linear interpolation

Bisotti et al: Fidimag – A Finite Difference Atomistic and Micromagnetic Simulation PackageArt. 22, page 6 of 11

for the spin directions, which is implemented in the code
to generate the configurations automatically.

A detailed review of the method can be found in Ref.
[17]. A study of the thermal stability of skyrmions, which
are vortex-like magnetic configurations, that uses the
NEBM implemented in Fidimag, can be found in [4]. In
addition, we tested our code with the skyrmions example
from [17], making a repository with the simulation details
in [18].

Implementation and architecture
Fidimag provides both micromagnetic and atomistic
simulation capabilities and is the only software that
allows switching between the two modelling paradigms.
The most notable micromagnetic code is OOMMF, which
had its alpha release in 1998. OOOMMF is written in
C++ and Tcl/Tk. Fidimag is mostly implemented in
the Python programming language, with performance
critical parts realised in C and linked in via Cython. The
code base consists of roughly 5000 lines of Python code
and 4000 lines of C code and cython extensions.2 The
tests and examples add another 5500 lines of Python. As
Python is well established in the scientific community, it
presents a lower barrier to entry for programmers [19].
Further, Python has a reputation for being easy to learn
for beginners [20, 21]. This has informed the decision
to build Fidimag as a software library instead of a GUI-
driven program. Indeed, Fidimag respects best practices
for Python’s module and namespacing system.

This library model of execution, where Fidimag is
imported into the namespace of a Python program
empowers the user to deal with the complexity of the
batch processing of simulations in a more easily tested and
reproducible way compared to ad-hoc shell commands
and specialised batch modes in software with graphical
user interfaces [22].

The standard problem #3 especially examplifies how
naturally Fidimag allows higher order logic thanks to
these choices. In it, two possible magnetic configurations
in cubes of increasing sizes are to be studied to determine
when they are equally energetically favourable. In
Listing 2 the logic of setting up and running the
simulations, as well as comparing the total energies of the
magnetisation in the two possible configurations has been
abstracted into a function called energy_difference.

Finding the cube size of equal energies called single_
domain_limit then involves nothing more than
another function call, this time to a bisection method
called bisect provided by SciPy [15].

A similar approach had been used in Nmag, where it
has proven to be successful [13]. Unlike nmag however,
Fidimag doesn’t require bundling the software with a
modified Python binary. The approach is now seen in other
micromagnetic packages, for example micromagnum [23].
The Jupyter/OOMMF project follows a hybrid approach
and harnesses the proven capabilities of the OOMMF
binary with a Python interface optimised for Jupyter
notebooks [24].

Vampire is a performant atomistic code that defines
its own declarative syntax [1]. It comes in two versions,
either a binary with an installation script or the code
which needs to be compiled from source. In contrast,
while the traditional installation methods are available,
installing Fidimag with Docker is as easy as docker
pull fidimag/notebook.

Best practices recommend using version control for any
kind of computational endeavours [25]. The code is stored
using the distributed version control system git and new
features are developed in branches. Automated testing
and builds of the software were priorities from the start.
Because there are no command line parameters to record
or options set in a GUI program Fidimag offers a one-to-
one mapping of the simulation code to its result. This is a
boon for the goal of reproducibility that can’t be overstated.
For example, Fidimag plays well with Sumatra [26] which
allows for the automatic tracking of the computations
run. Jupyter Notebooks [27] are used for interactive
tutorials and included in the extensive documentation
[28]. There are tests that ensure that these notebooks
are executing consistently, without errors, and that the
execution of the stored inputs match the stored outputs.
For this, a py.test plugin called nbval was developed and
made available to the open source community [29].
Fidimag has an automated testing procedure that runs
on a public continuous integration system [30]. Fidimag’s
simple installation procedure via Docker, the extensive
documentation including interactive tutorials stored in
Jupyter notebooks and the accessible interface have made
it not only a useful tool for research as stated before, but
also for teaching [31].

