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BayesFit is a module for Python that allows users to fit models to psychophysical data using Bayesian 
inference. The module aims to make it easier to develop probabilistic models for psychophysical data 
in Python by providing users with a simple API that streamlines the process of defining psychophysical 
models, obtaining fits, extracting outputs, and visualizing fitted models. Our software implementation 
uses numerical integration as the primary tool to fit models, which avoids the complications that arise in 
using Markov Chain Monte Carlo (MCMC) methods [1]. The source code for BayesFit is available at https://
github.com/slugocm/bayesfit and API documentation at http://www.slugocm.ca/bayesfit/. This module is 
extensible, and many of the functions primarily rely on Numpy [2] and therefore can be reused as newer 
versions of Python are developed to ensure researchers always have a tool available to ease the process 
of fitting models to psychophysical data.
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(1) Overview
Introduction
Fitting statistical models to behavioural data is an 
important part of analyzing task performance within the 
field of Psychology [3]. Within the domain of psychophysics, 
a fundamental statistical model is the psychometric 
function, which relates performance – usually response 
accuracy or latency – to the stimulus, and is used to 
quantify stimulus detection or discrimination [3]. In 
experiments that measure response accuracy in a stimulus 
detection task, the psychometric function indicates how 
the probability of a correct detection response is related 
to stimulus intensity. Typically, correct responses are made 
more frequently as the stimulus intensity increases [3, 4].

Although fitting a psychometric function to data is a 
common component of the analysis of behavioural data, 
very few tools have been designed to help researchers 
streamline this fitting process [1, 3, 4, 5], and only one of 
these has been adapted for use in Python [1]. Furthermore, 
the only tool available for Python does not support versions 
3.x or greater. We therefore created a module supporting 
newer versions of Python (3.x) that implements a Bayesian 
algorithm to fit psychometric functions to behavioural 
data with as few steps as possible. The resulting software, 
BayesFit, accomplishes this task by taking advantage of a 
simple API that provides a convenient method for users 
to build probabilistic models using numerical integration 

in Python. Our module also makes it easy for users to fit 
models to large numbers of datasets while constraining 
the parameters used across model fits.

Usage Example 1: Fitting Models to Psychophysical 
Data using MLE
The full API documentation for BayesFit can be found at: 
http://www.slugocm.ca/bayesfit/.

To demonstrate the functionality of this software, 
below we provide the results from a simulated two-
interval, forced-choice (2-IFC) detection experiment in 
which each experimental trial consists of two successive, 
temporal intervals, and the observer must determine 
whether the target stimulus was presented in the first or 
second interval. Stimulus intensity is varied across trials, 
and response accuracy varies from near chance levels at 
low intensity to nearly perfect accuracy at high stimulus 
intensity (see Figure 1). Detection threshold is estimated 
by fitting a curve to the response accuracy data and then 
determining the stimulus intensity that produces an 
intermediate level of response accuracy (e.g., 75% correct).

BayesFit expects that data provided by the user are 
organized into a m-row by 3-column Numpy array, where 
the 1st column corresponds to the stimulus intensities 
used, the 2nd column the number of correct responses 
made by an observer at each stimulus intensity, and the 
3rd column the number of trials run at each intensity 
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level. Data in columns 2 and 3 should be organized such 
that values along each row correspond to the level of 
intensity specified along the same row in column 1 (see 
Figure 2).

Once data are appropriately organized, we are ready to 
use BayesFit to perform the model fitting procedure. We 
first import the BayesFit module into our workspace via:
import bayesfit as bf

Next, we specify the output variables and options that 
we want to use for our fitting procedure. BayesFit uses 
only one main function called fitmodel to streamline the 
process of fitting models to psychophysical data. If no 
priors are provided to the function, the fitting procedure is 
equivalent to performing maximum likelihood estimation 
(MLE). A basic example in using the fitmodel function to fit 
a model using MLE would be as follows:
metrics, options = bf.fitmodel (data = data,

batch = False,
logspace = None,
nafc = 2,
sigmoid_type = ‘norm’,
param_ests = None,
priors = None,
param_free = [True,  
			   True, False,  
			   False],
threshold = 0.75,
density = 100
)

Although we have listed all options that are available 
to the user in fitting models using BayesFit, the only 
mandatory argument to provide the fitmodel function 
with is data. However, if additional options are not 
specified, default values for these options will be 
assigned. Complete API documentation describing each 
of these options, as well as their default assignments, are 
located at: http://www.slugocm.ca/bayesfit/. Following 
the fitting procedure, the fitmodel function outputs two 
variables that include:

1.	Metrics – a dictionary containing parameter estimates 
from the fitted model (s), metrics about the goodness-
of-fit of each parameter, arrays corresponding to the 
marginal distributions, the likelihood surface (poste-
rior if priors provided), as well as a numerical approx-
imation of the threshold from the fitted function (at 
level specified in options).

