
Mukha, T 2018 Turbulucid: A Python Package for Post-Processing
of Fluid Flow Simulations. Journal of Open Research Software,
6: 23. DOI: https://doi.org/10.5334/jors.213

SOFTWARE METAPAPER

Turbulucid: A Python Package for Post-Processing of
Fluid Flow Simulations
Timofey Mukha
Department of Information Technology, Uppsala University, SE
timofey.mukha@it.uu.se

A Python package for post-processing of plane two-dimensional data from computational fluid dynamics
simulations is presented. The package, called turbulucid, provides means for scripted, reproducible
analysis of large simulation campaigns and includes routines for both data extraction and visualization.
For the former, the Visualization Toolkit (VTK) is used, allowing for post-processing of simulations
performed on unstructured meshes. For visualization, several matplotlib-based functions for creating
highly customizable, publication-quality plots are provided. To demonstrate turbulucid’s functionality it
is here applied to post-processing a simulation of a flow over a backward-facing step. The implementation
and architecture of the package are also discussed, as well as its reuse potential.

Keywords: visualization; computational fluid dynamics; data analysis; post-processing; VTK; maplotlib;
Python
Funding Statement: The work was supported by Grant No 621-2012-3721 from the Swedish Research
Council.

(1) Overview
Introduction
Performing a computational fluid dynamics (CFD)
simulation can generally be divided into three stages: pre-
processing, setting up and running the solver, and post-
processing. The pre-processing stage consists of defining
the computational domain and discretizing it with a mesh.
Next, the solver is configured to reflect the physics of the
problem and run in order to obtain a solution, which is,
in general, a three-dimensional time-dependent dataset.
At the post-processing stage, the produced solution is
analysed. This includes both extracting relevant data
(e.g. pressure or velocity values at certain locations) and
visualizing it with different types of plots.

Focusing on the post-processing stage, there is a large
variety of tools providing associated functionality. Indeed,
most CFD software packages, while concentrating on
solvers, usually also provide means for conducting basic
post-processing. For example, routines for extracting data
along a cut-plane or a line are commonly present, as well as
the possibility for producing different types of plots (scatter
plots, vector plots, streamline plots etc). Specialized software
for post-processing exists as well, and typically provides a
richer functionality, better performance, and higher-quality
rendering. However, the existing solutions tend to:

•	 Focus on working with large unstructured three-
dimensional data.

•	 Provide limited options for customizing the plots (e.g.
fonts, sizes and styles of different plot elements, etc).

•	 Excel in interactivity, but not reproducibility (e.g.
quickly producing the same plot for 10 different
datasets).

Indeed, the properties above reflect the average post-
processing needs of the users. Nevertheless, there are
many situations when a different sort of tool is required.
While the absolute majority of CFD datasets are, in fact,
three-dimensional, and many are also time-dependent, it is
hard to analyse such data as is. Commonly, time-averaging
is applied along with plane- or line-data extraction, and
the actual analysis and visualization are thus performed
on data of lower dimension. Fine-grain plot customization
may not be needed in most applications but is an absolute
must when producing figures for publications. Finally,
interactivity is important when looking at a single case
for the first time, but being able to quickly reproduce the
analysis or apply it to a new dataset becomes increasingly
important in larger simulation campaigns.

It would, therefore, be beneficial to have a comple
mentary post-processing tool that excels at performing
easily reproducible analyses of two-dimensional
datasets as well as producing high-quality customizable
visualizations. The focus of this work is presenting such a
tool, namely, a Python package called turbulucid. By
combining data manipulation functionality provided by

Journal of
open research software

https://doi.org/10.5334/jors.213
mailto:timofey.mukha@it.uu.se

Mukha: TurbulucidArt. 23, page 2 of 5

the Visualization Toolkit (VTK) [7] and plotting routines
available in matplotlib [1], turbulucid allows
to produce publication-quality plots of several types and
provides functionality for analysing the dataset with a set
of data extraction routines. Using the package, the post-
processing can be scripted in Python using the provided
objects and functions. This makes it easy to analyse a large
set of simulations in a structured way or quickly apply an
existing analysis to a new case. Additionally, users have
the possibility to use any of the numerous packages
available in the Python ecosystem in their analysis.

While the package works exclusively with planar two-
dimensional datasets, no assumption is made regarding
the topology of the computational mesh, meaning that any
mesh consisting of polygonal cells can be used. The data
itself is assumed to be stored in a format for unstructured
meshes defined by VTK, but the package is designed to
be easily extendible to read data in other formats. Scalar,
vector and tensorial quantities are supported.