”””
Solution to μmag standard problem #3 with fidimag.
	  http://www.ctcms.nist.gov/~rdm/mumag.org.html

”””
from .cube_sim import energy_difference
from scipy.optimize import bisect

single_domain_limit = bisect(energy_difference, 8, 8.5, xtol=0.1)
print(“L = {:.2} nm.”.format(str(single_domain_limit))

Listing 2: Solution to the standard problem #3. The code that computes the energy difference between the two possible
magnetic configurations has been abstracted into the function energy_difference in the module cube_sim
that is imported in line 6. The function energy_difference can then be handed off to a bisect method provided
by SciPy to find the cube size for which both configurations have the same energy.

http://www.ctcms.nist.gov/~rdm/mumag.org.html

Bisotti et al: Fidimag – A Finite Difference Atomistic and Micromagnetic Simulation Package Art. 22, page 7 of 11

The source code is split into three major sections
– ‘atomistic’, ‘micro’ and ‘common’ which contain
code specifically for classical Heisenberg simulations,
micromagnetic simulations, and for both respectively, as
can be seen in Figure 3.

There are many common components which can be
shared between both types of simulation. The primary
data in both atomistic and micromagnetics is stored in
vector fields, and the mechanisms for passing this data
through the simulation are kept in a common base
‘Sim’ class. This allows, for example, the saving of the
magnetisation progressive steps in the simulations to be
handled identically for both types of simulation. Fidimag
comes with visualisation and data saving utilities out of
the box.

Mesh and lattices
As we mentioned earlier, we define a magnetic system by
setting its geometry. How the geometry is approximated
depends on the chosen model.

Within the continuum approximation, Fidimag uses
finite differences which means dividing the sample into a
mesh of cubes, as shown in Figure 4a, where each cuboid
centre represents the position of a magnetic moment
vector. Accordingly, derivatives for the calculation of
magnetic interactions and energies are discretised using
differences between neighbouring mesh sites. The cuboid
mesh is coded in the CuboidMesh class located in
Fidimag’s common directory. Distance between the centres
and the number of cuboids in the three spatial directions
are specified by the user. The indexes of every mesh site
are labelled following the x → y → z direction, as shown in
Figure 4a. To keep track of the neighbouring sites of every
mesh site, the mesh class has a neighbours method
defined as an N × 6 array, where N is the total number
of cuboids, that stores the indexes of nearest neighbours,
with the value −1 for non-material sites. Correspondingly,
every row represents the 6 nearest neighbours in the
(−x, +x, −y, +y, −z, +z) order. For instance, for the mesh
of Figure 4a and site 0 the neighbours array is [−1,

fidimag

atomisticcommon micro

mesh Sim energies

Anisotropy

...

Zeeman

common

time integration

input/output

NEB method

...

 defines

uses

user

uses

Figure 3: Architecture of Fidimag as reflected by the directory structure and Python modules. Code useful to
micromagnetic and atomistic simulations was extracted into a common namespace. The red arrows point to user-
facing parts of the system.

Bisotti et al: Fidimag – A Finite Difference Atomistic and Micromagnetic Simulation PackageArt. 22, page 8 of 11

1, −1, 3, −1, 9]. This helps to easily implement
interactions in Fidimag’s C functions.
For the calculation of the demagnetising field, Fidimag
uses a fast-Fourier-transform method that requires a
uniform grid, hence for complex geometries, such as
curved samples, Fidimag still defines a cuboid mesh but
boundaries or specific mesh sites without material are
approximated by setting the magnetisation as zero, Ms = 0.
Thus to obtain a better approximation it is necessary
to define a large number of cuboids and decrease the
distance between their centres. In order to set a null
magnetisation, the user can specify a Python function that
has as an input the position vector and that returns Ms
according to the sample geometry [13].

In Listing 3 we set a 2 nm diameter sphere using a
6 × 6 × 6 cuboid mesh with elements of 1nm × 1nm × 1nm
size. To simplify the dimensions scaling we set a unit
length in the mesh definition.

