
Gillman, M S 2017 GENESIS – The GENEric SImulation System for
Modelling State Transitions. Journal of Open Research Software,
5: 24, DOI: https://doi.org/10.5334/jors.179

Journal of
open research software

SOFTWARE METAPAPER

GENESIS – The GENEric SImulation System for Modelling
State Transitions
Matthew S. Gillman
Wolfson Institute, Queen Mary University of London, UK
m.gillman@qmul.ac.uk

This software implements a discrete time Markov chain model, used to model transitions between states
when the transition probabilities are known a priori. It is highly configurable; the user supplies two text
files, a “state transition table” and a “config file”, to the Perl script genesis.pl. Given the content of
these files, the script generates a set of C++ classes based on the State design pattern, and a main pro-
gram, which can then be compiled and run. The C++ code generated is based on the specification in the
text files. Both multiple branching and bi-directional transitions are allowed.

The software has been used to model the natural histories of colorectal cancer in Mexico. Although
written primarily to model such disease processes, it can be used in any process which depends on discrete
states with known transition probabilities between those states. One suitable area may be in environ-
mental modelling.

A test suite is supplied with the distribution.
Due to its high degree of configurability and flexibility, this software has good re-use potential. It is

stored on the Figshare repository.

Keywords: simulation; modelling; disease progression; state transitions; state machine; probabilities;
Perl; C++; random number generation; Markov chain; Markov process
Funding statement: This work was supported by Cancer Research UK C8162/A16892. This research
utilised Queen Mary’s MidPlus computational facilities, supported by QMUL Research-IT and funded by
EPSRC grant EP/K000128/1.

(1) Overview
Introduction
Software simulations cover a huge field, ranging from
agent models to differential equation-based systems
with an underlying physical model. One class of models
which can be simulated are known as Markov models.
These are models which have a discrete set of states
which can be moved between with defined probabilities;
each state has no knowledge of the preceding state(s)
encountered. Markov models have recently been used to
model prevention and treatment of the hepatitis B virus
[1], bacteria secretion [2], protein cell binding [3] and the
lengths of tree branches [4].

The majority of published simulation models
have been developed to address a specific disease or
process, like those available at CISNET [5]. Genesis,
however, is a generic discrete-time Markov chain
simulator. It models a series of states with specified
transition probabilities between those states. It does
not have the specific functionality of a more specialised
simulator.

Genesis is written in Perl and C++. Other authors
have written similar software in other programming
languages; for example, packages markovchain [6] and
DTMCPack [7] are written in R.

Genesis developed from a microsimulation model
written for the investigation of cervical cancer screening
by Landy et al [8]. However, like the CISNET models,
the model used in Landy et al is optimised for a specific
disease and different screening scenarios.

The software has been used initially to look at the
natural histories of colorectal cancer in Mexico, which
were then used to compare the potential impact of
screening programmes [9].

Although this paper describes the software, more
detailed instructions can be found in the README.txt
file supplied with it.

Implementation and architecture
Figure 1 presents an overview of how the software works
and, ultimately, generates results. After downloading from
the repository, the steps to run the software are as follows:

https://doi.org/10.5334/jors.179
mailto:m.gillman@qmul.ac.uk

Gillman: GENESIS – The GENEric SImulation System for Modelling State TransitionsArt. 24, p.  2 of 6

1. Create a suitable “state transition table” file,
stt.txt, and configuration file, config.txt.
Initially the examples supplied can be used.

2. Run the genesis.pl Perl script. This, and the
accompanying Perl module GenesisFunc.pm,
will generate C++ files (myclasses.h,
myclasses.cpp and the client
simulation.cpp) with classes based on the
State design pattern, using the information supplied
in the .txt files.

