
Slugocki, M, et al. 2019 BayesFit: A Tool for Modeling
Psychophysical Data Using Bayesian Inference. Journal of Open
Research Software, 7: 2. DOI: https://doi.org/10.5334/jors.202

Journal of
open research software

SOFTWARE METAPAPER

BayesFit: A Tool for Modeling Psychophysical Data Using
Bayesian Inference
Michael Slugocki, Allison B. Sekuler and Patrick J. Bennett
McMaster University, CA
Corresponding author: Michael Slugocki (slugocm@mcmaster.ca)

BayesFit is a module for Python that allows users to fit models to psychophysical data using Bayesian
inference. The module aims to make it easier to develop probabilistic models for psychophysical data
in Python by providing users with a simple API that streamlines the process of defining psychophysical
models, obtaining fits, extracting outputs, and visualizing fitted models. Our software implementation
uses numerical integration as the primary tool to fit models, which avoids the complications that arise in
using Markov Chain Monte Carlo (MCMC) methods [1]. The source code for BayesFit is available at https://
github.com/slugocm/bayesfit and API documentation at http://www.slugocm.ca/bayesfit/. This module is
extensible, and many of the functions primarily rely on Numpy [2] and therefore can be reused as newer
versions of Python are developed to ensure researchers always have a tool available to ease the process
of fitting models to psychophysical data.

Keywords: Psychophysics; Psychometrics; Psychometric function; Bayesian inference; Numerical
integration; Curve fitting; Python

(1) Overview
Introduction
Fitting statistical models to behavioural data is an
important part of analyzing task performance within the
field of Psychology [3]. Within the domain of psychophysics,
a fundamental statistical model is the psychometric
function, which relates performance – usually response
accuracy or latency – to the stimulus, and is used to
quantify stimulus detection or discrimination [3]. In
experiments that measure response accuracy in a stimulus
detection task, the psychometric function indicates how
the probability of a correct detection response is related
to stimulus intensity. Typically, correct responses are made
more frequently as the stimulus intensity increases [3, 4].

Although fitting a psychometric function to data is a
common component of the analysis of behavioural data,
very few tools have been designed to help researchers
streamline this fitting process [1, 3, 4, 5], and only one of
these has been adapted for use in Python [1]. Furthermore,
the only tool available for Python does not support versions
3.x or greater. We therefore created a module supporting
newer versions of Python (3.x) that implements a Bayesian
algorithm to fit psychometric functions to behavioural
data with as few steps as possible. The resulting software,
BayesFit, accomplishes this task by taking advantage of a
simple API that provides a convenient method for users
to build probabilistic models using numerical integration

in Python. Our module also makes it easy for users to fit
models to large numbers of datasets while constraining
the parameters used across model fits.

Usage Example 1: Fitting Models to Psychophysical
Data using MLE
The full API documentation for BayesFit can be found at:
http://www.slugocm.ca/bayesfit/.

To demonstrate the functionality of this software,
below we provide the results from a simulated two-
interval, forced-choice (2-IFC) detection experiment in
which each experimental trial consists of two successive,
temporal intervals, and the observer must determine
whether the target stimulus was presented in the first or
second interval. Stimulus intensity is varied across trials,
and response accuracy varies from near chance levels at
low intensity to nearly perfect accuracy at high stimulus
intensity (see Figure 1). Detection threshold is estimated
by fitting a curve to the response accuracy data and then
determining the stimulus intensity that produces an
intermediate level of response accuracy (e.g., 75% correct).

BayesFit expects that data provided by the user are
organized into a m-row by 3-column Numpy array, where
the 1st column corresponds to the stimulus intensities
used, the 2nd column the number of correct responses
made by an observer at each stimulus intensity, and the
3rd column the number of trials run at each intensity

https://doi.org/10.5334/jors.202
mailto:slugocm@mcmaster.ca
https://github.com/slugocm/bayesfit
https://github.com/slugocm/bayesfit
http://www.slugocm.ca/bayesfit/
http://www.slugocm.ca/bayesfit/

Slugocki et al: BayesFitArt. 2, page 2 of 8

level. Data in columns 2 and 3 should be organized such
that values along each row correspond to the level of
intensity specified along the same row in column 1 (see
Figure 2).

