
O’Mara, A, et al. 2017 ImageSURF: An ImageJ Plugin for Batch Pixel-Based
Image Segmentation Using Random Forests. Journal of Open Research
Software, 5: 31. DOI: https://doi.org/10.5334/jors.172

Journal of
open research software

SOFTWARE METAPAPER

ImageSURF: An ImageJ Plugin for Batch Pixel-Based
Image Segmentation Using Random Forests
Aidan O’Mara1, Anna E. King1, James C. Vickers1 and Matthew T. K. Kirkcaldie2

1	Wicking Dementia Research and Education Centre, Faculty of Health, University of Tasmania, AU
2	School of Medicine, Faculty of Health, University of Tasmania, AU
Corresponding author: Aidan O’Mara, PhD (omaraa@utas.edu.au)

Image segmentation is a necessary step in automated quantitative imaging. ImageSURF is a macro-compatible
ImageJ2/FIJI plugin for pixel-based image segmentation that considers a range of image derivatives to
train pixel classifiers which are then applied to image sets of any size to produce segmentations without
bias in a consistent, transparent and reproducible manner. The plugin is available from ImageJ update site
http://sites.imagej.net/ImageSURF/ and source code from https://github.com/omaraa/ImageSURF.

Keywords: ImageJ; FIJI; segmentation; trainable segmentation; binary segmentation; random forests
Funding statement: This research was supported by an Australian Government Research Training Program
Scholarship.

(1) Overview
Introduction
A critical task in quantitative imaging is segmentation,
in which pixels are partitioned into distinct groups.
For example, fluorescent labelling in microscopic
images might be segmented as signal and background,
or photographs of botanical specimens might be
segmented as specimen and background (Figure 1).
After segmentation, measurements and analyses may be
performed to determine, for example, the size, shape,
coverage, spatial distribution or morphology of the
identified features.

Many segmentation techniques such as thresholding,
where pixels above a selected intensity threshold are
discriminated from background [1, 2], depend exclusively
on the brightness of individual pixels, making them
sensitive to noise and regional variations in intensity [1].
Parameters or seeds for segmentation are often manually
selected on a per-image basis based on a preview of the
result, or may be selected, reviewed and refined in an
unstructured iterative process [3].

The use of image segmentation in research raises several
reproducibility issues. In manual segmentation, parameter
choice is influenced by conditions such as screen
brightness and dynamic range, ambient light, perceived
brightness, and subjective bias [4] especially in unblinded
raters [5], and such factors are rarely reported, limiting
reproducibility. When automated segmentation tools are
used, they are often commercial platforms whose detailed
algorithms are proprietary. This complicates comparisons
between studies and poses replication problems, as legacy
software and hardware may no longer be available, and
algorithms or interfaces may differ between versions.

Open-source trainable segmentation tools, such as Ilastik
[3] or the Trainable Segmentation [6] plugin for ImageJ [7],
address many of these issues by using supervised machine
learning algorithms to study ‘training set’ of pixels, which
have been manually assigned class annotations, and create
a model (‘classifier’) to reliably discriminate between
these classes. The context of each pixel (e.g., intensity,
texture, edges, entropy) can be considered, making the
classifier more robust to image artifacts and intensity
shifts [3]. After training, a classifier can be saved and

Figure 1: Confocal fluorescence image of Iba-1 labelled
microglial cells in APPswe/PS1dE9 mouse brain tissue
(a) and segmented image (b). ImageJ sample image
leaf.jpeg (c) and segmented image (d).

https://doi.org/10.5334/jors.172
mailto:omaraa@utas.edu.au
http://sites.imagej.net/ImageSURF/
https://github.com/omaraa/ImageSURF

O’Mara et al: ImageSURFArt.  31, p.  2 of 7

used to perform objective and repeatable segmentation
of large numbers of similarly processed images. Although
Ilastik and Trainable Segmentation have limited support
for importing and exporting image annotations, neither
supports both batch import and batch export of these
annotations in standard formats. These limitations make
it difficult to reproduce and update classifiers, to use
alternative software and input devices for annotation, and
to share training sets in a transparent and collaborative
manner.

For biomedical microscopy, the advantage of machine
learning image segmentation is the ability to apply a
single classifier to large image sets which vary somewhat
in brightness, background level and other image
attributes. For our particular application, high resolution
multichannel confocal fluorescence images of rodent
brains were routinely 22,000 × 18,000 pixels or larger,
and 5 or more images per animal need to be segmented
to produce useful quantitative data. In order to train a
classifier that is robust to the variation across these large
image sets it is beneficial to create a training set consisting
of smaller cropped images of randomly selected regions
in these images. To train a classifier with such large sets of
input images (potentially hundreds) it is necessary to use
an offline iterative process of class annotation, training
and validation, rather than the ‘live preview’ workflows
offered by Ilastik and Trainable Segmentation. To cope
with offline iterative training on the sets of large images
generated by confocal and fluorescence microscopy,
and the very large amount of computed pixel feature
information, data structures and algorithms with reduced
processing and storage requirements are needed.