The discussion of the features of turbulucid, as
well as its design and implementation, is continued in
the sections below. Examples of applying turbulucid
to post-processing of simulations of various flows can be
found in [3–6]. This includes flat-plate turbulent boundary
layer flow, flow around a ship hull, and also flow around a
submarine-like axisymmetric body. Here, the functionality
of turbulucid is demonstrated by applying it to post-
processing a simulation of a flow over a backward-facing
step.

Implementation and architecture
As it was mentioned in the introduction, turbulucid
uses Python bindings for VTK to handle the unstructured
mesh and matplotlib’s plotting routines for
producing plots. It is important to note that the user is
never exposed to VTK objects, therefore familiarity with
VTK’s API is not a prerequisite for using turbulucid.

All data is instead returned to the user as numpy [8]
arrays.

By contrast, the constructed plots are returned to the user
as objects of the appropriate type defined by matplotlib
(e.g. a StreamPlotSet object for a streamline plot.) This
allows for customizing the created plots.

To open a dataset, the user has to create a Case object.
The path to the dataset is passed to the constructor.
Once created, the methods and attributes of the Case
object provide access to the dataset. For example, the
getitem operator is overloaded to return the values
of a field present in the dataset, given the field’s name.

To make turbulucid easily extendible to work with
datasets saved in various formats, a separate hierarchy
of classes responsible for reading the data is present.
Currently, readers for legacy and XML VTK data files
(extensions .vtk and .vtu, respectively) are implemented,
the corresponding classes being LegacyReader and
XMLReader. Both implemented readers are derived from
Reader, which serves as a base abstract class. The Case
class determines which Reader-class should be used
based on the extension of the file the dataset is stored in.

Internally, the dataset is stored as vtkPolyData. Note
that this and other VTK formats support data of two types:
cell and point. The former associates a value with each
polygonal cell whereas the latter associates a value with
each mesh-node. In turbulucid, the fields are assumed
to be stored as cell data. If point data is stored instead, the
readers perform linear interpolation in order to produce
corresponding cell data.

To reduce the amount of boilerplate code that has to be
written by the user, object-oriented programming is not
used for implementing the plotting and data extraction
features. Instead, they are implemented as functions,
which commonly require a Case object as an input
parameter. The provided functions and their purpose are
summarized in Tables 1 and 2.

Table 1: Plot functions available in turbulucid.

Name Produced plot

plot_field Each cell is colored with the corresponding value of a given scalar field.

plot_vectors Arrows showing the magnitude and direction of a vector field.

plot_streamlines Streamlines following a vector field.

plot_boundaries Lines showing the boundaries of the geometry.

add_colorbar Adds a colorbar.

Table 2: Data extraction functions available in turbulucid.

Name Purpose

profile_along_line Extract data along a line.

sample_by_plane Re-sample the dataset using a Cartesian grid.

dist Compute distances from centres of boundary-adjacent cells to the boundary.

normals Compute unit outward normals to every edge of a given boundary.

tangents Compute unit tangent vectors to every edge of a given boundary.

Mukha: Turbulucid Art. 23, page 3 of 5

The package is documented using numpy-style
docstrings. The Sphinx package is used to compile them
into html.1

Demonstration of functionality
In this section turbulucid is used to post-process
results from a simulation of a flow over a backward-
facing step (BFS).2 The goal is to demonstrate the quality
of some of the plot types turbulucid can be used to
produce. The analysis of the flow as such is therefore
kept at a superficial level. For completeness, it is noted
that the results were obtained by conducting a large-
eddy simulation of the flow using the open-source CFD
software OpenFOAM [9]. The unknowns were averaged in
time in the course of the simulation and then also across
the statistically homogeneous spanwise direction, thus
producing a two-dimensional dataset.

To show the computational domain, the function
plot_boundaries can be used. It is possible to scale
the x and y axis. In the case of the BFS, it is common to use
the step-height, h, as a scaling parameter. We can also use
matplotlib to add annotations to the figure to indicate
what boundary conditions are used, as well as add axes
labels, see Figure 1. This example clearly illustrates how
turbulucid seamlessly integrates with matplotlib
allowing the user to take full advantage of this library.

To get a good qualitative understanding of the flow, let
us plot the distribution of the wall-parallel component
of velocity across the geometry. To this end, the function
plot_field can be used, and add_colorbar can be
used to add a colorbar to the plot, see Figure 2.

