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(1) Overview
Introduction
The simulation of magnetic materials falls into several 
paradigms, depending on the length scales, materials and 
phenomena of interest. For many materials, the spin of 
atoms can be assumed to be localised around the atom, 
and a classical approximation can be made in which 
the atomic spin is treated as a point dipole – this is the 
classical Heisenberg model. Because the atomic crystal 
lattice of the material is considered, this discrete spin 
model is commonly referred to as atomistic [1], even 
though a semi-classical magnetic moment is assumed per 
lattice site. The continuum limit of this theory, known as 
micromagnetism, allows the computational treatment 
of much larger systems, though this excludes the study 
of materials which exhibit antiferromagnetism and 
ferrimagnetism.

Fidimag is a software library which allows researchers 
to model magnetic materials using both the classical 

Heisenberg and micromagnetic models. Users of the 
software provide the magnetic parameters of the material 
under study, the system geometry, and a set of initial 
conditions. The simulation can occur under different 
kind of dynamics, with Fidimag implementing the 
Landau-Lifshitz-Gilbert (LLG), the stochastic LLG (SLLG), 
and several spin-transfer torque variations of the LLG 
equation. From this initial setup, the user can then choose 
to evolve the system either through time, and hence study 
the magnetisation dynamics, or to “relax” the system to 
find its metastable energy states. In addition, the software 
implements the nudged elastic band method to find 
minimum energy paths and the size of energy barriers 
between different configuration states.

Fidimag has been used to obtain the results in several 
scientific publications [2, 3, 4, 5]. The supplementary data 
to ref. [4] demonstrates that with Docker, the process of 
correctly reproducing the results can be simplified to a 
single, reliable Makefile instruction [6].

https://doi.org/10.5334/jors.223
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Standard Problem 4
The Micromagnetic Modeling Activity Group μmag has 
defined a number of Standard Problems for the validation 
and comparison of micromagnetic simulation software 
[7]. The definitions of the problems and solutions from 
different research groups have been published on its 
website, and aim to show differences in approach between 
different computational micromagnetic software. To this 
end, we have compared Fidimag to the published results, 
and these problems are also given as examples in the 
Fidimag documentation.

For illustration, we show here the solution of Standard 
Problem #4. In this example, the magnetisation reversal 

dynamics of a bar of Permalloy with the dimensions 
500 × 125 × 3 nm are computed. First, a relaxed ‘s-state’ 
is obtained in the absence of an applied magnetic 
field. It is plotted in Figure 1a. In a second simulation, 
a Zeeman field is applied that causes a reversal of 
the average magnetisation direction over the span 
of a few hundred picoseconds. Figure 1b shows the 
magnetisation configuration when the z-component of 
the spatially averaged magnetisation direction crosses 
0. The system can be considered in equilibrium after 
a nanosecond and the corresponding magnetisation 
state is plotted in Figure 1c. The code used is printed 
in Listing 1.

import os
import matplotlib.pyplot as plt
import numpy as np
from fidimag.micro import Sim, UniformExchange, Demag, Zeeman
from fidimag.common import CuboidMesh
from fidimag.common.constant import mu_0

mesh = CuboidMesh(nx=200, ny=50, nz=1, dx=2.5, dy=2.5, dz=3, unit_length=1e-9)

A = 1.3e-11
Ms = 8.0e5
alpha = 0.02
gamma = 2.211e5
mT = 0.001 / mu_0

def compute_initial_magnetisation():
	 sim = Sim(mesh, name=‘problem4_init’)
	 sim.driver.set_tols(rtol=1e-10, atol=1e-10)
	 sim.driver.alpha = 0.5
	 sim.driver.gamma = gamma
	 sim.Ms = Ms
	 sim.do_precession = False # saves time - not interested in dynamics here
	 sim.set_m((1, 0.25, 0.1))
	 sim.add(UniformExchange(A))
	 sim.add(Demag())
	 sim.relax(dt=1e-13, stopping_dmdt=0.01, max_steps=5000, save_m_steps=None, save_vtk_steps=None)
	 return sim.spin

