
Fulop, S A and Scott, H 2019 Vowel System Sandbox: Complex System
Modelling of Language Change. Journal of Open Research Software,
7: 8. DOI: https://doi.org/10.5334/jors.198

Journal of
open research software

SOFTWARE METAPAPER

Vowel System Sandbox: Complex System Modelling of
Language Change
Sean A. Fulop1 and Hannah Scott2

1 Department of Linguistics at California State University Fresno, US
2 School of Electrical Engineering and Computer Science at Oregon State University, US
Corresponding author: Sean A. Fulop (sfulop@mail.fresnostate.edu)

Vowel System Sandbox is a complex agent-based modelling tool which is intended for linguists and speech
researchers to test hypotheses about how vowel sounds are transmitted and used through the generations
in a language community, and thus how vowel systems may change over generational time. Written in
Python 3, the code repository is on Github and can be run in Linux, Windows 7+ and MacOS. This is the
first software that provides a computational model of sound change in language by implementing first
principles of speech perception and production.

Keywords: language change; agent-based modelling; vowel systems; complex systems; Python
Funding statement: This project was partially funded by Provost awards for Research, Scholarship and
Creative Activity at Fresno State University.

(1) Overview
Introduction
This paper describes software which applies agent-
based modelling in a complex system to the problem of
simulating language change in a speech community. In
particular, the model focuses on the evolution of vowel
sounds and sound systems in a community of agents
transmitting word pronunciations to the “children” as the
population goes through a number of life cycles. Since a
great many parameters of the model are adjustable by the
user, we call the software Vowel System Sandbox, or VoSS.

Language in general has often been characterized as a
complex adaptive system [1, 2]. Unfortunately, nothing
about language change has really been learned from this
characterization because there is no agreed upon theory
of the subject, few results have been derived from it, and
moreover this idea has never been demonstrated in a fully
complex model of a speech community. A number of
advocates of the complex system viewpoint on language
have proceeded to implement computational models,
but these have often been based on very little actual
knowledge of the transmission of language and speech
and are thus overly simplistic, e.g. [3].

A complex (adaptive) system is definable as one in which
a large number of individual objects interact according
to locally governed parameters, which leads to global
phenomena that emerge from the complexity without
themselves being specifically parameterized [4]. A favourite
example is that of a hurricane, which emerges from the
local interactions of air molecules in the complex system
of the atmosphere. VoSS was designed to demonstrate

how a population of agents (model speakers) whose local
interactions are strictly governed can nevertheless show
global patterns of change in the sounds spoken. The agent
interaction mechanics are directly parameterized based
on previous research into the first principles of speech
production and perception [5], and speech transmission
from person to person [6, 7]. As such, VoSS qualifies as a
microscopic or micro-level complex system model, in that
it directly implements agent-level interactions. We directly
model vowel sounds only because they are relatively easy
to represent in a realistic auditory space using the first
two formant frequencies on auditory scales.

In linguistics, it seems that such a modelling tool for
language change is highly desirable. Hamann has written
that “a computer simulation that includes both phonetic
and phonological changes by modelling the acquisition
of phonetic and phonological categories where the
speakers/listeners interact with several other agents does
not exist yet [8]”. Recent related work is highly limited
in comparison to VoSS. We leave aside efforts to model
the genesis of language, including the genesis of vowel
systems [9], since the problem addressed here is not the
problem of how language as a communication system
first emerged, but rather the problem of how established
natural languages constantly change. There have been
several papers which report modelling some specific
aspect of language change between agents.

Harrison et al. [10] used the SWARM environment to
model vowel harmony in a small group of agents. No
acoustical representations were used, however, and vowels
“change” in a symbolic sense according to probabilistic rules.

https://doi.org/10.5334/jors.198
mailto:sfulop@mail.fresnostate.edu

Fulop and Scott: Vowel System SandboxArt. 8, page 2 of 8

Clearly this fails to model the actual way in which vowels are
transmitted, which is by sound production and perception.

Winter and Wedel [11] constructed a model with just
two agents interacting. These agents “spoke” words to each
other, the phonetic exemplars of which were represented
by just two phonetic parameters on a 100-point scale. This
sort of model is not a complex system model at all.