In the case of discrete spin simulations, atoms order
in a lattice according to different crystallographic
arrangements. The most simple ordering is the simple
cubic lattice (SC), where atoms centres lie at the centre
of cubes separated by the same distance in the three
spatial dimensions. Since this follows the same principle
as the finite differences cuboid mesh, Fidimag uses the
same CuboidMesh class as the one for micromagnetic
simulations, thus it is defined in Fidimag’s common

directory. Another atomistic lattice implemented in
Fidimag is a two dimensional hexagonal lattice that can
be aligned along the x or y axis. The former is shown in
Figure 4b. This lattice is defined in the HexagonalMesh
class in Fidimag’s atomistic directory. As in the
CuboidMesh, a neighbours array keeps track of the
neighbours indexes, which are defined in the x → y order.
In Figure 4b we highlight, for example, the 6 neighbours
of the lattice site with index 12.

Using as a base the class structure of the meshes
currently implemented in Fidimag, it is possible to
define and implement other crystal lattices such as body-
centered-cubic or face-centered-cubic arrangements.

Besides scalars, most of the physical quantities involved
in micromagnetic computations are fields and vector
fields. In Fidimag, they are represented with numpy arrays
[32]. There are utilities to instantiate them from point-
wise expressions. These fields are the objects the physical
interactions in the simulations deal with. A quantity
central to the solution of the initial value problem given
by the micromagnetic approach is the effective field,
which is itself a sum of smaller fields. Each of the smaller
fields is the result of a separate computation which
represents the influence of an interaction present in the
system, like the exchange energy or the Dzyaloshinski-
Moriya interaction. For the dipolar field, we accelerate
the calculation using a convolution done in Fourier space
[33, 34, 35], accelerated using the library FFTW. It is in
the computation of the interactions where the differences
between the micromagnetic and the atomistic approach
become the most apparent. Consequently, some energy
terms are represented twice in the codebase – once for
each model. With the effective field computed for a given
state of the magnetisation the next step is solving the
equation of motion for the system, which is the Landau-
Lifshitz-Gilbert equation or one of its many variants.

Quality control
Testing small chunks of code and preferably isolated
pieces of the system is unit testing. In Fidimag, most of
the unit tests compute and check the physical quantities
involved in succesfully running a simulation. Besides
giving helpful feedback during development, the unit tests

Figure 4: Cuboid mesh and hexagonal lattice labelled according to the index of the sites.

import fidimag
import numpy as np

mesh = fidimag.common.CuboidMesh(nx=6, ny=6, nz=6,
				 dx=1, dy=1, dz=1,
				 unit_length=1e-9)
sim = fidimag.micro.Sim(mesh)
Ms = 1e6 # A / m

def sphere(r):
	 x, y, z = r
	 if x ** 2 + y ** 2 <= 2 ** 2:
		 return Ms
	 else:
		 return 0

sim.set_Ms(sphere)

Listing 3: Definition of a 2 nm wide sphere geometry
using micromagnetics.

Bisotti et al: Fidimag – A Finite Difference Atomistic and Micromagnetic Simulation Package Art. 22, page 9 of 11

were a factor in increasing confidence to edit, enhance or
refactor the code, resulting in the improved decoupling
and maintainability of it. The coverage of Fidimag’s code
base with unit tests is monitored using codecov [36]. At
the time of writing, it reports 73% coverage.

Functional testing then examines a slice of the system.
For example, one of the test cases covering the saving of
scalar fields on hexagonal meshes to a VTK file in Fidimag
is shown in Listing 4.

Finally, system tests use Fidimag as a black box and
compare simulation output to known good values. These
values are obtained from problems that have analytical
solutions like the macrospin or domain walls. As we saw
earlier, the μmag standard problems are another good
source of testing data. So are other finite difference codes,
like the aforementioned OOMMF.

Fidimag is also tested against the output of earlier
versions of itself by storing some simulation results in the
repository. This is a form of regression testing, and since no
external software or potentially long-running simulations
are involved the fastest way to check if a changeset has
affected the computational parts in a tangible way. The
design choices discussed in the introduction and the
focus on testing continue to provide tangible benefits
to the collaborators working on the software, as well as
the software itself, as shown above. They also increase
the confidence in Fidimag›s results since unlike users,
automated tests don›t distinguish between new and
old code and test potentially seldom-used parts of the
software just as often as the commonly used functions.

For maximum value, the tests need to be run often and
ideally without manual intervention. This is why a test
cycle is triggered on the continuous integration platform
Travis CI [30] on every push to the Github repository. First,
Fidimag’s C code and cython extensions are compiled.
Then the tests are run. Finally the Jupyter notebooks are
run and tested and the documentation is built.