2.	Options – the options used to fit model (s) to data.

Using these outputted variables, we can generate a plot 
of the fitted model using the plot_psyfcn function of the 
BayesFit module. For example, to visualize a psychometric 
function (Cumulative Normal sigmoid) fit using the 
BayesFit module to the data shown in Figure 1, we would 
specify the following snippet of code:
bf.plot_psyfcn (data, options, metrics)

As can be seen in the example above, only a few lines of 
code are needed to generate parameter estimates for our 
model and quickly visualize the results (see Figure 3). 
Although our example above was performed using only 
a single dataset, the BayesFit module also includes a 
method for fitting models to batch datasets so that the 
same model definitions can be used across all models 
fit. Once again, we encourage the reader to visit the API 

Figure 1: Plot of synthetic data generated from an observer 
detecting the flash of a light onscreen. The abscissa 
represents stimulus intensity, while the ordinate axis 
represents proportion correct.

Figure 2: Example of how data from a single psychophysical 
experiment should be formatted when passing these 
data to BayesFit for model fitting.

Figure 3: Plot of psychometric function using a 
Cumulative Normal sigmoid fit to data using BayesFit.

http://www.slugocm.ca/bayesfit/
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documentation for detailed examples of how to make use 
of such operations.

Usage Example 2: Fitting Models to Psychophysical 
Data using Bayesian Inference
Our example above used an MLE fitting procedure, as no 
prior distributions were provided to BayesFit for parameters 
to-be-estimated. However, if we have prior knowledge 
about what the values of our parameters should be, along 
with what the shape of the distribution in likelihood of 
different values are (e.g., Uniform, Normal, etc.), we can 
pass these arguments along to the fitmodel function of 
BayesFit during our fitting procedure. The fundamental 
difference in passing priors to BayesFit is that we are now 
using Bayesian inference methods rather than MLE in 
estimating parameters of the psychometric function, and 
thus are computing the posterior distribution.

BayesFit provides users with 5 different distributions 
that can be used to specify priors for each parameter. 
These include:

1.	‘Unif (a,b)’ – Uniform
2.	‘Norm (a,b)’ – Normal
3.	‘Log-Norm (a,b)’ – Log-normal
4.	‘Beta (a,b)’ – Beta
5.	‘Gamma (a,b)’ – Gamma

Therefore, if the user knew that certain values were more 
likely compared to others for the parameters controlling 

the scale and slope of the psychometric function, then 
the user could pass those arguments along to the fitmodel 
function of BayesFit as follows:
# Define priors for scale and slope parameters of 
# Cumulative Normal function
priors = [‘Norm (0.05,0.01)’, ‘Norm 
(0.012,0.001)’, None, None]

# Fit model passing along priors
metrics, options = bf.fitmodel (data = data,

batch = False,
logspace = None,
nafc = 2,
sigmoid_type = ‘norm’,
param_ests = None,
param_f�ree = [True,  

True, False,  
False],

priors = priors,
threshold = 0.75,
density = 100
)

From this example, it can also be seen that choosing 
prior distributions, and the values that define them, can 
be difficult. Therefore, it is best to use priors only when 
you are confident that the probability of certain values for 
parameters to-be-estimated are more likely than others 
based on theoretical or empirical grounds. Following the 
fitting procedure, the user can now visualize the priors 
used during the fitting procedure using the plot_priors 
function from BayesFit (see Figure 4):
bf.plot_priors (options, metrics)

Figure 4: Plot of prior distributions used during Bayesian inference of parameters of psychometric function.
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The marginal distributions for each parameter can be 
plotted via the plot_marginals functions (see Figure 5):
# Plot marginal distributions
bf.plot_marginals (metrics)

The posterior surface can be visualized via the plot_
posterior function (see Figure 6):
# Plot posterior collapsed across gamma and lambda
bf.plot_posterior (metrics)

Usage Example 3: Batch Fitting Models to Datasets
Occasions might arise where the user would like 
to automatically, rather than manually, fit multiple 
psychometric models across several datasets. The BayesFit 
module makes this task easy by requiring only two small 
changes to the procedure used to fit a single model. The 
first change is that the batch input argument for the 
fitmodel function must be set to True. The second change 

is that each dataset must be stored in a single dictionary 
object, with each dataset occupying a separate key (see 
Figure 7).