Chirkova and Gong [12] model specific vowel systems of
one language, and their agents speak only vowels and not
words. Their framework assumes that there is variation
among speakers, and that adult listeners automatically try
to incorporate all of the variation they hear and imitate
it. This is but one example of the ubiquitous assumption
that phoneme acquisition occurs by some kind of social
synchronization, akin to that which influences the lights
of some species of fireflies. This assumption appears to
have no basis in reality, however.

More recently, Harrington and Schiel [13] model the
single process of /u/-fronting in English. The proposed
mechanism is incremental sound change due to mutual
imitation. It must again be noted that there is no reason
to accept that this mechanism obtains in real speech
communities. It is not a mechanism that has been proven
to cause sound change in fact. Moreover, this is a model of a
single confined process, vowel fronting, to the exclusion of
all other language factors. It is well-established in complex
system modelling that this is always a terrible strategy.

Suffice to say that Hamann’s remark above is indeed
correct, and that thanks to the recent advances in
computational power available, VoSS represents the first
effort we know of to fill the void with a model that is complex,
represents a potentially large number of agents interacting,
and which represents aspects of both the phonological and
phonetic levels. With VoSS we have a genuine complex
system that models vowel transmission at the micro level
using a multitude of agents, represents vowels using their
actual auditory parameters, and in which agents must
acquire sounds when they are “babies” and words when
they are “children”, later to “grow up” and stop learning
sounds. The closest work in spirit is the iterated learning
approach promoted by Kirby [14], but this has never been
applied to the transmission of speech sounds. The virtual
agents in VoSS transmit vowel pronunciations by a realistic
process where the sound is articulated and the listening
agent has to react to it at a cognitive level. Previous research
has usually treated vowels as things that can be passed

around, but the reality of it is much more complicated and
this requires a more sophisticated modelling effort. The
macro-level effects on vowels are generally emergent from
the system parameters, with a minimum of direct control in
the model over the macro level.

Since VoSS is an agent-based model, one might duly
wonder why we chose to write completely custom
software in Python, rather than leveraging an existing
agent-based modelling tool such as NetLogo [15]. A
cursory examination makes it abundantly clear that VoSS
could never be implemented in NetLogo because the VoSS
agent interactions are more sophisticated than the kinds
which can be simulated in that framework. NetLogo and
other agent-based modelling platforms are intended for
modelling systems with a small number of parameters
where the outcomes can be suitably represented with
simple charts. Moreover, NetLogo is intended for
programming a microscale model but only observing the
macroscale behaviour which results. It is not designed
for directly observing the microscale behaviour, which is
another important feature of VoSS.

Implementation and architecture
Structure of a simulation
The simulated speech community begins with a group of
speakers/agents known as the ancestors. The ancestors are
the initiators of the simulated language, which consists
of a lexicon of one-syllable words that includes examples
of all the vowel phonemes or cogphones in the particular
simulation. At present all vowel phonemes are static,
identified by one set of formant frequencies. There is
no provision for diphthongs or vowel dynamics in this
version. The words also contain a variety of consonants
surrounding the vowels. All words have equal frequency
of occurrence, but the sounds do not appear in an equal
number of words. The ancestors “speak” words to transmit
their language, but do not learn. The simulation is run
from this initial point in a series of iterative “time steps”
consisting of four main functions (see Figure 1).

1. Reproduce
A group of agents is added to the population. These babies
acquire the vowel cogphones by listening to a set number
of older agents (consistent across their lifespan) to build
their vowel repertoire. The total population size is limited
by a user parameter.

Figure 1: Action of a single time step.

Fulop and Scott: Vowel System Sandbox Art. 8, page 3 of 8

2. Diffusion
Agents speak to each other in order to learn and pass on
their language. In the current setup, only the vowel sounds
in the various words are changeable during the learning
process—the consonants are held fixed and are not
represented as sound. For the first 10% of their lifespan
(i.e. the number of steps an agent lives, which is a user
parameter), agents hear the complete vocabulary of each
family member, plus a random selection of words from
the rest of the population. Learners add vowel cogphones
to their repertoires and words to their vocabularies as they
hear them.