In this context, we determined that Trainable
Segmentation was unable to use large training sets of
arbitrarily sized annotated images without an extensive
re-write due to the size and complexity of WEKA Instance
data structures. Using a custom implementation of WEKA
Instance backed by primitive arrays slightly reduced
memory usage, but also increased computation time.
Trainable Segmentation only allows import and export of
training data with calculated image features in the text-
based WEKA arff file format which is wasteful of storage
space and slow to import/export for large images, making
iterative annotation of large image sets unworkably slow.
Furthermore, Trainable Segmentation is a legacy ImageJ1

plugin, limiting its interoperability with SciJava and
ImageJ2-compatible applications such as OMERO, KNIME
and MiToBo [7].

We therefore developed Image Segmentation Using
Random Forests (ImageSURF), a freely-available open-
source pixel-classification plugin for ImageJ2/FIJI [7] to
meet our requirements. ImageSURF uses standard bitmap
formats for class annotations, making the training process
open, repeatable and able to incorporate large training sets
created by multiple users across multiple sessions with the
software of their choice. ImageSURF uses primitive data
structures to avoid the substantial overheads of Object
data structures such as the WEKA Instance.

We are currently using ImageSURF to study the
aggregation and deposition of amyloid-β peptide in brain
tissue of Alzheimer’s disease rodent models by means of
immunolabelling and confocal microscopy. Once trained,
ImageSURF is a drop-in replacement for threshold
segmentation in our ImageJ scripts.

Implementation and architecture
ImageSURF is an ImageJ2/FIJI plugin written and
compiled using Java 1.8, with the user interface classes
implementing the SciJava Command interface.

Training input is read from three corresponding sets of
images – a set of raw single-plane single- or multi-channel
greyscale images, a set of images in RGB format that have
been intensity-scaled and pseudo coloured as appropriate
for manual annotation, and a set of these RGB images with
class annotations in distinct colours. The class annotations
are read by taking the difference of the unannotated and
annotated RGB images. Each distinct annotation colour
is assigned a class index based on the hexadecimal RGB
value. ImageSURF supports up to 128 classes.

Annotation images are manually created in ImageJ
using the paint tools or using bitmap image software
such as Adobe Photoshop or GIMP on any device such
as a desktop with a drawing tablet input or portable
touchscreen device (Figure 2).

ImageSURF classifiers are built from the training input
using an optimised implementation of the random
forests algorithm [8] adapted from the FastRandomForest
[9] plugin for the WEKA environment [10], which is
the default classifier used by Trainable Segmentation
[6, 7]. Features are stored as size-efficient primitive

Figure 2: Confocal fluorescence image of MOAB2 labelled amyloid-β pathology in APPswe/PS1dE9 mouse brain tissue
with sparse annotations for signal (red) and background (blue) (a) and resulting segmentation (b).

O’Mara et al: ImageSURF Art.  31, p.  3 of 7

data structures (byte or short arrays for 8-bit and 16-bit
images, respectively) and may be pre-calculated and
saved to disk. These optimisations reduce flexibility and
functionality compared to Trainable Segmentation by
making ImageSURF incompatible with the wide range
of WEKA classifiers and analysis tools, but substantially
increases its capacity for working with large training sets
and images while maintaining compatibility with ImageJ
workflows, including pre- and post-processing tools and
analysis pipelines.

Pixel features are calculated using filters across circular
neighbourhoods with various radii (Figure 3). In the
current release of ImageSURF we have implemented a
filter set to suit confocal fluorescence images of amyloid-β,
including mean, minimum, maximum, median, Gaussian,
standard deviation, range, difference of Gaussians,
difference from mean, minimum, maximum, median and
Gaussian, locally scaled intensity, entropy and difference
of entropy. Radii are selected as a series of values within
the integer set k = 2a + 1 (3, 5, 9, 17, 33, 65, 129, 257…).
For further efficiency, a filter dependency tree is used to
reduce repeat operations: e.g., the output of Gaussian
radii r and s is reused for the difference-of-Gaussians with
those radii.

Pixel features can be pre-calculated and cached to
substantially reduce computation when re-training
classifiers on modified or extended training sets, or as
part of an image analysis pipeline where feature images
are automatically calculated immediately after image
acquisition to speed up later training. Pixel features that

can be derived from other saved features with minimal
processing are not cached in order to reduce disk usage
and read-times.