def compute_dynamics(initial_magnetisation):
	 sim = Sim(mesh, name=‘problem4_dynamics’)
	 sim.set_m(initial_magnetisation)
	 sim.driver.set_tols(rtol=1e-10, atol=1e-10)
	 sim.driver.alpha = alpha
	 sim.driver.gamma = gamma
	 sim.Ms = Ms
	 sim.add(UniformExchange(A))
	 sim.add(Demag())
	 sim.add(Zeeman([-24.6 * mT, 4.3 * mT, 0], name=‘H’), save_field=True)

	 crossed_zero = False
	 ts = np.linspace(0, 1e-9, 201)
	 for t in ts:
		  sim.driver.run_until(t)
		  mx, my, mz = sim.compute_average()

		  print(“t = {:.3} ns\t mx = {:.3}”.format(t*1e9, mx))
		  if mx <= 0 and not crossed_zero:
			   print(“Crossed zero!”)
			   np.save(“problem4_m_when_mz_0.npy”, sim.spin)
			   crossed_zero = True
	 return sim.spin

def plot_quiver(m, filename):
	 m.shape = (50, 200, 3)
	 skip = 5
	 m = m[1::skip, 1::skip]

	 xyz = mesh.coordinates
	 xyz.shape = (50, 200, 3)
	 xyz = xyz[1::skip, 1::skip]
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Listing 1: Solution to the standard problem #4. The simulation defined in the function compute_initial_
magnetisation returns the relaxed magnetisation configuration in absence of an applied magnetic field. In the 
function compute_dynamics that makes up the second simulation, the magnetic field that causes the magnetisation 
reversal is added on line 42. The snapshots in Figure 1 were made using the code in the function plot_quiver.

(a)

(b)

(c)

Figure 1: Snapshots of the unit magnetisation. The plots were created with the code in the function plot_quiver 
of listing 1. (a) The initial unit magnetisation of the bar of Permalloy described in standard problem #4. (b) The 
magnetisation conguration at the moment of the reversal of the average magnetisation. (c) The magnetisation after 
a nanosecond of simulation time has elapsed.

	 plt.figure(figsize=(12, 3))
	 plt.axes().set_aspect(‘equal’)
	 plt.quiver(xyz[:,:,0], xyz[:,:,1],
			   m[:,:,0], m[:,:,1], m[:,:,1],
			   pivot=‘mid’, scale=45, cmap=plt.get_cmap(‘jet’), edgecolors=‘None’)
	 c = plt.colorbar()
	 plt.xlabel(“x (nm)”)
	 plt.ylabel(“y (nm)”)
	 c.set_label(“$m_\mathrm{y}$ (1)”)
	 plt.clim([0, 1])
	 plt.xlim([0, 500])
	 plt.ylim([0, 125])
	 plt.savefig(filename)

if __name__ == ‘__main__’:
	 m0_file = “problem4_m0.npy”
	 if not os.path.exists(m0_file):
		  m0 = compute_initial_magnetisation()
		  np.save(m0_file, m0)
	 else:
		  m0 = np.load(m0_file)

	 mf_file = “problem4_mf.npy”
	 if not os.path.exists(mf_file):
		  mf = compute_dynamics(m0)
		  np.save(mf_file, mf)
	 else:
		  mf = np.load(mf_file)

	 plot_quiver(m0, “problem4_m0.pdf”)
	 plot_quiver(np.load(“problem4_m_when_mz_0.npy”), “problem4_m_when_mz_0.pdf”)
	 plot_quiver(mf, “problem4_mf.pdf”)
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The evolution of the spatially averaged magnetisation 
is shown in Figure 2 with a comparison with the same 
simulation run with OOMMF. This comparison is performed 
regularly as part of Fidimag’s automated testing.