3. Incrementation
All agents advance one step in age. Those child agents
who reach the age of maturation discard the vowel
cogphones in their repertoires that are not being used in
words. After that point, mature agents speak to learners,

but no longer make changes to their vocabularies or
vowel repertoires.

4. Charon
Agents who have reached the age limit are removed,
and the vowels convention is calculated. This convention
consists of population average pronunciations of the
vowels in each of the various words.

Interface
VoSS runs in Python, and has a command-line interface
with simple command keywords to change the parameters
before running a simulation. Users can select a base vowels
convention for the ancestors from a number of pre-sets
modelling a variety of natural languages, or by entering a
list of vowels using labels derived from the International
Phonetic Alphabet (see Figures 2 and 3). The prototypical
vowels are statically color-coded for the simulation.

Figure 2: The full IPA chart. Axis labels show frequency in Hz/ERB.

Figure 3: English vowel prototypes.

Fulop and Scott: Vowel System SandboxArt. 8, page 4 of 8

The language lexicon is generated randomly for each
simulation, with each word consisting of a syllable onset,
a vowel from the base convention, and a syllable coda.
Each vowel is assigned to a random number of words, so
that any vowel may have up to five times as many words in
the lexicon as any other. This is an implementation of the
concept of functional load in natural languages, in which
different vowels occur in different numbers of words [16,
17].

Vowels are represented as 3-vectors comprising the first
and second formant frequencies (F1 and F2) together
with the length in milliseconds. The vowel formant space
is represented in auditory frequency units of Equivalent
Rectangular Bandwidth, which are converted to and from
the more familiar frequency values in Hz using Traunmüller’s
[18] formula. This type of auditory formant space is based
on studies of vowel perception and production [5].

A small number of consonants are hard-coded in the
program, and are used at random to generate the words
in the lexicon. Each consonant has a number of associated
articulatory features which affect the vowels in production
by coarticulation, and in perception by deassimilation. All
words are monosyllabic, with one vowel and up to one
consonant on either end, and there are no homophones at
the beginning of the simulation (although homophones
can form as it progresses).

At the end of each time step, the vowel chart is updated
with the current live adults’ pronunciation of the vowels
in each of the words, which retain their color-coding
throughout the simulation. Change in the language’s vowel
inventory can be observed as the average pronunciations
move around the formant space. Users can opt to watch
these results live with each time step, or turn off the
graphics and get results after a set number of steps.

In each interaction (see Figure 4), agents imperfectly
speak vowels from their internal repertoire in the context
of mono-syllabic words. The listening agent may find a
match in its repertoire or, if it finds none, will add a new
phone within a similar latitude. The degrees of random
imperfection, both for production of phones into spoken
vowels and conceptualization by the listener, can be
adjusted by the user.

Output
A realistic aspect of the simulation is that a vowel is not
a singular kind of entity, but rather has distinct identities
both as a physical sound and as a cognized “known” vowel.

The former entity is what we call a vowel, while the second
entity is what we call a phone or cogphone. The simulation
is able to show either of these entities. With phone
sampling, the graphics output shows a small colour-
coded dot for each phone in each agent’s repertoire, and
larger coloured circles for the averages of these phones
(see Figure 5). The phones are affected by deassimilation
(adjustment for the consonants) within each word context.
The visualization reflects what the agents “know.”

With vowel sampling, the graphic shows one small,
coloured dot for each agent’s pronunciation of each word
at the time of sampling. Larger coloured circles show the
average pronunciation of each word across all adult agents
in the community. These reports reflect what the agents
“say” and are affected by assimilation to the consonant
context of each word.

For both options, the user can view a “shifting report”
which shows the original prototype positions in black and
the current average pronunciations in colour, so that the
shifting distance and occurrence of lexical mergers/splits
can be observed. These results can also be saved as a text
file or as eps figures showing the resulting vowel space.

VoSS can also run extended simulations and collect
output automatically. After setting the initial simulation
parameters, the archiver prompts for a vowel system
and then runs through 100 cycles. The program saves
the phone and vowel shifting and sampling charts as
eps images at every other step, and also writes a text file
detailing the changes in average formant values over time.