 Usage example (all platforms):
 perl genesis.pl

3. Compile the C++ code into the simulation executable.
 Usage example (Linux) (the following should all be

on one line):
 g++ -std=c++11 -std=gnu++11

 simulation.cpp myclasses.cpp -o simulation

 Usage example (Windows):
 cl /EHsc simulation.cpp myclasses.cpp

4. Run this executable, which creates a file called
results.csv.

 Usage example (Linux):
 ./simulation

 Usage example (Windows)
 simulation

 Note that helpful output is seen as the program
executes. However, for larger simulations this can be
copious and slow down execution, in which case it
may be desirable to send this output to a null device.

 Usage example (Linux):
 ./simulation > /dev/null

 Usage example (Windows):
 simulation > NUL

5. Finally, the results.csv file can be examined and
used to extract the required information.

During the development phase, the software was
initially coded in C++, using and adapting the example
implementation of the State pattern given on the
Sourcemaking website [10]. Once this was accomplished, the
genesis.pl script was written to automatically generate
the C++ code expected from stt.txt and config.txt.

Each state mentioned in stt.txt will result in a C++
class being generated. These are children of the abstract
base class State (declared in state.h). They implement
the goNext() function which determines which state

the program should progress to next (including staying in
the same state).

The example stt.txt file in the code repository has
the following lines (the line ordering is irrelevant):

occult symp 12 20 0.05

occult symp 20 40 0.06

occult treated 12 80 0.07

normal cin1 12 80 0.2

cin1 occult 12 80 0.3

Each line consists of a source state name, sink state name,
minimum age, maximum age and finally probability. Here,
possible states are occult, symp, treated, normal and cin1.
The first line means “if the person is currently in the occult
state, and aged 12 or more and less than 20, there is a
probability of 0.05 per time interval that they will transition
to the symp state”. Occult is a “source” state and symp a “sink”
or “absorbing” state. The state diagram for this example is
shown in Figure 2. Not shown is the fact that a subject can
“transition” from one state to itself, i.e. they can remain in
that state. For an environmental process, the 12 and 20 might
refer to, for example, the height of sea level or a distance.

Note that if the time interval used is changed, e.g. from
years to months, the ages and probabilities will have to be
adjusted appropriately.

The final states in this example are treated and symp.
This is a particularly simple example as it is uni-directional;
lines could be added to the stt.txt file to model the
probabilities of leaving these states. Given two states A
and B, it is possible to define transition probabilities both
for A to B and B to A. In such a case A and B would each be
both source and sink states.

Note that the model states generated by this software
have the Markov property; a state does not have knowledge
of the history the individual had prior to entering that
state. This may be undesirable for some simulation
scenarios; one solution might be, for example, rather than
moving from a cancerous state back to a normal state,
moving instead to an in_remission state.

A class diagram of the C++ code produced by this
example is shown in Figure 3. The Machine class is
the means by which client code can connect to the state
machine.

For this example, the goNext() function for the occult
state/class will have C++ code generated similar to the

Figure 1: Steps to generate the software and results.

Gillman: GENESIS – The GENEric SImulation System for Modelling State Transitions Art. 24, p.  3 of 6

following pseudocode. R is a number (between 0 and 1)
from the random number generator; a new value for R is
generated at each age step of the model.

if (age is between 12 and 20) {
 if (R < 0.05) go to symp state
 else if (R > = 0.05 and R < (0.05 + 0.07)) go to treated

state
 else stay in occult state (with implicit probability

1–(0.05 + 0.07) = 0.88)
}
else if (age is between 20 and 40) {

 if (R < 0.06) go to symp state
 else if (R > = 0.06 and R < (0.06 + 0.07)) go to treated

state
 else stay in occult state (with implicit probability

1–(0.06 + 0.07) = 0.87)
}
else if (age is between 40 and 80) {

 if (R < 0.07) go to treated state
 else stay in occult state (with implicit probability

1–0.07 = 0.93)
}
else stay in occult state (all other ages)

Figure 3: UML class diagram for the example.

Figure 2: State diagram based on the example text files.