Once data are appropriately organized, we are ready to
use BayesFit to perform the model fitting procedure. We
first import the BayesFit module into our workspace via:
import bayesfit as bf

Next, we specify the output variables and options that
we want to use for our fitting procedure. BayesFit uses
only one main function called fitmodel to streamline the
process of fitting models to psychophysical data. If no
priors are provided to the function, the fitting procedure is
equivalent to performing maximum likelihood estimation
(MLE). A basic example in using the fitmodel function to fit
a model using MLE would be as follows:
metrics, options = bf.fitmodel (data = data,

batch = False,
logspace = None,
nafc = 2,
sigmoid_type = ‘norm’,
param_ests = None,
priors = None,
param_free = [True,
			 True, False,
			 False],
threshold = 0.75,
density = 100
)

Although we have listed all options that are available
to the user in fitting models using BayesFit, the only
mandatory argument to provide the fitmodel function
with is data. However, if additional options are not
specified, default values for these options will be
assigned. Complete API documentation describing each
of these options, as well as their default assignments, are
located at: http://www.slugocm.ca/bayesfit/. Following
the fitting procedure, the fitmodel function outputs two
variables that include:

1.	Metrics – a dictionary containing parameter estimates
from the fitted model (s), metrics about the goodness-
of-fit of each parameter, arrays corresponding to the
marginal distributions, the likelihood surface (poste-
rior if priors provided), as well as a numerical approx-
imation of the threshold from the fitted function (at
level specified in options).

2.	Options – the options used to fit model (s) to data.

Using these outputted variables, we can generate a plot
of the fitted model using the plot_psyfcn function of the
BayesFit module. For example, to visualize a psychometric
function (Cumulative Normal sigmoid) fit using the
BayesFit module to the data shown in Figure 1, we would
specify the following snippet of code:
bf.plot_psyfcn (data, options, metrics)

As can be seen in the example above, only a few lines of
code are needed to generate parameter estimates for our
model and quickly visualize the results (see Figure 3).
Although our example above was performed using only
a single dataset, the BayesFit module also includes a
method for fitting models to batch datasets so that the
same model definitions can be used across all models
fit. Once again, we encourage the reader to visit the API

Figure 1: Plot of synthetic data generated from an observer
detecting the flash of a light onscreen. The abscissa
represents stimulus intensity, while the ordinate axis
represents proportion correct.

Figure 2: Example of how data from a single psychophysical
experiment should be formatted when passing these
data to BayesFit for model fitting.

Figure 3: Plot of psychometric function using a
Cumulative Normal sigmoid fit to data using BayesFit.

http://www.slugocm.ca/bayesfit/

Slugocki et al: BayesFit Art. 2, page 3 of 8

documentation for detailed examples of how to make use
of such operations.

Usage Example 2: Fitting Models to Psychophysical
Data using Bayesian Inference
Our example above used an MLE fitting procedure, as no
prior distributions were provided to BayesFit for parameters
to-be-estimated. However, if we have prior knowledge
about what the values of our parameters should be, along
with what the shape of the distribution in likelihood of
different values are (e.g., Uniform, Normal, etc.), we can
pass these arguments along to the fitmodel function of
BayesFit during our fitting procedure. The fundamental
difference in passing priors to BayesFit is that we are now
using Bayesian inference methods rather than MLE in
estimating parameters of the psychometric function, and
thus are computing the posterior distribution.

BayesFit provides users with 5 different distributions
that can be used to specify priors for each parameter.
These include:

1.	‘Unif (a,b)’ – Uniform
2.	‘Norm (a,b)’ – Normal
3.	‘Log-Norm (a,b)’ – Log-normal
4.	‘Beta (a,b)’ – Beta
5.	‘Gamma (a,b)’ – Gamma

Therefore, if the user knew that certain values were more
likely compared to others for the parameters controlling

the scale and slope of the psychometric function, then
the user could pass those arguments along to the fitmodel
function of BayesFit as follows:
Define priors for scale and slope parameters of
Cumulative Normal function
priors = [‘Norm (0.05,0.01)’, ‘Norm
(0.012,0.001)’, None, None]

Fit model passing along priors
metrics, options = bf.fitmodel (data = data,

batch = False,
logspace = None,
nafc = 2,
sigmoid_type = ‘norm’,
param_ests = None,
param_f�ree = [True,

True, False,
False],

priors = priors,
threshold = 0.75,
density = 100
)

From this example, it can also be seen that choosing
prior distributions, and the values that define them, can
be difficult. Therefore, it is best to use priors only when
you are confident that the probability of certain values for
parameters to-be-estimated are more likely than others
based on theoretical or empirical grounds. Following the
fitting procedure, the user can now visualize the priors
used during the fitting procedure using the plot_priors
function from BayesFit (see Figure 4):
bf.plot_priors (options, metrics)

Figure 4: Plot of prior distributions used during Bayesian inference of parameters of psychometric function.