Menu-accessible Parameters
The perceptual margin determines the maximum
Euclidean distance in the formant space within which
an agent will recognize an incoming signal as a match
for a phone already existing in its repertoire. Phone
noise defines a radius which acts as a margin of error in
the formant space within which an agent internalizes
knowledge of a phonorm (articulatory formation of a
vowel in context). Vowel noise defines a radius within
which an agent may speak a vowel example of an internal
phonorm. These perceptual margin and noise parameters
are an interpretation of Ohala’s [6] “hyper-correction/
hypo-correction” and Blevins’ [19] Evolutionary Phonology
models, wherein listeners compensating for speaker
output variation are a driving force of change. It must be
emphasized that these parameters are micro-level only,
and so reflect only the agents’ perception and production,

Figure 4: Schematic model of an interaction between speaker and listener. Formants F1 and F2 are represented in
auditory scales.

Fulop and Scott: Vowel System Sandbox Art. 8, page 5 of 8

not any meta-analysis of the linguistic system such as
vowel contrast or system crowding etc. Proximity add-on,
when positive, determines a radius in the formant space
for triggering conflicts between phones in an agent’s
repertoire. The theoretical basis for the proximity margin
dates back to 1952 [20].

Family size provides the number of agents who teach
babies throughout their lifetime as learners. This parameter
heavily affects the runtime of the simulation and also the
scale and clustering of the language acquisition network.
Contacts provides the number of randomly selected
agents who speak to learners at each step. Words per
contact limits the number of words a learner hears from
each randomly selected contact. Lifespan determines the
number of steps an agent will remain in the simulation.

The flag show set on will make the simulation update
the graphical output with each step, which although
interesting to follow, greatly increases the run time.
Phone/vowel sampling allows the user to choose graphics
output showing either the physical vowel sounds or the
cogphones. Color-coding is optional and can be turned off.
Symbols are optional; prototypes can be shown as filled
circles or IPA symbols. Micro viewing mode highlights a
single learning agent’s repertoire in the graphic output
and documents that agent’s interactions, including all
vowels it hears, and changes that occur in transmission.

Vocabulary reports are more detailed text output
showing the agents’ full repertoires and phone-word
pairings. These can be used to track lexical diffusion of
vowel shifting, mergers or splits. Lexicon report shows
the vowels which agents currently have mapped to
the original words in the lexicon. Lexicon size sets the
minimum number of words in the language (which may
be up to 5 times larger in its final form).

Learners/Teachers allows the user to switch between
showing reports (text/graphical) for the learners only or for
adults only (default is adults only). Armchair agents gives the
user control over whether agents continue to manipulate
their repertoires after the first step of their lifespan.

Quality control
VoSS is normally run from within a Python environment,
and provides a command-line interface to first make
desired changes to the default parameters, and to then
start a simulation running (see use case in section 3 for
more details). The appearance of the running simulation
will vary depending on the show flag and whether vowels
or phones are tracked. In any case the Python shell will
state ‘stepping’ while the results of the next step are being
calculated, and then the numerical version of the graphical
output is printed, and the graphics updated if show is
on. A typical simulation with reasonable parameters can
easily take on the order of one to ten hours to complete
on a typical consumer-level computer using Intel core i7
with multiple CPU (see Figures 6 and 7).

(2) Availability
Operating system
Linux (all modern distributions), Windows (7 and higher)
and macOS.

Programming language
Python 3.4+

Additional system requirements
A system with at least 8GB of memory is recommended to
run extended simulations. VoSS does not require any non-
standard input or output devices.

Figure 5: Results of a 100-cycle simulation with Welsh inventory showing cogphone sampling.

3077/24.50 1469/18.38 666/12.25

 270/6.75

 681/12.42

 447/9.58

 994/15.25

Live agents = 196, Perception = 0.75, Prox add-on = -1, Phone radius = 0.5, Vowel noise = 0.5

Family = 2, Contacts = 50, Words = 10, Cycles = 100

retracted_a

horseshoe

epsilon

u:

barred_i:

open_o

o:

i:

schwa

script_a:

schwa:

e:

I

barred_i

Fulop and Scott: Vowel System SandboxArt. 8, page 6 of 8

Dependencies
Tkinter is required to be installed.

https://docs.python.org/3/library/tkinter.html

List of contributors
1. Hannah Scott (Developer).
2. Sean Fulop (Project Manager).