Here is a simple example of using the fitmodel function 
to perform batch fitting on multiple datasets:
# Store each dataset in a separate key under a  
# dictionary object
data = dict ()
data[‘dataset_01’] = data01
data[‘dataset_02’] = data02
data[‘dataset_03’] = data03

# Use fitmodel to fit functions across multiple  
# datasets
metrics, options = bf.fitmodel (data = data, 

batch = True
)

Note that only user-specified values for fixed parameters 
are used when performing batch fitting. Furthermore, to 

Figure 5: Plot of marginal distributions of parameters extracted from posterior.

Figure 6: Plot of posterior surface for scale and slope parameters, collapsed across gamma and lambda.
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prevent memory issues, only select metrics will be saved 
for each psychometric model fit.

Performance evaluation using simulated data
In order to assess the accuracy of parameter estimates 
using BayesFit, we generated 100 synthetic datasets from 
simulated observers in a psychophysical experiment. 
The datasets were generated to mimic the response of 
observers performing a 2-interval forced choice task with 
with eight equally-spaced stimulus intensities (range: 
0.1–0.9). The true probability for an observer of correctly 
responding to a given level of intensity, x, was modelled as:

( , , , , ) (1 ) ( , , )CDFp x Weibull x             � (1)

where x is the intensity of the stimulus, α and β determine 
the scale and shape of the Weibull sigmoid function, γ is 
the guess rate, and λ the lapse rate. With the exception 

of the parameter γ which was fixed at 0.5 (i.e., 1/nafc), 
the parameters that define an observers› sensitivity 
at different stimulus intensities were drawn from the 
distributions:
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These parameters were used to generate 100 binomial 
random responses at each stimulus intensity, for a total 
of 800 responses. In other words, 100 responses were 
simulated for each observer at each stimulus intensity. 
Data from each simulated observer were fit using the 
default settings for BayesFit, with the exception that a 
Weibull function was specified for the sigmoid type.

Results regarding the accuracy of parameter estimates 
for α, β, and λ are shown in Figures 8 and 9. Overall, 

Figure 7: Example of how multiple datasets should be combined into a single dictionary object before being passed as 
an argument to BayesFit for batch fitting.

Figure 8: Three plots comparing the accuracy of predicted parameter values versus the true values used to generate 
data for each simulated observer. The ordinate axis provides the value of the parameter, either estimated or true, and 
the abscissa is an index for each simulated observer.
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parameter estimates using BayesFit with default settings 
are extremely good. Estimates for α, a parameter that is 
typically used to represent the threshold of an observer, 
is very accurate. Estimates for parameters β and λ are 
also quite close to the true parameters used to generate 
data for a given observer, but are more variable in their 
accuracy to true values compared to parameter α.

These simulations demonstrate that BayesFit can be 
trusted for use in estimating the parameters of models 
used to fit psychophsyical data. It should be noted that, 
when possible, greater care should be taken in choosing 
the options used to fit models to psychophysical data. 
However, these simulations serve as a worst case scenario 
where the user fails to specify prior knowledge that may 
help the fitting procedure, and yet, BayesFit still performs 
extremely well.

Comparison in accuracy of estimating thresholds to 
Psignifit 4.0
To evaluate the performance of BayesFit in comparison to 
Psignifit 4.0, the only other module the authors are aware of 
for fitting models to psychophysical data in Python (albeit 
2.x), we make use of the simulated data used above for 
judging the accuracy of BayesFit in parameter estimation. 
Because BayesFit uses definitions for psychometric 
functions according to those specified in [6], and Psignifit 
4.0 uses parameterizations of the psychometric functions 
according to [7], a direct comparison between parameter 
estimates obtained using Psignifit 4.0 and BayesFit cannot 
be readily made.