Slugocki et al: BayesFitArt. 2, page 4 of 8

The marginal distributions for each parameter can be
plotted via the plot_marginals functions (see Figure 5):
Plot marginal distributions
bf.plot_marginals (metrics)

The posterior surface can be visualized via the plot_
posterior function (see Figure 6):
Plot posterior collapsed across gamma and lambda
bf.plot_posterior (metrics)

Usage Example 3: Batch Fitting Models to Datasets
Occasions might arise where the user would like
to automatically, rather than manually, fit multiple
psychometric models across several datasets. The BayesFit
module makes this task easy by requiring only two small
changes to the procedure used to fit a single model. The
first change is that the batch input argument for the
fitmodel function must be set to True. The second change

is that each dataset must be stored in a single dictionary
object, with each dataset occupying a separate key (see
Figure 7).

Here is a simple example of using the fitmodel function
to perform batch fitting on multiple datasets:
Store each dataset in a separate key under a
dictionary object
data = dict ()
data[‘dataset_01’] = data01
data[‘dataset_02’] = data02
data[‘dataset_03’] = data03

Use fitmodel to fit functions across multiple
datasets
metrics, options = bf.fitmodel (data = data,

batch = True
)

Note that only user-specified values for fixed parameters
are used when performing batch fitting. Furthermore, to

Figure 5: Plot of marginal distributions of parameters extracted from posterior.

Figure 6: Plot of posterior surface for scale and slope parameters, collapsed across gamma and lambda.

Slugocki et al: BayesFit Art. 2, page 5 of 8

prevent memory issues, only select metrics will be saved
for each psychometric model fit.

Performance evaluation using simulated data
In order to assess the accuracy of parameter estimates
using BayesFit, we generated 100 synthetic datasets from
simulated observers in a psychophysical experiment.
The datasets were generated to mimic the response of
observers performing a 2-interval forced choice task with
with eight equally-spaced stimulus intensities (range:
0.1–0.9). The true probability for an observer of correctly
responding to a given level of intensity, x, was modelled as:

(, , , ,) (1) (, ,)CDFp x Weibull x             � (1)

where x is the intensity of the stimulus, α and β determine
the scale and shape of the Weibull sigmoid function, γ is
the guess rate, and λ the lapse rate. With the exception

of the parameter γ which was fixed at 0.5 (i.e., 1/nafc),
the parameters that define an observers› sensitivity
at different stimulus intensities were drawn from the
distributions:

 
 

 

0.45, 0.65

2, 8

0, 0.10

Unif
Unif

Unif









 � (2)

These parameters were used to generate 100 binomial
random responses at each stimulus intensity, for a total
of 800 responses. In other words, 100 responses were
simulated for each observer at each stimulus intensity.
Data from each simulated observer were fit using the
default settings for BayesFit, with the exception that a
Weibull function was specified for the sigmoid type.

Results regarding the accuracy of parameter estimates
for α, β, and λ are shown in Figures 8 and 9. Overall,

Figure 7: Example of how multiple datasets should be combined into a single dictionary object before being passed as
an argument to BayesFit for batch fitting.

Figure 8: Three plots comparing the accuracy of predicted parameter values versus the true values used to generate
data for each simulated observer. The ordinate axis provides the value of the parameter, either estimated or true, and
the abscissa is an index for each simulated observer.

Slugocki et al: BayesFitArt. 2, page 6 of 8

parameter estimates using BayesFit with default settings
are extremely good. Estimates for α, a parameter that is
typically used to represent the threshold of an observer,
is very accurate. Estimates for parameters β and λ are
also quite close to the true parameters used to generate
data for a given observer, but are more variable in their
accuracy to true values compared to parameter α.

These simulations demonstrate that BayesFit can be
trusted for use in estimating the parameters of models
used to fit psychophsyical data. It should be noted that,
when possible, greater care should be taken in choosing
the options used to fit models to psychophysical data.
However, these simulations serve as a worst case scenario
where the user fails to specify prior knowledge that may
help the fitting procedure, and yet, BayesFit still performs
extremely well.