Figure 6: A simulation starting from Spanish vowels showing vowel sampling. A GIF animation showing the steps can
be viewed here: https://raw.githubusercontent.com/Language-Science-Models-Lab/voss/master/spanish_vowels.gif.
The file is also available for download here: https://doi.org/10.5334/jors.198.s1.

3077/24.50 1425/18.12 620/11.75

 270/6.75

 681/12.42

 447/9.58

 994/15.25

Live agents = 239, Perception = 1.0, Prox add-on = -1, Phone radius = 0, Vowel noise = 0.25

Family = 2, Contacts = 20, Words = 25, Cycles = 20

o

e

retracted_a

i

u

Figure 7: A simulation starting from Danish vowels showing cogphone shifting. A GIF animation showing the steps can be
viewed here: https://raw.githubusercontent.com/Language-Science-Models-Lab/voss/master/danish_phones_shift.gif.
The file is also available for download here: https://doi.org/10.5334/jors.198.s2.

3077/24.50 1425/18.12 620/11.75

 270/6.75

 681/12.42

 447/9.58

 994/15.25

Original positions in black, current mean centers in color. Click to close.

Live agents = 254, Perception = 1.0, Prox add-on = -1, Phone radius = 0, Vowel noise = 0.25

Family = 4, Contacts = 0, Words = 25, Cycles = 10

horseshoe script_a:

schwa open_o

o oe:

i: epsilon

u I:

o_slash: schwa:

ae script_a

o: I

i y:

e ae:

o_slash epsilon:

y open_o:

horseshoe: u:

e: oe

https://docs.python.org/3/library/tkinter.html
https://raw.githubusercontent.com/Language-Science-Models-Lab/voss/master/spanish_vowels.gif
https://doi.org/10.5334/jors.198.s1
https://raw.githubusercontent.com/Language-Science-Models-Lab/voss/master/danish_phones_shift.gif
https://doi.org/10.5334/jors.198.s2

Fulop and Scott: Vowel System Sandbox Art. 8, page 7 of 8

Software location
 Name: Vowel System Sandbox: A Complex Systems
Model of Language Change
�Persistent� identifier: https://zenodo.org/record/
2532817
Licence: GNU General Public License v3.0
Publisher: Hannah Scott
Version published: 3.9
Date published: 1/16/19

Code repository
Name: voss
�Identifier: https://github.com/Language-Science-
Models-Lab/voss
Licence: GNU General Public License v3.0
Date published: 1/16/19

Language
English

(3) Reuse potential
Linguistics as a field is generally stuck in the armchair
when it comes to theorizing about language change.
There is essentially no available software that could enable
a legitimate computational science of language change
to develop. VoSS is a first step in this direction, to allow
linguists to test hypotheses and theories of the causes of
sound change in language, and also to test and establish
some of the basic parameters of the speech transmission
process in humans.

The data which would be needed to analyse change at
this level would be impractical to collect in real life, but
modelling provides a good alternative to interact with
the entire system. Moreover, researchers could potentially
expand the program by adding mechanics from other
theoretical viewpoints such as social implementation of
changes, and language contact effects.

Typical use case
1. User indicates that she wants to run a simulation

using the default parameters.
2. The VoSS software will show the parameters and dis-

play the dynamically-generated lexicon.
3. VoSS will present the base convention with summary

of parameters below a vowel chart indicating the live
vowel convention.

4. The user will confirm (via mouse-click in the chart)
that they are ready to begin the simulation.

5. VoSS will print the lexicon with average vowel pro-
nunciations among adult agents and present the
convention plot with full adult sampling and aver-
ages at step-wise intervals until the requisite number
of cycles is complete.

6. The user will confirm that they are ready to proceed.
7. The system will present the final convention juxta-

posed with the base convention averages without
individual sampling.