However, we can assess the accuracy of threshold 
estimates obtained from the model fit to a simulated 
observer’s dataset using each module. Therefore, we used 
Psignifit 4.0 to fit models to simulated data using default 
settings except for specifying the sigmoid type as a Weibull 
function, and also defining threshold at 75% proportion 
correct response.

Figure 10 show boxplots of the distributions of 75% 
threshold estimates obtained using BayesFit and Psignifit 
4.0 compared to the distribution of true threshold values. 
Results show that threshold estimates obtained using 
BayesFit are remarkably similar to those obtained using 

Psignifit 4.0, and both distributions accurately resemble 
the target distribution for threshold defined at 75% correct 
response. These results suggest that both BayesFit and 
Psignifit 4.0 perform similarly in estimating thresholds for 
data obtained from a simulated psychophysical experiment.

Implementation and architecture
BayesFit was written in Python [8], and makes extensive 
use of the Numpy module [2] in constructing functions 
for BayesFit. The core function of BayesFit called fitmodel 
computes posterior estimates using numerical integration, 
and serves as the main function used in fitting models. 
Besides this core function, BayesFit uses several utility 
functions to compute parameter estimates. Although 
most of these functions require only Numpy, probability 
distributions currently are defined using a subset of 
functions from the module SciPy [9]. BayesFit also contains 
several plotting functions dedicated to visualizing results 
and analyses which make extensive use of the module 
Matplotlib [10]. Figure 11 shows a schematic of the 
architecture for BayesFit, along with displaying the module 
dependencies required by a given function.

Figure 10: Boxplots of distributions for values of threshold 
estimated at 75% correct performance using BayesFit 
and Psignifit 4.0 compared to target distribution.

Figure 9: Boxplots of parameter estimates generated using BayesFit compared to target distributions.
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Quality control
Both unit and functional testing has been performed 
on BayesFit. Travis CI (https://travis-ci.org/) is used to 
perform regular unit tests on BayesFit to meet strict quality 
control standards. A coverage report can also be found on 
the GitHub repository for BayesFit via the coverage badge.

Issue tracker
Although BayesFit undergoes extensive testing to ensure the 
software is functioning properly, if any issues arise during 
use, please let us know under the issue tracker for BayesFit 
on Github: https://github.com/SlugocM/bayesfit/issues.

(2) Availability
Operating system
BayesFit should function on any software capable of 
running Python 3.5 or greater. Current operating systems 
that BayesFit has been tested on include macOS Sierra, 
Windows 10, and Ubuntu 16.04.

Programming language
Python (version 3.5 or greater.)

Additional system requirements
The minimum system requirements needed to run Python 
3.5 or greater.

Dependencies
numpy >= 0.19.0
matplotlib >= 2.0.0
scipy >= 1.1.0

List of contributors
Michael Slugocki is the sole developer, and current 
maintainer of the BayesFit module. The code for this 
software has been developed in the lab of Dr. Allison B. 
Sekuler and Dr. Patrick J. Bennett, who are co-authors of 
this article.

Software location
Code repository

Name: GitHub
�Persistent identifier: https://github.com/slugocm/
bayesfit
Licence: Apache 2.0
Date published: 02/10/17

Language
English

(3) Reuse potential
The need to estimate parameters of models fit to 
psychophysical data exists in many different domains 
within Psychology. Therefore, the potential for reuse 
of this software to be high. The core code of BayesFit 
has been written using only the Numpy module, and 
therefore many functions in BayesFit can be used in 
other projects that want to use numerical integration 
and Bayesian inference in modelling psychophysical data. 
Some highlighted functionality includes:

1.	Checking user arguments for fitting psychometric 
functions.

Figure 11: Schematic of the architecture for BayesFit, also displaying module dependencies for each function, whether 
directly or using a function that also depended upon use of a specific module.
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2.	Extracting user provided prior distributions.
3.	Defining psychometric function definitions.
4.	Computing likelihood surface via numerical 

integration.
5.	Computing posterior distribution via numerical 

integration.
6.	Compute various parameters from fitted psychomet-

ric function (e.g., MAP estimate, Bayesian Credible 
Intervals, etc).

7.	Plotting model fits from parameter estimates.
8.	Plotting prior, marginal, and posterior distributions.
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