Gillman: GENESIS – The GENEric SImulation System for Modelling State TransitionsArt. 24, p.  4 of 6

In this example, note the implicit probabilities of staying
in the occult state. If necessary these can be explicitly
stated in the stt.txt file. For example, the first implicit
probability listed above is 0.88; this could be given in
stt.txt as:
occult occult 12 20 0.88

If this is done (a) it gives confidence that the correct
probability for the model to remain in that state has
been specified and (b) for a given source state and age
range, the software checks that the total of the transition
probabilities (including from a state to itself) defined in
stt.txt do not exceed a total of 1.

The config.txt file for this example has the
content:
startage:12

stopage:80

interval:2

number:5

More details of config.txt, and the default values
used if not specified in config.txt, are given in the
README.txt file supplied with the distribution. In
particular it is possible to specify the same seed to
start the random number generator (a default is used
here as it is not specified in the example above), or the
user’s system clock can be used to generate a “random”
seed.

Here, the initial age to simulate is 12 time units (each
time unit is one year in this example), in steps of 2 time
units up to 80. Five individuals will be simulated, one
after the other. The random number generator is not reset
between individuals.

As the initial state has not been otherwise specified, the
simulation starts in the default initial state (normal). In
order to start in a different state, e.g. cin1, the following
line would be needed in config.txt:
initialstate:cin1

The desired state to start the simulation in must
correspond to a source state in stt.txt.

To generate probabilities between 0 and 1, the standard
C++ Mersenne Twister engine is used to sample from a
uniform distribution. If, say, a transition probability from
state A to state B of 0.2 was specified in stt.txt, that
particular transition would occur only if the next random
number in the sequence was from 0 (inclusive) to just less
than 0.2. If, additionally, a probability of 0.15 was defined
for the transition state A to state C, then this would occur
if the random number was from 0.2 (inclusive) to just less
than 0.35 (=0.2 + 0.15). (The software may not follow this
exact ordering).

The output from running the C++ simulation executable
is a comma-separated value file, results.csv. This
has a header row starting with “ID” (for ith simulation)
and then a sequence of numbers (e.g. denoting different
ages). The data lines follow. Examples are given in the next
section.

Quality control
The software has been functionally tested on Linux and
Windows. On Linux, it was compiled with a number of
options:

g++ -g3 -Wall -Wextra -Wstrict-overflow=5

 -std=c++11 -Wno-unused-parameter

 -ansi -pedantic -W -Wconversion

 -Wshadow -Wcast-qual -Wwrite-strings

 -std=gnu++11 simulation.cpp myclasses.cpp

 -o simulation

To identify and remove problems such as pointer errors
and memory leaks, it was run under Valgrind.

A test suite has been written to test the core Genesis
functionality housed in GenesisFunc.pm. The test
script, genesis.t, should be used with the supplied
files test.config.txt and test.stt.txt. All tests
should pass. The script may be run with the command:
perl genesis.t

If any tests fail, a message will state this fact at the end of
the standard output produced.

The file output from the compiled simulation executable
is called results.csv. On Windows this can be opened
in Excel and the columns of interest examined, e.g. the
number of people in each state at a given age. On Linux it
is possible to use command-line utilities to do the same,
e.g.
cut -f 34 -d ‘,’ results.csv |sort| uniq –c

will show how many people are in each state at the age
(or stage) corresponding to the 34th comma-separated
column.

It is possible to run a fast test to ensure that the
software is working as planned. Suppose there exists a
simple two-state model, with one thousand people, all
of whom start in state healthy, and with a 50% chance
per time interval that they will transition to state cin1.
Initially the model is run for only one time interval. Then
stt.txt might be:
normal cin1 12 80 0.5

and config.txt:
startage:20

stopage:21

interval:1

number:1000

Running through the Perl script/C++ compilation/C++
invocation process should then produce content similar
to:
ID,20,21,

1,normal,normal,

2,normal,cin1,

3,normal,cin1,

4,normal,cin1,

5,normal,normal,

...

1000,normal,normal

The first column is the “person” ID. Every person at age
20 will be in the initial, normal state (this can be checked
for safety).