ImageSURF supports multi-channel images by
calculating pixel features for each channel, and all
combinations of channels merged in grayscale, by
averaging. E.g., for a three channel RGB image, each
image filter would be applied to the red, green and blue
channels, combined red/green, red/blue, green/blue and
red/green/blue to produce seven sets of pixel features.
This allows ImageSURF to consider information from all
channels and the interactions between channels.

After a classifier has been trained, a subset of the most
important features is selected using a modified version of
Breiman’s feature importance calculation algorithm [8] as
implemented in Supek’s FastRandomForest [10]. For each
feature, the classifier is applied to the training set with the
values for that feature randomly shuffled. If classification
accuracy remains high, that feature is less important and
is ranked accordingly. After feature selection the classifier
is re-trained considering only the most important features.
This optimisation substantially reduces the computation
and disk space required when pre-calculating features.
Using a minimal set of image features also reduces the
memory requirements for image segmentation. The
parameters used to train a classifier, including the image
features applied to images, can be viewed using the
ImageSURF Get Classifier Details command.

ImageSURF also supports segmentation of multi-
dimensional images on a plane-by-plane basis. Each

Figure 3: Confocal fluorescence image of MOAB2 labelled amyloid-β pathology in APPswe/PS1dE9 mouse brain tissue
with image filters applied. Maximum (a), mean (b), median (c), minimum (d), range (e), standard deviation (f), locally
scaled intensity (g), Gaussian (h), entropy (i), difference from mean (j), difference from median (k) and difference
from Gaussian (l) filters at radii 3, 17 and 65 pixels. Difference-of-Gaussians at 3/17, 17/65, and 33/65 pixels (j).
Difference-of-entropy for 3/17, 17/65, and 33/65 pixels (k).

O’Mara et al: ImageSURFArt.  31, p.  4 of 7

two-dimensional image plane is segmented independently
to produce an output image stack with the same
dimensions as the input image stack.

Quality control
Automated testing of pixel-based segmentation tools
that use sparsely annotated training images is non-
trivial, particularly when evaluation of the output
requires subjective judgement that is not captured by
the annotations. Therefore, we provide a small set of
example images and class annotation training sets, along
with instructions for end-to-end testing and usage of
ImageSURF.

All sample images and label files are contained in the
ImageSURF MOAB2 images example [11]. ImageSURF
commands are in the Plugins >> Segmentation >>
ImageSURF menu in ImageJ2 and FIJI (Figure 4):

1)	 Configure the classifier settings using the
ImageSURF Classifier Settings command. Use the
default ImageSURF settings (Figure 5).

2)	 Select the image filters using the Select ImageSURF
Features command. Exclude the entropy and
median filters and their derivatives as these may
take some time to calculate. Set the filter radius
range as 0–33 (Figure 6).

3)	 Train the classifier using the Train ImageSURF
Classifier command. Set the raw, un-annotated
and annotated image paths. Set an appropriate

classifier output path and select “Segment training
images and display as stacks” to verify the classifier
accuracy after training (Figure 7) The training
and segmentation process takes approximately
5 minutes on a modern quad-core computer.
Detailed progress information is displayed in the
ImageJ console.

Figure 6: ImageSURF filter selection dialog with example
filters selected.

Figure 5: ImageSURF classifier settings dialog with
default options.

Figure 7: ImageSURF classifier training dialog with
example settings.

Figure 4: ImageSURF menu options.

O’Mara et al: ImageSURF Art.  31, p.  5 of 7

4)	 Verify the accuracy of the trained classifier applied
to the training images (Figure 8). Segmentations
may be overlaid using built-in ImageJ tools, e.g.,
Montage and Merge Channel. If any problem areas
are identified, more examples can be added to the
training set and the classifier re-trained.

5)	 Segment the full dataset using the saved classifier.
A classifier can be used to segment an open image
using the Apply ImageSURF Classifier command or
to a folder of images using Batch Apply ImageSURF
Classifier.

We recommend using an iterative process of annotation
and verification to train ImageSURF classifiers as shown
in Figure 9.

(2) Availability
Operating system
ImageSURF is compatible with ImageJ2 software running
on a Java Virtual Machine version 8 or above. As of writing
ImageJ2 is available for macOS, Linux and Windows
operating systems.

Figure 9: ImageSURF pixel classifier training workflow. A representative set of sub-images are selected and cropped
from the full image set and sparsely annotated as signal or background using a bitmap image software package. The
sub-images and annotations are used as the input to train an ImageSURF classifier which is them applied back to the
input sub-images. The accuracy of the sub-image segmentations is manually verified and the annotation training and
verification processes repeated until the sub-image segmentation is accurate. Once the trained classifier has been
verified as accurate, it can be applied to any image set of which the training set is representative.