The code used to produce Figure 2 is given in Listing 1.
First, the data is opened by creating a Case object.
Then the step-height, h, is defined, followed by a call to
the plot_field function that creates the plot. Several
arguments are passed to plot_field. The created
Case object is the first argument. The second argument
is a numpy array of values to be plotted. The array is

retrieved from the Case object by passing the name of
the desired field (here UMean, i.e. the mean velocity)
to the _getitem_ operator. Finally, the keyword
arguments scaleX and scaleY are set to h to scale
the axes of the plot with the step-height. The created plot
object is assigned to a variable, f. A colorbar object is then
created using add_colorbar and f. The object is then
manipulated to set the correct colorbar label. Finally, x-
and y-labels are defined using standard functions from
matplotlib.pyplot, here imported as plt.

It can be seen in Figure 2 that a boundary layer
approaches the step from the left, separates, and reattaches
at x/h ≈ 6. A recirculation region is formed directly
downstream of the step. To investigate this region further,
a vector plot can be created using the plot_vectors
function, see Figure 3. Two recirculation bubbles can be
observed: the main, larger, bubble and a secondary one in
the corner directly downstream of the step.

Profile plots are commonly used to compare the
solution with reference data, obtained computationally or
experimentally. For the BFS in particular, profiles of the
x component of velocity as a function of y, at different
streamwise locations, can be considered. To extract data
along a line the profile_along_line function can be
used. It is then possible to combine plot_boundaries
with matplotlib’s plot function to embed line-plots
into the geometry of the computational domain, see
Figure 4.

The inflection of the velocity profile is clearly seen in
the separation region, at x/h = 2, whereas at x/h ≈ 6 the
inflection vanishes, indicating reattachment. A recovery of
a canonical turbulent boundary layer profile is observed
downstream.

Quality control
The framework pytest is used to test the implemented
functionality with unit tests. Travis CI is used to
automatically test installing the package and running
all the tests, using both Python 3 and Python 2. This is
performed using the Anaconda Python distribution, with
the latest provided versions of the required packages.
Instructions for running the tests locally are given in
the package documentation. The best way to validate
the functionality of the software is to apply it to post-
processing a simple dataset. To that end, three datasets
are shipped with turbulucid, including the BFS
simulation results used here to illustrate its functionality.

Figure 1: Computational domain of the BFS simulation.

case = Case(“path/to/data”)
h = 0.0094318
f = �plot_field(case, case[“UMean”][:,0],

scaleX=h, scaleY=h)
cbar = add_colorbar(f)
cbar.ax.set_ylabel(r“u/U_0, m/s”)
plt.xlabel(r“x/h”)
plt.ylabel(r“y/h”)

Listing 1: Code snippet used to produce Figure 2.

Mukha: TurbulucidArt. 23, page 4 of 5

(2) Availability
Operating system
The package is expected to run on any operating systems, which are
supported by all the dependencies (see below). This includes but is
not limited to modern Linux distributions, Windows, and Mac OS.

Programming language
Turbulucid is written in Python 3, but is compatible
and tested with Python 2 as well.

Additional system requirements
None.

Dependencies
The following Python packages: numpy, matplotlib,
scipy, pytest. VTK version 7.0.0 or higher, and the
associated Python bindings. The Sphinx package is
needed to build the documentation.

List of contributors
•	 Timofey Mukha, Uppsala University. Development,

testing, writing documentation.
•	 Saleh Rezaeiravesh, Uppsala University. Validation of

functionality.
•	 Mattias Liefvendahl, Uppsala University and Swedish

Defence Research Agency (FOI). Validation of func-
tionality.

Software location
Archive

Name: Github release v0.2
�Persistent identifier: https://github.com/
timofeymukha/turbulucid/archive/v0.2.zip
Licence: GNU GPL version 3
Publisher: Timofey Mukha
Version published: v0.2
Date published: 16/08/2018

Figure 3: Velocity vectors in and around the recirculation region.

Figure 2: Distribution of the wall-parallel velocity across the domain. Values normalized with a reference velocity, U0.

Figure 4: Profiles of wall-parallel velocity at different streamwise locations. Values normalized with a reference
velocity, U0.

https://github.com/timofeymukha/turbulucid/archive/v0.2.zip
https://github.com/timofeymukha/turbulucid/archive/v0.2.zip

Mukha: Turbulucid Art. 23, page 5 of 5

Code repository Github
Name: turbulucid
�Persistent identifier: https://github.com/
timofeymukha/turbulucid
Licence: GNU GPL version 3
Date published: 02/03/2016

Language
English

(3) Reuse potential
Turbulucid can be useful to all engineers and
researchers working with computational fluid dynamics. In
particular, when there is need for producing a publication-
quality plot or performing an easily reproducible scripted
analysis of a simulation campaign.