On Windows, the resulting columns can be examined in
Excel. On Linux, it is possible to find the number of people
in each state at age 21:
$ cut -d ‘,’ -f3 results.csv |sort|uniq -c

 1 21

 523 cin1

 477 normal

Gillman: GENESIS – The GENEric SImulation System for Modelling State Transitions Art. 24, p.  5 of 6

showing that 52.3% of people transitioned into the cin1
state.

If the number of people simulated is then increased to
one million, the config.txt file will be as above except
for the line
number:1000000

Again running the Perl script, and recompiling and running
the C++ executable, might produce results similar to:
$ cut -d ‘,’ -f3 results.csv |sort|uniq -c

 1 21

 50146 cin1

 49854 normal

showing that about 50.1% of people transitioned to cin1.
Thus, as the number of people simulated is increased, the
limiting case of 50% is approached.

This experiment can be extended by changing the
relevant line in config.txt to
stopage:22

such that two intervals (each of length 1 unit) are
considered. Typical results might be:
ID,20,21,22,

1,normal,normal,cin1,

2,normal,normal,cin1,

3,normal,cin1,cin1,

4,normal,normal,normal

...

In this case the results after one interval (i.e. at age 21)
will be similar to those above, but those after two intervals
(age 22) will tend towards 75% in cin1.

(2) Availability
Operating system
Linux, Windows

Programming language
Perl and C++ 11.

Additional system requirements
Minimal disk space and memory are required to run this
software.

Dependencies
Standard C++ library required.

List of contributors
Matthew Gillman. ORCID ID: 0000-0002-2340-6930.

Software location
Archive

Name: GENESIS – the GENEric SImulation System for
modelling state transitions.

Persistent identifier: DOI: https://doi.org/10.6084/
m9.figshare.4775437

Licence: MIT
Publisher: Matthew Gillman
Version published: 1.0
Date published: 18/05/17

Code repository
Name: N/A

Identifier: N/A
Licence: N/A
Date published: N/A

Emulation environment (if appropriate)
Name: N/A
Identifier: N/A
Licence: N/A
Date published: N/A

Language
English

(3) Reuse potential
This software was envisaged initially as being used to
model disease progression, but it can be used for any
situation or field where a discrete set of states exist with
defined transition probabilities between those states.
Thus it may be possible to model processes from a wide
range of fields.

It has been used to model the natural history of
colorectal cancer in Mexico. Given known transition
probabilities from the literature, a cohort of 1 million
individuals was simulated from a given starting age,
and their natural histories followed over time. Thus the
simulation estimated the number of cancers (including
occult (hidden) ones) which would be expected at each
time point, assuming there was no medical intervention.
With knowledge of the test sensitivity of screening
methods, it was then possible to estimate how many of
the occult cancers would be detected by screening, and
hence how many clinical cancers (and potentially deaths)
could be avoided by such screening.

Caution should be used when using config.txt and
stt.txt files on Linux supplied from Windows, e.g. from
another user. It is best to run such files through the Linux
utility dos2unix before running genesis.pl and then
compiling. This will prevent Windows ^M metacharacters
appearing in simulation.cpp. Note that this is not
necessary with the files supplied in the distribution.

For limited support, please contact the author via the
email address given on his ORCID page (http://orcid.
org/0000-0002-2340-6930).

Acknowledgements
The software took as its inspiration the cervical cancer
screening model [8] developed by Dr Rebecca Landy
and colleagues at the Wolfson Institute. It was first used
“properly” as part of a method to assess the effectiveness
of colorectal cancer screening in Mexico [9], and for that
I must thank MSc student Karen Ramírez-Cervantes, MD,
Professor Stephen W. Duffy and Dr Landy. Professor Peter
D. Sasieni had the original idea for a more generic model.

Competing Interests
The author has no competing interests to declare.