Computational simulations of magnetic materials
At the atomic level, the magnetic effects in magnetic 
materials originate from two angular momentum terms 
from electrons: their orbital motion around the nucleus 
and, mainly, from a quantum property of electrons called 
spin.1 Within a semi-classical model, the sum of their 
contributions can be described by a three dimensional 
vector Si = μisi representing a magnetic moment (a magne-
tic dipole) μi for every atom i, with a specific direction si. 
This idea originates from Heisenberg’s model Hamiltonian 
to describe magnetic interactions [8, 9]. In magnetic solids, 
atoms arrange in a lattice with a specific periodic crystal 
geometry. For example, a cubic lattice is made of repeated 
cells where atoms and their corresponding magnetic 
moments lie at the corners of this cubic cell.

An atom is at the scale of a few Angstrom, thus in large 
systems, which are at the nano-scale, it would be necessary 
to describe the system using thousands of spins, which 
is computationally expensive. Therefore, it is possible to 
approximate the material as a continuum, where the field 
from discrete magnetic moments turns into a continuum 
field called magnetisation that depends on the space 
coordinates r, assuming that neighbouring spins do not 
change drastically in direction [8, 9]. This means the 
limit from the discrete atoms into the space dependent 
field si → M(r)/Ms = m(r). The magnitude of the field 
is measured through the saturation magnetisation Ms, 
which is defined as a magnetic moment per unit volume, 
i.e. Ms  = μ/ΔV, with ΔV as the volume of a unit cell of 
the discrete crystal lattice. This theory of magnetism 
in the continuum limit is known as micromagnetics. 
Numerically, the magnetisation field can be discretised 
into a mesh of magnetic moments Mi.

To describe a magnetic system, we firstly specify its 
geometry. If we simulate this system using a discrete spin 
model, we have to generate a lattice of magnetic moments 
with a specific arrangement of atoms (according to the 
crystal symmetry) such that they describe this geometry. 
In the case of micromagnetics we use the finite differences 
numerical technique, thus the sample is discretised into 
cuboids and each one of them represents a volume with 
uniform magnetisation inside that volume.

Dynamics
Magnetic phenomena emerge from the interactions 
between magnetic moments and their interaction with 
external and internal magnetic fields, the later including 
dipolar interactions and anisotropic interactions, among 
others. These interactions depend on the material and 
specify the total energy of the system. In general, the 
spins perform a precessional motion following directions 
set by the magnetic interaction. The dynamics of the 
magnetic moments is given by the Landau-Lifshitz-Gilbert 
(LLG) equation [8, 9]. Within the discrete spin model this 
dynamical equation for a single spin s, reads:

	 G
eff eff     

s
s H s s H

   t
,� (1)

at zero temperature, where Heff is an effective field that 
contains the sum of every magnetic interaction present in 
the system, γ is the Gilbert gyromagnetic ratio constant, 
which sets the time scale of the spin motion, and 
0 ≤ aG ≤ 1 is the Gilbert damping. The first term in equation 
1 describes a precessional motion of spins around the 
effective field and the second term is a dissipative term 
that make spins follow the effective field direction.

In micromagnetics this equation has the same structure:

	 G
eff eff

s

     
M

M H M M H
  

 t
.� (2)

Figure 2: The components of the average magnetisation over time as computed with Fidimag and by OOMMF.



Bisotti et al: Fidimag – A Finite Difference Atomistic and Micromagnetic Simulation Package Art. 22, page 5 of 11

Fidimag can solve the non-linear differential equations 
1 and 2, depending on the specified theoretical model. 
Accordingly, it is necessary to specify an initial magnetic 
configuration for the spin directions, and the magnetic 
interactions involved in the system. Currently, Fidimag 
has the following interactions implemented in the code,

Exchange Favours the parallel or anti-parallel align-
ment of neighbouring spins. The exchange can be 
computed using nearest neighbour approximations in 
the classical Heisenberg case. The continuum micro-
magnetic model only allows parallel alignment.
Dipolar interactions Product of the interaction of a 
spin with the field generated from the other spins in 
the system.
Dzyaloshinskii-Moriya Favours a canted alignment 
between neighbouring spins.
Anisotropy Sets directions along which the system 
energy decreases when spins align towards them.
Zeeman Product of the interaction of spins with an 
external magnetic field.

The underlying equations that were used to implement 
these interactions can be found in Ref. [10].