To quickly check if Fidimag is installed and working on
a machine, a user can launch an interactive Python shell
and execute import fidimag. This command should not
output any text. Afterwards, the user may chose to follow
along with the tutorial called A Basic Simulation [37] or
launch the provided examples. If Fidimag was installed
from source, make test-basic will run a selection
of tests that completes in under a minute, which is also
helpful for smoke testing purposes during development
on Fidimag.

(2) Availability
Operating system
GNU/Linux, Mac OS X and on any platform supported by
Docker, like Azure and AWS.

Programming language
Python version 3, C, cython.

Additional system requirements
E.g. memory, disk space, processor, input devices, output
devices.

Dependencies
E.g. libraries, frameworks, incl. minimum version
compatibility.

1.  Numpy ≥ 1.10
2.  SciPy ≥ 1.0.0
3.  SUNDIALS ≥ 2.7.0
4.  FFTW ≥ 3.3.4

Fidimag builds using the OpenMP versions of these
libraries for multiprocessing purposes.

List of contributors
Please list anyone who helped to create the software (who
may also not be an author of this paper), including their
roles and affiliations.

1.  Bisotti, Marc-Antonio
2.  Wang, Weiwei
3.  Cortés-Ortuño, David
4.  Fangohr, Hans
5.  Pepper, Ryan
6.  Kluyver, Thomas
7.  Vousden, Mark
8.  Beg, Marijan

Software location
Archive
(e.g. institutional repository, general repository) (required
please see instructions on journal website for depositing
archive copy of software in a suitable repository)

Name: Fidimag
�Persistent identifier: https://zenodo.org/record/841113
Licence: BSD
Publisher: Hans Fangohr
Version published: 2.5
Date published: 10/08/17

Code repository
(e.g. SourceForge, GitHub etc.) (required)

Name: Fidimag
�Persistent identifier: https://github.com/
computationalmodelling/fidimag
Licence: BSD
Date published: August 8, 2018

def test_save_scalar_field_hexagonal_mesh(tmpdir):
	 mesh = HexagonalMesh(radius=1, nx=3, ny=3)
	 s = scalar_field(mesh, lambda r: r[0] + r[1])
	 vtk = VTK(mesh, directory=str(tmpdir), filename=”scalar_hexagonal”)
	 vtk.save_scalar(s, name=”s”)
	 assert same_as_ref(vtk.write_file(), REF_DIR)

Listing 4: A unit test in which a scalar field s is created on a hexagonal mesh, saved to a VTK file and compared to a
reference file.

https://zenodo.org/record/841113
https://github.com/computationalmodelling/fidimag
https://github.com/computationalmodelling/fidimag

Bisotti et al: Fidimag – A Finite Difference Atomistic and Micromagnetic Simulation PackageArt. 22, page 10 of 11

Emulation environment
(if appropriate)

Name: The name of the archive.
Persistent identifier: e.g. DOI, handle, PURL, etc.
�Licence: Open license under which the software is
licensed.
Date published: dd/mm/yy

Language
Language of repository, software and supporting files.
English.

(3) Reuse potential
The simulations are written in Python and use Fidimag
as a library to be imported. Fidimag has been used to
gather results for a number of scientific publications [2,
3, 4, 5] in the field of micromagnetics. It can be extended
to account for other energy terms, to support more time
integration methods or other variants of the equation of
motion, as well as other drivers. Users can get in touch
with the development team on Fidimag’s issue page on
GitHub [38].

Notes
	 1	 For this reason when we mention spins we strictly refer

to the total angular momentum or magnetic moments.
	 2	 Numbers obtained with cloc version 1.60.

Competing Interests
The authors have no competing interests to declare.