8. User confirms via mouse-click in the chart that she is
finished viewing the final output.

9. The system will close the chart and maintain the cur-
rent simulation.

Support will be offered as possible by the developers. The
software will be updated on GitHub.

Additional Files
The additional files for this article can be found as follows:

•	 Figure 6. A simulation starting from Spanish vowels
showing vowel sampling. A GIF animation showing
the steps can be viewed here: https://raw.githubuser-
content.com/Language-Science-Models-Lab/voss/
master/spanish_vowels.gif. The file is also available for
download here: https://doi.org/10.5334/jors.198.s1

•	 Figure 7. A simulation starting from Danish vowels
showing cogphone shifting. A GIF animation showing
the steps can be viewed here: https://raw.githubuser-
content.com/Language-Science-Models-Lab/voss/
master/danish_phones_shift.gif. The file is also avail-
able for download here: https://doi.org/10.5334/
jors.198.s2

Acknowledgements
Thanks are owed to Chris Golston, Darin Flynn, Mark
Ryan, Zach Metzler, and Brian Moran for discussions that
furthered the ideas in the project.

Competing Interests
The authors have no competing interests to declare.

References
1. Steels, L 2000 Language as a complex adaptive

system. In: Parallel Problem Solving from Nature PPSN
VI, Schoenauer, M, et al. (eds.), 17–26. Springer. DOI:
https://doi.org/10.1007/3-540-45356-3_2

2. Ellis, N C and Larsen-Freeman, D 2009 Language as
a Complex Adaptive System. John Wiley & Sons.

3. Kretzschmar Jr., W A 2015 Language and Complex
Systems. Cambridge University Press.

4. Nicolis, G and Nicolis, C 2012 Foundations of Complex
Systems, 2nd ed. New Jersey: World Scientific. DOI:
https://doi.org/10.1142/8260

5. Rosner, B S and Pickering, J B 1994 Vowel
Perception and Production. Oxford University Press.
DOI: https://doi.org/10.1093/acprof:oso/97801985
21389.001.0001

6. Ohala, J J 1981 The listener as a source of sound
change. In: Chicago Linguistic Society, Masek, C
S, Hendrick, R A and Miller, M F (eds.), 178–203.
University of Chicago Press.

7. Ohala, J J 1996 Speech perception is hearing sounds,
not tongues. The Journal of the Acoustical Society
of America, 99(3): 1718–1725. DOI: https://doi.
org/10.1121/1.414696

8. Hamann, S 2015 Phonological Changes. In: The
Routledge Handbook of Historical Linguistics,
Bowern, C and Evans, B (eds.), 249–263. Routledge:
London.

9. De Boer, B 2001 The Origins of Vowel Systems, 1.
Oxford University Press on Demand.

10. Harrison, K D, Dras, M and Kapicioglu, B 2002
Agent-based modeling of the evolution of vowel
harmony. In: North East Linguistic Society.

https://zenodo.org/record/2532817
https://zenodo.org/record/2532817
https://github.com/Language-Science-Models-Lab/voss
https://github.com/Language-Science-Models-Lab/voss
https://raw.githubusercontent.com/Language-Science-Models-Lab/voss/master/spanish_vowels.gif
https://raw.githubusercontent.com/Language-Science-Models-Lab/voss/master/spanish_vowels.gif
https://raw.githubusercontent.com/Language-Science-Models-Lab/voss/master/spanish_vowels.gif
https://doi.org/10.5334/jors.198.s1
https://raw.githubusercontent.com/Language-Science-Models-Lab/voss/master/danish_phones_shift.gif
https://raw.githubusercontent.com/Language-Science-Models-Lab/voss/master/danish_phones_shift.gif
https://raw.githubusercontent.com/Language-Science-Models-Lab/voss/master/danish_phones_shift.gif
https://doi.org/10.5334/jors.198.s2
https://doi.org/10.5334/jors.198.s2
https://doi.org/10.1007/3-540-45356-3_2
https://doi.org/10.1142/8260
https://doi.org/10.1093/acprof:oso/9780198521389.001.0001
https://doi.org/10.1093/acprof:oso/9780198521389.001.0001
https://doi.org/10.1121/1.414696
https://doi.org/10.1121/1.414696