One method for finding energy minima in the system’s 
energy landscape, which is implemented in the code, is to 
evolve the system with the LLG equation, since the spins 
will precess until a stable configuration is attained, i.e. a 
local or global minimum of energy, that depends on the 
initial magnetic configuration. We refer to this process as 
relaxation.

Dynamical effects such as the generation of spin waves, 
ferromagnetic resonance, domain wall motion, among 
other multiple magnetism related phenomena, are also 
given by the evolution of spins with the LLG equation. 
Variations of this equation are obtained when applying 
electric currents or temperature, which can also be 
specified in the code. Fidimag supports the inclusion 
of stochastic terms and spin-polarised currents in the 
equation of motion. The terms and their corresponding 
equations are shown in Ref. [11].

At zero temperature the length of the magnetic 
moments and the magnetisation vector is fixed. This 
condition must be specified in the equation of motion of 
spins explained in the last section, which sets a constraint 
to the spin length. Multiple magnetic phenomena can 
be explained at a zero-temperature formalism thus the 
majority of Fidimag’s equations are implemented in this 
regime.

Although this constraint is implicit in the LLG equation, 
numerically the spin length varies when integrated. To 
address this problem, a correction term is added to the 
right hand side of equations 1 and 2 in Fidimag (equation 
4 in Ref. [12]) [13]. It is proportional to:

		   
2

21   
 

s
s s


t

.� (3)

and similar in the micromagnetic model, by setting 
s → m. This term makes the spin length increase when 

it is less than the unit and makes it decrease otherwise. 
For time integration, Fidimag can use the CVODE solver 
of the SUNDIALS suite [14] (wrapped via Cython) or the 
Fortran codes bundled in Scipy’s [15] integrate.ode. 
Fidimag also implements Heun’s method and the classic 
fourth-order Runge-Kutta method. Because the time 
integrators will need a varying amount of evaluations of 
the right hand side function, i.e. the equation of motion 
chosen in the last paragraph, it makes sense to partly 
relinquish runtime control from the user to the time 
integration. A so-called driver is in charge of coordinating 
time integration and user needs. Time integration runs 
uninterrupted for a specified amount of (simulated) time, 
after which arbitrary code can be executed.

Nudged Elastic Band Method
Finding the lowest energy cost to drive a magnetic system 
from one equilibrium state towards another, also known 
as energy barrier, has become a relevant problem for 
the analysis of the stability of magnetic structures. An 
energy barrier is then associated to the transition path, 
between two states, that requires the least energy. This is 
important, for example, for the potential application of 
a magnetic structure in a technological device since an 
energy barrier can be used to estimate the lifetime of the 
structure against energy fluctuations from excitations 
such as thermal noise, present at finite temperatures. The 
nudged elastic band method (NEBM) is a technique for the 
calculation of minimum energy paths, and hence energy 
barriers. It was first used in chemistry to study molecular 
transitions [16]. It is based on fixing two equilibrium states, 
which can be local or global minima, and making copies, 
called images, of the system in different configurations 
between these extrema. This sets a band of images and 
each one of the images will have a different energy in the 
energy landscape associated to the system. The algorithm 
will iteratively find a path in the energy landscape that 
decreases the energy cost of the band, trying to keep the 
images equally spaced in the energy landscape using an 
inter-image spring force, to avoid images move towards 
the minima at the extremes of the band. After relaxation, 
the minimum energy path will cross one or more maxima 
of energy, which set the energy barrier magnitude. An 
optimisation of the original algorithm has recently been 
published by Bessarab et al. [17], where geodesic distances 
are defined in the energy landscape. We have implemented 
the NEBM in Fidimag, which can be used both within 
micromagnetics and a discrete spin model. The optimised 
version, called Geodesic NEBM is the one that performs 
more efficiently, and combines Cartesian coordinates for 
the description of the spins and geodesic distances in 
the energy landscape. Original versions of the algorithm, 
which only use Cartesian or spherical coordinates, can 
present convergence issues for systems with more complex 
magnetic configurations, such as vortices. To run a NEBM 
simulation, it is necessary to specify two equilibrium 
states, the number of images in between, and an initial 
state for the internal images. This initial configuration can 
be set by either manually creating a series of images in 
different magnetic states or by using a linear interpolation 
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for the spin directions, which is implemented in the code 
to generate the configurations automatically.