Comparison in accuracy of estimating thresholds to
Psignifit 4.0
To evaluate the performance of BayesFit in comparison to
Psignifit 4.0, the only other module the authors are aware of
for fitting models to psychophysical data in Python (albeit
2.x), we make use of the simulated data used above for
judging the accuracy of BayesFit in parameter estimation.
Because BayesFit uses definitions for psychometric
functions according to those specified in [6], and Psignifit
4.0 uses parameterizations of the psychometric functions
according to [7], a direct comparison between parameter
estimates obtained using Psignifit 4.0 and BayesFit cannot
be readily made.

However, we can assess the accuracy of threshold
estimates obtained from the model fit to a simulated
observer’s dataset using each module. Therefore, we used
Psignifit 4.0 to fit models to simulated data using default
settings except for specifying the sigmoid type as a Weibull
function, and also defining threshold at 75% proportion
correct response.

Figure 10 show boxplots of the distributions of 75%
threshold estimates obtained using BayesFit and Psignifit
4.0 compared to the distribution of true threshold values.
Results show that threshold estimates obtained using
BayesFit are remarkably similar to those obtained using

Psignifit 4.0, and both distributions accurately resemble
the target distribution for threshold defined at 75% correct
response. These results suggest that both BayesFit and
Psignifit 4.0 perform similarly in estimating thresholds for
data obtained from a simulated psychophysical experiment.

Implementation and architecture
BayesFit was written in Python [8], and makes extensive
use of the Numpy module [2] in constructing functions
for BayesFit. The core function of BayesFit called fitmodel
computes posterior estimates using numerical integration,
and serves as the main function used in fitting models.
Besides this core function, BayesFit uses several utility
functions to compute parameter estimates. Although
most of these functions require only Numpy, probability
distributions currently are defined using a subset of
functions from the module SciPy [9]. BayesFit also contains
several plotting functions dedicated to visualizing results
and analyses which make extensive use of the module
Matplotlib [10]. Figure 11 shows a schematic of the
architecture for BayesFit, along with displaying the module
dependencies required by a given function.

Figure 10: Boxplots of distributions for values of threshold
estimated at 75% correct performance using BayesFit
and Psignifit 4.0 compared to target distribution.

Figure 9: Boxplots of parameter estimates generated using BayesFit compared to target distributions.

Slugocki et al: BayesFit Art. 2, page 7 of 8

Quality control
Both unit and functional testing has been performed
on BayesFit. Travis CI (https://travis-ci.org/) is used to
perform regular unit tests on BayesFit to meet strict quality
control standards. A coverage report can also be found on
the GitHub repository for BayesFit via the coverage badge.

Issue tracker
Although BayesFit undergoes extensive testing to ensure the
software is functioning properly, if any issues arise during
use, please let us know under the issue tracker for BayesFit
on Github: https://github.com/SlugocM/bayesfit/issues.

(2) Availability
Operating system
BayesFit should function on any software capable of
running Python 3.5 or greater. Current operating systems
that BayesFit has been tested on include macOS Sierra,
Windows 10, and Ubuntu 16.04.

Programming language
Python (version 3.5 or greater.)

Additional system requirements
The minimum system requirements needed to run Python
3.5 or greater.

Dependencies
numpy >= 0.19.0
matplotlib >= 2.0.0
scipy >= 1.1.0

List of contributors
Michael Slugocki is the sole developer, and current
maintainer of the BayesFit module. The code for this
software has been developed in the lab of Dr. Allison B.
Sekuler and Dr. Patrick J. Bennett, who are co-authors of
this article.

Software location
Code repository

Name: GitHub
�Persistent identifier: https://github.com/slugocm/
bayesfit
Licence: Apache 2.0
Date published: 02/10/17

Language
English

(3) Reuse potential
The need to estimate parameters of models fit to
psychophysical data exists in many different domains
within Psychology. Therefore, the potential for reuse
of this software to be high. The core code of BayesFit
has been written using only the Numpy module, and
therefore many functions in BayesFit can be used in
other projects that want to use numerical integration
and Bayesian inference in modelling psychophysical data.
Some highlighted functionality includes:

1.	Checking user arguments for fitting psychometric
functions.

Figure 11: Schematic of the architecture for BayesFit, also displaying module dependencies for each function, whether
directly or using a function that also depended upon use of a specific module.

https://travis-ci.org/
https://github.com/SlugocM/bayesfit/issues
https://github.com/slugocm/bayesfit
https://github.com/slugocm/bayesfit

Slugocki et al: BayesFitArt. 2, page 8 of 8

2.	Extracting user provided prior distributions.
3.	Defining psychometric function definitions.
4.	Computing likelihood surface via numerical

integration.
5.	Computing posterior distribution via numerical

integration.
6.	Compute various parameters from fitted psychomet-

ric function (e.g., MAP estimate, Bayesian Credible
Intervals, etc).