References
1.	 Evans, R F L, Fan, W J, Chureemart, P, Ostler, T

A, Ellis, M O A and Chantrell, R W 2014 Atomistic
spin model simulations of magnetic nanomaterials.
Journal of Physics: Condensed Matter, 26(10):
103202. DOI: https://doi.org/10.1088/0953-
8984/26/10/103202

2.	 Wang, W, Albert, M, Beg, M, Bisotti, M-A,
Chernyshenko, D, Cortés-Ortuño, D, Hawke, I and
Fangohr, H Feb 2015 Magnon-driven domain-wall
motion with the dzyaloshinskii-moriya interaction.
Phys. Rev. Lett., 114: 087203. DOI: https://doi.
org/10.1103/PhysRevLett.114.087203

3.	 Wang, W, Beg, M, Zhang, B, Kuch, W and Fangohr H
Jul 2015 Driving magnetic skyrmions with microwave
fields. Phys. Rev. B, 92: 020403. DOI: https://doi.
org/10.1103/PhysRevB.92.020403

4.	 Cortés-Ortuño, D, Wang W, Beg, M, Pepper, R
A, Bisotti, M-A, Carey, R, Vousden, M, Kluyver, T,
Hovorka, O and Fangohr, H 2017 Thermal stability
and topological protection of skyrmions in nanotracks.
Scientific Reports, 7(1): 4060. DOI: https://doi.
org/10.1038/s41598-017-03391-8

5.	 Wang, W, Zhang, C, Pepper, R, Mu, C, Zhou, Y
and Fangohr, H 2017 Current-induced instability
of domain walls in cylindrical nanowires. Journal of
Physics: Condensed Matter.

6.	 Cortés-Ortuño, D and Fangohr, H November 2016
Thermal stability and topological protection of
skyrmions: Supplementary data.

7.	 Micromagnetic Modeling Activity Group. µMAG
micromagnetics website. http://www.ctcms.nist.
gov/~rdm/mumag.org.html. Accessed: 2017-09-25.

8.	 Aharoni, A 2000 Introduction to the Theory of
Ferromagnetism, second edition, 109. Oxford University
Press.

9.	 Chikazumi, S 2009 Physics of Ferromagnetism,
volume 94 of International Series of Monographs on
Physics, second edition. Oxford University Press.

10.	Fidimag Documentation – core equations. https://
fidimag.readthedocs.io/en/latest/core_eqs.html.
Accessed: 2018-02-06.

11.	Fidimag Documentation – extended equations.
https://fidimag.readthedocs.io/en/latest/extended_
eqs.html. Accessed: 2018-02-06.

12.	Fischbacher, T and Fangohr, H July 2009 Continuum
multi-physics modeling with scripting languages: The
Nsim simulation compiler prototype for classical field
theory. ArXiv e-prints.

13.	Fischbacher, T, Franchin, M, Bordignon, G and
Fangohr, H June 2007 A systematic approach to
multiphysics extensions of finite-element-based
micromagnetic simulations: Nmag. IEEE Transactions
on Magnetics, 43(6): 2896–2898. DOI: https://doi.
org/10.1109/TMAG.2007.893843

14.	Hindmarsh, A C, Brown, P N, Grant, K E, Lee, S L,
Serban, R, Shumaker, D E and Woodward, C S 2005
SUNDIALS: Suite of nonlinear and differential/algebraic
equation solvers. ACM Transactions on Mathematical
Software (TOMS), 31(3): 363–396.

15.	Jones, E, Oliphant, T, Peterson, P, et al. 2001 SciPy:
Open source scientific tools for Python. http://www.
scipy.org. Accessed: 2017-01-22.

16.	Henkelman, G, Uberuaga, B P and Jónsson, H 2000
A climbing image nudged elastic band method for
finding saddle points and minimum energy paths. The
Journal of Chemical Physics, 113(22): 9901–9904. DOI:
https://doi.org/10.1063/1.1329672

17.	Bessarab, P F, Uzdin, V M and Jónsson, H 2015
Method for finding mechanism and activation
energy of magnetic transitions, applied to skyrmion
and antivortex annihilation. Computer Physics
Communications, 196(Supplement C): 335–347. DOI:
https://doi.org/10.1016/j.cpc.2015.07.001

18.	Cortés-Ortuño, D and Fangohr, H Nov 2016 Test
system for nudged elastic band method in nanoscale
magnetism.

19.	Beazley, D M 2000 Scientific Computing with
Python. In: Manset, N, Veillet, C and Crabtree, D (eds.),
Astronomical Data Analysis Software and Systems IX,
Astronomical Society of the Pacific Conference Series,
216: 49.