A detailed review of the method can be found in Ref. 
[17]. A study of the thermal stability of skyrmions, which 
are vortex-like magnetic configurations, that uses the 
NEBM implemented in Fidimag, can be found in [4]. In 
addition, we tested our code with the skyrmions example 
from [17], making a repository with the simulation details 
in [18].

Implementation and architecture
Fidimag provides both micromagnetic and atomistic 
simulation capabilities and is the only software that 
allows switching between the two modelling paradigms. 
The most notable micromagnetic code is OOMMF, which 
had its alpha release in 1998. OOOMMF is written in 
C++ and Tcl/Tk. Fidimag is mostly implemented in 
the Python programming language, with performance 
critical parts realised in C and linked in via Cython. The 
code base consists of roughly 5000 lines of Python code 
and 4000 lines of C code and cython extensions.2 The 
tests and examples add another 5500 lines of Python. As 
Python is well established in the scientific community, it 
presents a lower barrier to entry for programmers [19]. 
Further, Python has a reputation for being easy to learn 
for beginners [20, 21]. This has informed the decision 
to build Fidimag as a software library instead of a GUI-
driven program. Indeed, Fidimag respects best practices 
for Python’s module and namespacing system.

This library model of execution, where Fidimag is 
imported into the namespace of a Python program 
empowers the user to deal with the complexity of the 
batch processing of simulations in a more easily tested and 
reproducible way compared to ad-hoc shell commands 
and specialised batch modes in software with graphical 
user interfaces [22].

The standard problem #3 especially examplifies how 
naturally Fidimag allows higher order logic thanks to 
these choices. In it, two possible magnetic configurations 
in cubes of increasing sizes are to be studied to determine 
when they are equally energetically favourable. In 
Listing  2 the logic of setting up and running the 
simulations, as well as comparing the total energies of the 
magnetisation in the two possible configurations has been 
abstracted into a function called energy_difference.

Finding the cube size of equal energies called single_
domain_limit then involves nothing more than 
another function call, this time to a bisection method 
called bisect provided by SciPy [15].

A similar approach had been used in Nmag, where it 
has proven to be successful [13]. Unlike nmag however, 
Fidimag doesn’t require bundling the software with a 
modified Python binary. The approach is now seen in other 
micromagnetic packages, for example micromagnum [23]. 
The Jupyter/OOMMF project follows a hybrid approach 
and harnesses the proven capabilities of the OOMMF 
binary with a Python interface optimised for Jupyter 
notebooks [24].

Vampire is a performant atomistic code that defines 
its own declarative syntax [1]. It comes in two versions, 
either a binary with an installation script or the code 
which needs to be compiled from source. In contrast, 
while the traditional installation methods are available, 
installing Fidimag with Docker is as easy as docker 
pull fidimag/notebook.

Best practices recommend using version control for any 
kind of computational endeavours [25]. The code is stored 
using the distributed version control system git and new 
features are developed in branches. Automated testing 
and builds of the software were priorities from the start. 
Because there are no command line parameters to record 
or options set in a GUI program Fidimag offers a one-to-
one mapping of the simulation code to its result. This is a 
boon for the goal of reproducibility that can’t be overstated. 
For example, Fidimag plays well with Sumatra [26] which 
allows for the automatic tracking of the computations 
run. Jupyter Notebooks [27] are used for interactive 
tutorials and included in the extensive documentation 
[28]. There are tests that ensure that these notebooks 
are executing consistently, without errors, and that the 
execution of the stored inputs match the stored outputs. 
For this, a py.test plugin called nbval was developed and 
made available to the open source community [29]. 
Fidimag has an automated testing procedure that runs 
on a public continuous integration system [30]. Fidimag’s 
simple installation procedure via Docker, the extensive 
documentation including interactive tutorials stored in 
Jupyter notebooks and the accessible interface have made 
it not only a useful tool for research as stated before, but 
also for teaching [31].