Fulop and Scott: Vowel System SandboxArt. 8, page 8 of 8

11. Winter, B and Wedel, A 2016 The Co-evolution of
Speech and the Lexicon: The Interaction of Functional
Pressures, Redundancy, and Category Variation. Topics
in cognitive science, 8(2): 503–513. DOI: https://doi.
org/10.1111/tops.12202

12. Chirkova, K and Gong, T 2014 Simulating vowel
chain shift in Xumi. Lingua, 152: 65–80. DOI: https://
doi.org/10.1016/j.lingua.2014.09.009

13. Harrington, J and Schiel, F 2017 /u/-fronting and
agent-based modeling: The relationship between
the origin and spread of sound change. Language,
93(2): 414–445. DOI: https://doi.org/10.1353/
lan.2017.0019

14. Kirby, S, Griffiths, T and Smith, K 2014 Iterated
learning and the evolution of language. Current
Opinion in Neurobiology, 28: 108–114. DOI: https://
doi.org/10.1016/j.conb.2014.07.014

15. Wilensky, U 2017 NetLogo. Evanston, Illinois.

16. Hockett, C F 1967 The quantification of functional
load. Word, 23(1–3): 300–320. DOI: https://doi.org/
10.1080/00437956.1967.11435484

17. Surendran, D and Niyogi, P 2006 Quantifying the
functional load of phonemic oppositions, distinctive
features, and suprasegmentals. Amsterdam Studies in
the Theory and History of Linguistic Science, 279. DOI:
https://doi.org/10.1075/cilt.279.05sur

18. Traunmüller, H 1990 Analytical expressions for the
tonotopic sensory scale. The Journal of the Acoustical
Society of America, 88(1): 97–100. DOI: https://doi.
org/10.1121/1.399849

19. Blevins, J 2004 Evolutionary Phonology: The Emergence
of Sound Patterns. Cambridge University Press. DOI:
https://doi.org/10.1017/CBO9780511486357

20. Martinet, A 1952 Function, structure, and sound
change. Word, 8(1): 1–32. DOI: https://doi.org/10.10
80/00437956.1952.11659416

How to cite this article: Fulop, S A and Scott, H 2019 Vowel System Sandbox: Complex System Modelling of Language Change.
Journal of Open Research Software, 7: 8. DOI: https://doi.org/10.5334/jors.198

Submitted: 02 October 2017 Accepted: 18 February 2019 Published: 25 March 2019

Copyright: © 2019 The Author(s). This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

OPEN ACCESSJournal of Open Research Software is a peer-reviewed open access journal published by
Ubiquity Press.

https://doi.org/10.1111/tops.12202
https://doi.org/10.1111/tops.12202
https://doi.org/10.1016/j.lingua.2014.09.009
https://doi.org/10.1016/j.lingua.2014.09.009
https://doi.org/10.1353/lan.2017.0019
https://doi.org/10.1353/lan.2017.0019
https://doi.org/10.1016/j.conb.2014.07.014
https://doi.org/10.1016/j.conb.2014.07.014
https://doi.org/10.1080/00437956.1967.11435484
https://doi.org/10.1080/00437956.1967.11435484
https://doi.org/10.1075/cilt.279.05sur
https://doi.org/10.1121/1.399849
https://doi.org/10.1121/1.399849
https://doi.org/10.1017/CBO9780511486357
https://doi.org/10.1080/00437956.1952.11659416
https://doi.org/10.1080/00437956.1952.11659416
https://doi.org/10.5334/jors.198
http://creativecommons.org/licenses/by/4.0/

	(1) Overview
	Introduction
	Implementation and architecture
	Structure of a simulation
	1. Reproduce
	2. Diffusion
	3. Incrementation
	4. Charon

	Interface
	Output
	Menu-accessible Parameters

	Quality control

	(2) Availability
	Operating system
	Programming language
	Additional system requirements
	Dependencies
	List of contributors
	Software location
	Code repository

	Language

	(3) Reuse potential
	Typical use case

	Additional Files
	Acknowledgements
	Competing Interests
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7