7.	Plotting model fits from parameter estimates.
8.	Plotting prior, marginal, and posterior distributions.

Acknowledgements
We thank the editorial team and reviewers for their
insightful comments and efforts spent towards improving
this manuscript, and the BayesFit module.

Competing Interests
The authors have no competing interests to declare.

References
1.	 Schütt, H, Harmeling, S, Macke, J and Wichmann,

F 2015 Psignifit 4: Pain-free Bayesian inference for
psychometric functions. In: 15th Annual Meeting of
the Vision Sciences Society (VSS 2015). DOI: https://doi.
org/10.1167/15.12.474

2.	 Oliphant, T E 2006 Aguide to NumPy. USA: Trelgol
Publishing.

3.	 Wichmann, F A and Hill, N J 2001 The psychometric
function: I. Fitting, sampling, and goodness of fit.
Attention, Perception, & Psychophysics, 63(8): 1293–
1313. DOI: https://doi.org/10.3758/BF03194544

4.	 Prins, N and Kingdon, F A A 2009 Palamedes: Matlab
routines for analyzing psychophysical data. http://
www.palamedestoolbox.org.

5.	 Linares, D and López-Moliner, J 2016 Quickpsy: An
R package to fit psychometric functions for multiple
groups. The R Journal, 8(1): 122–131.

6.	 Prins, N 2016 Psychophysics: A practical introduction.
Academic Press.

7.	 Alcalá-Quintana, R and García-Pérez, M A 2004 The
role of parametric assumptions in adaptive Bayesian
estimation. Psychological Methods, 9(2): 250. DOI:
https://doi.org/10.1037/1082-989X.9.2.250

8.	 Van Rossum, G 2007 June Python Programming
Language. In: USENIX Annual Technical Conference, 41: 36.

9.	 Jones, E, Oliphant, E, Peterson, P, et al. 2001 SciPy:
Open Source Scientific Tools for Python. http://www.
scipy.org/ [Online; accessed 2018-09-17].

10.	Hunter, J D 2007 Matplotlib: A 2D Graphics
Environment. Computing in Science & Engineering, 9:
90–95. DOI: https://doi.org/10.1109/MCSE.2007.55

How to cite this article: Slugocki, M, Sekuler, A B and Bennett, P J 2019 BayesFit: A Tool for Modeling Psychophysical Data
Using Bayesian Inference. Journal of Open Research Software, 7: 2. DOI: https://doi.org/10.5334/jors.202

Submitted: 02 November 2017 Accepted: 27 November 2018 Published: 17 January 2019

Copyright: © 2019 The Author(s). This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

Journal of Open Research Software is a peer-reviewed open access journal published by
Ubiquity Press. OPEN ACCESS

https://doi.org/10.1167/15.12.474
https://doi.org/10.1167/15.12.474
https://doi.org/10.3758/BF03194544
http://www.palamedestoolbox.org
http://www.palamedestoolbox.org
https://doi.org/10.1037/1082-989X.9.2.250
http://www.scipy.org/
http://www.scipy.org/
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.5334/jors.202
http://creativecommons.org/licenses/by/4.0/

	(1) Overview
	Introduction
	Usage Example 1: Fitting Models to Psychophysical Data using MLE
	Usage Example 2: Fitting Models to Psychophysical Data using Bayesian Inference
	Usage Example 3: Batch Fitting Models to Datasets
	Performance evaluation using simulated data
	Comparison in accuracy of estimating thresholds to Psignifit 4.0
	Implementation and architecture
	Quality control
	Issue tracker

	(2) Availability
	Operating system
	Programming language
	Additional system requirements
	Dependencies
	List of contributors
	Software location
	Code repository

	Language

	(3) Reuse potential
	Acknowledgements
	Competing Interests
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Figure 10
	Figure 11