”””
Solution to μmag standard problem #3 with fidimag.
	  http://www.ctcms.nist.gov/~rdm/mumag.org.html

”””
from .cube_sim import energy_difference
from scipy.optimize import bisect

single_domain_limit = bisect(energy_difference, 8, 8.5, xtol=0.1)
print(“L = {:.2} nm.”.format(str(single_domain_limit))

Listing 2: Solution to the standard problem #3. The code that computes the energy difference between the two possible 
magnetic configurations has been abstracted into the function energy_difference in the module cube_sim 
that is imported in line 6. The function energy_difference can then be handed off to a bisect method provided 
by SciPy to find the cube size for which both configurations have the same energy.

http://www.ctcms.nist.gov/~rdm/mumag.org.html
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The source code is split into three major sections 
– ‘atomistic’, ‘micro’ and ‘common’ which contain 
code specifically for classical Heisenberg simulations, 
micromagnetic simulations, and for both respectively, as 
can be seen in Figure 3.

There are many common components which can be 
shared between both types of simulation. The primary 
data in both atomistic and micromagnetics is stored in 
vector fields, and the mechanisms for passing this data 
through the simulation are kept in a common base 
‘Sim’ class. This allows, for example, the saving of the 
magnetisation progressive steps in the simulations to be 
handled identically for both types of simulation. Fidimag 
comes with visualisation and data saving utilities out of 
the box.

Mesh and lattices
As we mentioned earlier, we define a magnetic system by 
setting its geometry. How the geometry is approximated 
depends on the chosen model.

Within the continuum approximation, Fidimag uses 
finite differences which means dividing the sample into a 
mesh of cubes, as shown in Figure 4a, where each cuboid 
centre represents the position of a magnetic moment 
vector. Accordingly, derivatives for the calculation of 
magnetic interactions and energies are discretised using 
differences between neighbouring mesh sites. The cuboid 
mesh is coded in the CuboidMesh class located in 
Fidimag’s common directory. Distance between the centres 
and the number of cuboids in the three spatial directions 
are specified by the user. The indexes of every mesh site 
are labelled following the x → y → z direction, as shown in 
Figure 4a. To keep track of the neighbouring sites of every 
mesh site, the mesh class has a neighbours method 
defined as an N × 6 array, where N is the total number 
of cuboids, that stores the indexes of nearest neighbours, 
with the value −1 for non-material sites. Correspondingly, 
every row represents the 6 nearest neighbours in the 
(−x, +x, −y, +y, −z, +z) order. For instance, for the mesh 
of Figure 4a and site 0 the neighbours array is [−1, 

fidimag

atomisticcommon micro

mesh Sim energies

Anisotropy

...

Zeeman

common

time integration

input/output

NEB method

...

 defines

uses

user

uses

Figure 3: Architecture of Fidimag as reflected by the directory structure and Python modules. Code useful to 
micromagnetic and atomistic simulations was extracted into a common namespace. The red arrows point to user-
facing parts of the system.
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1, −1, 3, −1, 9]. This helps to easily implement 
interactions in Fidimag’s C functions.
For the calculation of the demagnetising field, Fidimag 
uses a fast-Fourier-transform method that requires a 
uniform grid, hence for complex geometries, such as 
curved samples, Fidimag still defines a cuboid mesh but 
boundaries or specific mesh sites without material are 
approximated by setting the magnetisation as zero, Ms = 0. 
Thus to obtain a better approximation it is necessary 
to define a large number of cuboids and decrease the 
distance between their centres. In order to set a null 
magnetisation, the user can specify a Python function that 
has as an input the position vector and that returns Ms 
according to the sample geometry [13].

In Listing 3 we set a 2 nm diameter sphere using a 
6 × 6 × 6 cuboid mesh with elements of 1nm × 1nm × 1nm 
size. To simplify the dimensions scaling we set a unit 
length in the mesh definition.