The package can be used directly with any CFD
solver that supports extracting cut-plane data in VTK
format. Otherwise, the data should first be converted
into the appropriate format, e.g. using the VTK API.
The turbulucid package itself can also be extended
to read in data stored in a different format and apply
appropriate conversion routines on the fly. Such
contributions are most welcome, and anyone willing
to extend turbulucid in this or any other way is
encouraged to contact the author or open an issue in the
Github repository.

A readme file, including installation instructions, is
provided with the software. Additionally, a tutorial in form
of a Jupyter notebook [2] is provided, demonstrating most
of the functionality of the package. While further support
cannot be guaranteed, the author will do his best to
provide aid to users. Github issues can be used for asking
for help.

Notes
	 1	 See https://timofeymukha.github.io/turbulucid.
	 2	 The simulation results were provided by Saleh

Rezaeiravesh from Uppsala University through
personal communication.

Acknowledgements
The incentive to create turbulucid came from the need
to post-process simulations conducted using computing
resources provided by the Swedish National Infrastructure
for Computing (SNIC). Therefore SNIC and, in particular,

the PDC Center for High Performance Computing (PDC-
HPC) are gratefully acknowledged.

Competing Interests
The author has no competing interests to declare.

References
1.	 Hunter, J D 2007 “Matplotlib: A 2D graphics

environment.” In: Computing in Science & Engineering,
9(3): 90–95. DOI: https://doi.org/10.1109/
MCSE.2007.55

2.	 Kluyver, T, et al. 2016 “Jupyter Notebooks — a
publishing format for reproducible computational
workows.” In: ELPUB, 87–90. DOI: https://doi.
org/10.3233/978-1-61499-649-1-87

3.	 Liefvendahl, M, Fureby, C and Boelens, O J 2016
“Grid requirements for LES of ship hydrodynamics in
model and full scale.” In: 31st Symposium on Naval
Hydrodynamics. September. Monterey, California.

4.	 Liefvendahl, M, Johansson, M and Quas, M 2017
“Grid generation for wall-modelled LES of ship
hydrodynamics in model scale.” In: VII International
Conference on Computational Methods in Marine
Engineering, MARINE 2017, 143: 259–268. DOI:
https://doi.org/10.1016/j.oceaneng.2017.07.055

5.	 Mukha, T, Johansson, M and Liefvendahl, M 2018
“Effect of wall-stress model and mesh-cell topology
on the predictive accuracy of LES of turbulent
boundary layer flows.” In: 7th European Conference on
Computational Fluid Dynamics. Glasgow, UK.

6.	 Rezaeiravesh, S, Liefvendahl, M and Fureby, C
2016 “On grid resolution requirements for LES of wall-
bounded flows.” In: ECCOMAS Congress 2016. Crete,
Greece.

7.	 Schroeder, W, Martin, K and Lorensen, B 2006 The
Visualization Toolkit: An Object-Oriented Approach to
3D Graphics. 4th. Kitware.

8.	 van Der Walt, S, Colbert, S C and Varoquaux,
G 2011 “The NumPy array: A structure for effcient
numerical computation.” In: Computing in Science
& Engineering, 13(2): 22–30. DOI: https://doi.
org/10.1109/MCSE.2011.37

9.	 Weller, H G, et al. 1998 “A tensorial approach to
computational continuum mechanics using object-
oriented techniques.” In: Computers in Physics, 12(6):
620–631. DOI: https://doi.org/10.1063/1.168744

How to cite this article: Mukha, T 2018 Turbulucid: A Python Package for Post-Processing of Fluid Flow Simulations. Journal of
Open Research Software, 6: 23. DOI: https://doi.org/10.5334/jors.213

Submitted: 12 January 2018 Accepted: 12 October 2018 Published: 02 November 2018

Copyright: © 2018 The Author(s). This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

Journal of Open Research Software is a peer-reviewed open access journal published by
Ubiquity Press. OPEN ACCESS

https://github.com/timofeymukha/turbulucid
https://github.com/timofeymukha/turbulucid
https://timofeymukha.github.io/turbulucid
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.3233/978-1-61499-649-1-87
https://doi.org/10.3233/978-1-61499-649-1-87
https://doi.org/10.1016/j.oceaneng.2017.07.055
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.1063/1.168744
https://doi.org/10.5334/jors.213
http://creativecommons.org/licenses/by/4.0/

	(1) Overview
	Introduction
	Implementation and architecture
	Demonstration of functionality
	Quality control

	(2) Availability
	Operating system
	Programming language
	Additional system requirements
	Dependencies
	List of contributors
	Software location
	Archive
	Code repository Github

	Language

	(3) Reuse potential
	Notes
	Acknowledgements
	Competing Interests
	References
	Table 1
	Table 2
	Listing 1
	Figure 1
	Figure 2
	Figure 3
	Figure 4