References
1. Yang, P C, Zhang, S X, Sun, P P, Cai, Y L, Lin, Y and

Zou, Y H 2017 “Development of Markov models for

https://doi.org/10.6084/m9.figshare.4775437
https://doi.org/10.6084/m9.figshare.4775437
http://orcid.org/0000-0002-2340-6930
http://orcid.org/0000-0002-2340-6930

Gillman: GENESIS – The GENEric SImulation System for Modelling State TransitionsArt. 24, p.  6 of 6

economics evaluation of strategies on hepatitis B
vaccination and population-based antiviral treatment
in China.” Zhonghua Liu Xing Bing Xue Za Zhi, 38(7):
845–851.

2. Wang, Y, Sun, M, Bao, H and White, A 2013 “T3_MM:
a Markov model effectively classifies bacterial type III
secretion signals.” PLoS One, 8(3). DOI: https://doi.
org/10.1371/journal.pone.0058173

3. Torchala, M, Moal, I, Chaleil, R, Agius, R and
Bates, P 2013 “A Markov-chain model description of
binding funnels to enhance the ranking of docked
solutions.” Proteins, 81(12): 2143–9. DOI: https://doi.
org/10.1002/prot.24369

4. Chor, B and Steel, M 2015 “Do tree split probabilities
determine the branch lengths?” J Theor Biol., 374: 54–9.
DOI: https://doi.org/10.1016/j.jtbi.2015.03.024

5. Surveillance Research Program “CISNET Model
Registry” 15th May 2017. [Online]. Available: https://
resources.cisnet.cancer.gov/registry.

6. Spedicato, G A, Kang, T S, Yalamanchi, S B,
Thoralf, M, Yadav, D, Castillo, N C and Jain, V

“markovchain: Easy Handling Discrete Time Markov
Chains” 16 August 2017. [Online]. Available: https://
cran.r-project.org/package=markovchain. [Accessed
25 August 2017].

7. Nicholson, W “DTMCPack: Suite of functions
related to discrete-time discrete-state Markov
Chains” 28 May 2013. [Online]. Available: https://
cran.r-project.org/package=DTMCPack. [Accessed 25
August 2017].

8. Landy, R, Windridge, P, Gillman, M S and
Sasieni, P D “What cervical screening is appropriate
for women who have been vaccinated against high-
risk HPV? A simulation study.” Submitted for peer
review.

9. Ramírez-Cervantes, K L 2017 Costs and benefits of
implementing an organized colorectal cancer screening
program in México (MSc dissertation) London: Queen
Mary University of London.

10. SourceMaking.com “State Design Pattern” [Online].
Available: https://sourcemaking.com/design_
patterns/state [Accessed 22nd March 2017].

How to cite this article: Gillman, M S 2017 GENESIS – The GENEric SImulation System for Modelling State Transitions. Journal
of Open Research Software, 5: 24, DOI: https://doi.org/10.5334/jors.179

Submitted: 18 May 2017 Accepted: 29 August 2017 Published: 20 September 2017

Copyright: © 2017 The Author(s). This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

Journal of Open Research Software is a peer-reviewed open access journal published by
Ubiquity Press OPEN ACCESS

https://doi.org/10.1371/journal.pone.0058173
https://doi.org/10.1371/journal.pone.0058173
https://doi.org/10.1002/prot.24369
https://doi.org/10.1002/prot.24369
https://doi.org/10.1016/j.jtbi.2015.03.024
https://resources.cisnet.cancer.gov/registry
https://resources.cisnet.cancer.gov/registry
https://cran.r-project.org/package=markovchain
https://cran.r-project.org/package=markovchain
https://cran.r-project.org/package=DTMCPack
https://cran.r-project.org/package=DTMCPack
http://SourceMaking.com
https://sourcemaking.com/design_patterns/state
https://sourcemaking.com/design_patterns/state
https://doi.org/10.5334/jors.179
http://creativecommons.org/licenses/by/4.0/

	(1) Overview
	Introduction
	Implementation and architecture
	Quality control

	(2) Availability
	Operating system
	Programming language
	Additional system requirements
	Dependencies
	List of contributors
	Software location
	Archive
	Code repository
	Emulation environment (if appropriate)

	Language

	(3) Reuse potential
	Acknowledgements
	Competing Interests
	References
	Figure 1
	Figure 2
	Figure 3