In the case of discrete spin simulations, atoms order 
in a lattice according to different crystallographic 
arrangements. The most simple ordering is the simple 
cubic lattice (SC), where atoms centres lie at the centre 
of cubes separated by the same distance in the three 
spatial dimensions. Since this follows the same principle 
as the finite differences cuboid mesh, Fidimag uses the 
same CuboidMesh class as the one for micromagnetic 
simulations, thus it is defined in Fidimag’s common 

directory. Another atomistic lattice implemented in 
Fidimag is a two dimensional hexagonal lattice that can 
be aligned along the x or y axis. The former is shown in 
Figure 4b. This lattice is defined in the HexagonalMesh 
class in Fidimag’s atomistic directory. As in the 
CuboidMesh, a neighbours array keeps track of the 
neighbours indexes, which are defined in the x → y order. 
In Figure 4b we highlight, for example, the 6 neighbours 
of the lattice site with index 12.

Using as a base the class structure of the meshes 
currently implemented in Fidimag, it is possible to 
define and implement other crystal lattices such as body-
centered-cubic or face-centered-cubic arrangements.

Besides scalars, most of the physical quantities involved 
in micromagnetic computations are fields and vector 
fields. In Fidimag, they are represented with numpy arrays 
[32]. There are utilities to instantiate them from point-
wise expressions. These fields are the objects the physical 
interactions in the simulations deal with. A quantity 
central to the solution of the initial value problem given 
by the micromagnetic approach is the effective field, 
which is itself a sum of smaller fields. Each of the smaller 
fields is the result of a separate computation which 
represents the influence of an interaction present in the 
system, like the exchange energy or the Dzyaloshinski-
Moriya interaction. For the dipolar field, we accelerate 
the calculation using a convolution done in Fourier space 
[33, 34, 35], accelerated using the library FFTW. It is in 
the computation of the interactions where the differences 
between the micromagnetic and the atomistic approach 
become the most apparent. Consequently, some energy 
terms are represented twice in the codebase – once for 
each model. With the effective field computed for a given 
state of the magnetisation the next step is solving the 
equation of motion for the system, which is the Landau-
Lifshitz-Gilbert equation or one of its many variants.

Quality control
Testing small chunks of code and preferably isolated 
pieces of the system is unit testing. In Fidimag, most of 
the unit tests compute and check the physical quantities 
involved in succesfully running a simulation. Besides 
giving helpful feedback during development, the unit tests 

Figure 4: Cuboid mesh and hexagonal lattice labelled according to the index of the sites.

import fidimag
import numpy as np

mesh = fidimag.common.CuboidMesh(nx=6, ny=6, nz=6,
				    dx=1, dy=1, dz=1,
				    unit_length=1e-9)
sim = fidimag.micro.Sim(mesh)
Ms = 1e6 # A / m

def sphere(r):
	 x, y, z = r
	 if x ** 2 + y ** 2 <= 2 ** 2:
		  return Ms
	 else:
		  return 0

sim.set_Ms(sphere)

Listing 3: Definition of a 2 nm wide sphere geometry 
using micromagnetics.
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were a factor in increasing confidence to edit, enhance or 
refactor the code, resulting in the improved decoupling 
and maintainability of it. The coverage of Fidimag’s code 
base with unit tests is monitored using codecov [36]. At 
the time of writing, it reports 73% coverage.

Functional testing then examines a slice of the system. 
For example, one of the test cases covering the saving of 
scalar fields on hexagonal meshes to a VTK file in Fidimag 
is shown in Listing 4.

Finally, system tests use Fidimag as a black box and 
compare simulation output to known good values. These 
values are obtained from problems that have analytical 
solutions like the macrospin or domain walls. As we saw 
earlier, the μmag standard problems are another good 
source of testing data. So are other finite difference codes, 
like the aforementioned OOMMF.

Fidimag is also tested against the output of earlier 
versions of itself by storing some simulation results in the 
repository. This is a form of regression testing, and since no 
external software or potentially long-running simulations 
are involved the fastest way to check if a changeset has 
affected the computational parts in a tangible way. The 
design choices discussed in the introduction and the 
focus on testing continue to provide tangible benefits 
to the collaborators working on the software, as well as 
the software itself, as shown above. They also increase 
the confidence in Fidimag›s results since unlike users, 
automated tests don›t distinguish between new and 
old code and test potentially seldom-used parts of the 
software just as often as the commonly used functions.