20.	Fangohr, H 2004 A comparison of C, Matlab, and
Python as teaching languages in engineering. In:
Bubak, M, van Albada, G D, Sloot, P M A and Dongarra, J
(eds.), Computational Science – ICCS 2004, 1210–1217.
Berlin, Heidelberg. Springer Berlin Heidelberg. DOI:
https://doi.org/10.1007/978-3-540-25944-2_157

21.	Fangohr, H, Albert, M and Franchin, M 2016 Nmag
micromagnetic simulation tool: Software engineering
lessons learned. In: Proceedings of the International

https://doi.org/10.1088/0953-8984/26/10/103202
https://doi.org/10.1088/0953-8984/26/10/103202
https://doi.org/10.1103/PhysRevLett.114.087203
https://doi.org/10.1103/PhysRevLett.114.087203
https://doi.org/10.1103/PhysRevB.92.020403
https://doi.org/10.1103/PhysRevB.92.020403
https://doi.org/10.1038/s41598-017-03391-8
https://doi.org/10.1038/s41598-017-03391-8
http://www.ctcms.nist.gov/~rdm/mumag.org.html
http://www.ctcms.nist.gov/~rdm/mumag.org.html
https://fidimag.readthedocs.io/en/latest/core_eqs.html
https://fidimag.readthedocs.io/en/latest/core_eqs.html
https://fidimag.readthedocs.io/en/latest/extended_eqs.html
https://fidimag.readthedocs.io/en/latest/extended_eqs.html
https://doi.org/10.1109/TMAG.2007.893843
https://doi.org/10.1109/TMAG.2007.893843
http://www.scipy.org
http://www.scipy.org
https://doi.org/10.1063/1.1329672
https://doi.org/10.1016/j.cpc.2015.07.001
https://doi.org/10.1007/978-3-540-25944-2_157

Bisotti et al: Fidimag – A Finite Difference Atomistic and Micromagnetic Simulation Package Art. 22, page 11 of 11

Workshop on Software Engineering for Science,
SE4Science ’16, 1–7. New York, NY, USA. ACM.

22.	Beg, M, Pepper, R A and Fangohr, H 2017 User
interfaces for computational science: A domain
specific language for oommf embedded in python.
AIP Advances, 7(5): 056025. DOI: https://doi.
org/10.1063/1.4977225

23.	MicroMagnum http://micromagnum.informatik.uni-
hamburg.de. Accessed: 2017-10-12.

24.	Beg, M, Pepper, R A and Fangohr, H 2017 User
interfaces for computational science: A domain
specific language for oommf embedded in python.
AIP Advances, 7(5): 056025. DOI: https://doi.
org/10.1063/1.4977225

25.	Fowler, M 1999 Refactoring: Improving the Design of
Existing Code. Addison-Wesley, Boston, MA, USA.

26.	Davison, A 2012 Automated capture of experiment
context for easier reproducibility in computational
research. Computing in Science & Engineering, 14: 48–
56. DOI: https://doi.org/10.1109/MCSE.2012.41

27.	Kluyver, T, Ragan-Kelley, B, Pérez, F, Granger, B,
Bussonnier, M, Frederic, J, Kelley, K, Hamrick,
J, Grout, J, Corlay, S, Ivanov, P, Avila, D, Abdalla,
S, Willing, C and Jupyter development team
[Unknown] 2016 Jupyter notebooks – a publishing
format for reproducible computational workflows.

28.	Fidimag Documentation. http://fidimag.readthedocs.
io/en/latest/. Accessed: 2017-10-12.

29.	Cortés-Ortuño, D, Laslett, O, Kluyver, T, Fauske, V,
Albert, M, Min, RK, Hovorka, O and Fangohr, H 2014
nbval: a py.test plugin for validating jupyter notebooks.
https://github.com/computationalmodelling/nbval.
Accessed: 2017-09-25.

30.	Travis CI GmbH computationalmodelling/fidimag
– travis ci. https://travis-ci.org/computational
modelling/fidimag. Accessed: 2017-10-04.