For maximum value, the tests need to be run often and 
ideally without manual intervention. This is why a test 
cycle is triggered on the continuous integration platform 
Travis CI [30] on every push to the Github repository. First, 
Fidimag’s C code and cython extensions are compiled. 
Then the tests are run. Finally the Jupyter notebooks are 
run and tested and the documentation is built.

To quickly check if Fidimag is installed and working on 
a machine, a user can launch an interactive Python shell 
and execute import fidimag. This command should not 
output any text. Afterwards, the user may chose to follow 
along with the tutorial called A Basic Simulation [37] or 
launch the provided examples. If Fidimag was installed 
from source, make test-basic will run a selection 
of tests that completes in under a minute, which is also 
helpful for smoke testing purposes during development 
on Fidimag.

(2) Availability
Operating system
GNU/Linux, Mac OS X and on any platform supported by 
Docker, like Azure and AWS.

Programming language
Python version 3, C, cython.

Additional system requirements
E.g. memory, disk space, processor, input devices, output 
devices.

Dependencies
E.g. libraries, frameworks, incl. minimum version 
compatibility.

1.  Numpy ≥ 1.10
2.  SciPy ≥ 1.0.0
3.  SUNDIALS ≥ 2.7.0
4.  FFTW ≥ 3.3.4

Fidimag builds using the OpenMP versions of these 
libraries for multiprocessing purposes.

List of contributors
Please list anyone who helped to create the software (who 
may also not be an author of this paper), including their 
roles and affiliations.

1.  Bisotti, Marc-Antonio
2.  Wang, Weiwei
3.  Cortés-Ortuño, David
4.  Fangohr, Hans
5.  Pepper, Ryan
6.  Kluyver, Thomas
7.  Vousden, Mark
8.  Beg, Marijan

Software location
Archive
(e.g. institutional repository, general repository) (required 
please see instructions on journal website for depositing 
archive copy of software in a suitable repository)

Name: Fidimag
�Persistent identifier: https://zenodo.org/record/841113
Licence: BSD
Publisher: Hans Fangohr
Version published: 2.5
Date published: 10/08/17

Code repository
(e.g. SourceForge, GitHub etc.) (required)

Name: Fidimag
�Persistent identifier: https://github.com/
computationalmodelling/fidimag
Licence: BSD
Date published: August 8, 2018

def test_save_scalar_field_hexagonal_mesh(tmpdir):
	  mesh = HexagonalMesh(radius=1, nx=3, ny=3)
	  s = scalar_field(mesh, lambda r: r[0] + r[1])
	  vtk = VTK(mesh, directory=str(tmpdir), filename=”scalar_hexagonal”)
	  vtk.save_scalar(s, name=”s”)
	  assert same_as_ref(vtk.write_file(), REF_DIR)

Listing 4: A unit test in which a scalar field s is created on a hexagonal mesh, saved to a VTK file and compared to a 
reference file.

https://zenodo.org/record/841113
https://github.com/computationalmodelling/fidimag
https://github.com/computationalmodelling/fidimag
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Emulation environment
(if appropriate)

Name: The name of the archive.
Persistent identifier: e.g. DOI, handle, PURL, etc.
�Licence: Open license under which the software is 
licensed.
Date published: dd/mm/yy

Language
Language of repository, software and supporting files.
English.

(3) Reuse potential
The simulations are written in Python and use Fidimag 
as a library to be imported. Fidimag has been used to 
gather results for a number of scientific publications [2, 
3, 4, 5] in the field of micromagnetics. It can be extended 
to account for other energy terms, to support more time 
integration methods or other variants of the equation of 
motion, as well as other drivers. Users can get in touch 
with the development team on Fidimag’s issue page on 
GitHub [38].

Notes
	 1	 For this reason when we mention spins we strictly refer 

to the total angular momentum or magnetic moments.
	 2	 Numbers obtained with cloc version 1.60.

Competing Interests
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