31.	Schrefl, T Private communication.
32.	van der Walt, S, Colbert, S C and Varoquaux,

G March 2011 The numpy array: A structure for
efficient numerical computation. Computing in
Science Engineering, 13(2): 22–30. DOI: https://doi.
org/10.1109/MCSE.2011.37

33.	Yuan, S W and Bertram, H N Sept 1992 Fast adaptive
algorithms for micromagnetics. IEEE Transactions
on Magnetics, 28(5): 2031–2036. DOI: https://doi.
org/10.1109/20.179394

34.	Hayashi, N, Saito, K and Nakatani, Y 1996
Calculation of demagnetizing field distribution based
on fast fourier transform of convolution. Japanese
Journal of Applied Physics, 35(12R): 6065. DOI: https://
doi.org/10.1143/JJAP.35.6065

35.	Hinzke, D and Nowak, U 2000 Magnetization
switching in nanowires: Monte carlo study with fast
fourier transformation for dipolar fields. Journal
of Magnetism and Magnetic Materials, 221(3):
365–372. DOI: https://doi.org/10.1016/S0304-
8853(00)00516-3

36.	Codecov LLC Dashboard computational
modelling/fidimag. https://codecov.io/gh/comp
utationalmodelling/fidimag. Accessed: 2017-10-04.

37.	Fidimag Tutorial: A basic simulation. http://fidimag.
readthedocs.io/en/latest/ipynb/tutorial-basics.html.
Accessed: 2017-11-29.

38.	Fidimag Issue page on github. https://github.com/
computationalmodelling/fidimag/issues. Accessed:
2018-02-13.

How to cite this article: Bisotti, M-A, Cortés-Ortuño, D, Pepper, R, Wang, W, Beg, M, Kluyver, T and Fangohr, H 2018 Fidimag
– A Finite Difference Atomistic and Micromagnetic Simulation Package. Journal of Open Research Software, 6: 22. DOI:
https://doi.org/10.5334/jors.223

Submitted: 14 February 2018 Accepted: 15 August 2018 Published: 06 September 2018

Copyright: © 2018 The Author(s). This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

Journal of Open Research Software is a peer-reviewed open access journal published by
Ubiquity Press OPEN ACCESS

https://doi.org/10.1063/1.4977225
https://doi.org/10.1063/1.4977225
http://micromagnum.informatik.uni-hamburg.de
http://micromagnum.informatik.uni-hamburg.de
https://doi.org/10.1063/1.4977225
https://doi.org/10.1063/1.4977225
https://doi.org/10.1109/MCSE.2012.41
http://fidimag.readthedocs.io/en/latest/
http://fidimag.readthedocs.io/en/latest/
https://github.com/computationalmodelling/nbval
https://travis-ci.org/computationalmodelling/fidimag
https://travis-ci.org/computationalmodelling/fidimag
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.1109/20.179394
https://doi.org/10.1109/20.179394
https://doi.org/10.1143/JJAP.35.6065
https://doi.org/10.1143/JJAP.35.6065
https://doi.org/10.1016/S0304-8853(00)00516-3
https://doi.org/10.1016/S0304-8853(00)00516-3
https://codecov.io/gh/computationalmodelling/fidimag
https://codecov.io/gh/computationalmodelling/fidimag
http://fidimag.readthedocs.io/en/latest/ipynb/tutorial-basics.html
http://fidimag.readthedocs.io/en/latest/ipynb/tutorial-basics.html
https://github.com/computationalmodelling/fidimag/issues
https://github.com/computationalmodelling/fidimag/issues
https://doi.org/10.5334/jors.223
http://creativecommons.org/licenses/by/4.0/

	Overview
	Introduction
	Standard Problem 4
	Computational simulations of magnetic materials
	Dynamics
	Nudged Elastic Band Method

	Implementation and architecture
	Mesh and lattices

	Quality control

	(2) Availability
	Operating system
	Programming language
	Additional system requirements
	Dependencies
	List of contributors
	Software location
	Archive
	Code repository
	Emulation environment

	Language

	(3) Reuse potential
	Notes
	Competing Interests
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Listing 1
	Listing 2
	Listing 3
	Listing 4