Figure 8: ImageSURF training examples. Confocal fluorescence images of MOAB2 labelled amyloid-β pathology in
APPswe/PS1dE9 mouse brain tissue (a). Segmented training images (b) and merged image (c) using the ImageJ
Merge Channels tool to display the segmented signal pixels as transparent red and background as transparent blue.

O’Mara et al: ImageSURFArt.  31, p.  6 of 7

Programming language
ImageSURF is written in Java 1.8.

Additional system requirements
No further requirements. 8 GB of RAM or greater is
recommended.

Dependencies
ImageJ2 (tested with ImageJ 2.0.0-rc-61).

Java Primitive 1.2.3 or greater (https://github.com/
mintern-java/primitive) must be loaded by ImageJ. It will
be loaded automatically if the release .jar file is included
in the ImageJ2 plugins directory or if ImageSURF was
installed using the ImageJ2 updater.

List of contributors
Aidan R O’Mara (programming, testing and validation).
Matthew Kirkcaldie (testing and validation).

Software location
Archive Zenodo

Name: ImageSURF
Persistent identifier: https://doi.org/10.5281/

zenodo.819556
Licence: GNU GPL version 3 
Publisher: Aidan R O’Mara
Version published: v1.1.1
Date published: 27/06/17

Code repository GitHub
Name: ImageSURF
Identifier: https://github.com/omaraa/ImageSURF
Licence: GNU GPL version 3
Date published: 27/06/17

Language
English

(3) Reuse potential
ImageSURF is a robust and general-purpose segmentation
tool that is not limited to any particular field or application.
ImageSURF can be used as a drop-in replacement for
other binary segmentation tools in ImageJ scripts and
as a SciJava command in compatible image processing
pipelines.

ImageSURF can be extended to capture a wider range
of image features by implementing more image filters. It
may be necessary to add support for mixed value types
(e.g., a FeatureReader class that supports both unsigned
short and 32-bit floating point image features) for image
filters that produce output that cannot be scaled to an
unsigned byte or short value without substantial loss of
information.

To practically implement support for true generic
n-dimensional segmentation using n-dimensional filters
would entail losing the benefits of using primitive data
structures, due to current limitations of the Java language
and virtual machine. This may be re-visited when Java
includes support for specialised generics and value types
as discussed in the OpenJDK mailing lists and events [12].

Support for 3-dimensional segmentation could be added
by implementing a second, 3-dimensional version of each
image filter.

Support for modifying and using ImageSURF is available
through the GitHub issues page (https://github.com/
omaraa/ImageSURF/issues) and GitHub wiki (https://
github.com/omaraa/ImageSURF/wiki).

Acknowledgements
The authors thank Robert Ollington and Carolyn King for
their contributions to the initial stages of this project.

Competing Interests
The authors have no competing interests to declare.

References
1.	 Pham, D L, Xu, C and Prince, J L 2000 Current

methods in medical image segmentation. Annual
review of biomedical engineering, 2: 315–337. DOI:
https://doi.org/10.1146/annurev.bioeng.2.1.315

2.	 Roeder, A H K, Cunha, A, Burl, M C and
Meyerowitz, E M 2012 A computational image
analysis glossary for biologists. Development, 139(17):
3071–3080. DOI: https://doi.org/10.1242/dev.076414

3.	 Sommer, C, Straehle, C, Kothe, U and
Hamprecht, F A 2011 Ilastik: Interactive learning
and segmentation toolkit. Biomedical Imaging: From
Nano to Macro, 2011 IEEE International Symposium
on, 230–233. DOI: https://doi.org/10.1109/
ISBI.2011.5872394

4.	 Teverovskiy, M, Vengrenyuk, Y, Tabesh, A,
Sapir, M, Fogarasi, S, Pang, H-Y, Khan, F M,
Hamann, S, Capodieci, P and Clayton, M
2008 Automated localization and quantification of
protein multiplexes via multispectral fluorescence
imaging. Biomedical Imaging: From Nano to Macro,
2008. ISBI 2008. 5th IEEE International Symposium
on, 300–303. DOI: https://doi.org/10.1109/
ISBI.2008.4540992

5.	 Jucker, M 2010 The benefits and limitations of animal
models for translational research in neurodegenerative
diseases. Nature medicine, 16(11): 1210–1214. DOI:
https://doi.org/10.1038/nm.2224

6.	 Arganda-Carreras, I, Kaynig, V, Rueden, C T,
Schindelin, J, Cardona, A and Seung, H S 2016
Trainable_Segmentation: Release v3.1.2. DOI: https://
doi.org/10.5281/ZENODO.59290

7.	 Schindelin, J, Rueden, C T, Hiner, M C and
Eliceiri, K W 2015 The ImageJ Ecosystem: An Open
Platform for Biomedical Image Analysis. Molecular
Reproduction and Development, 82: 518–529. DOI:
https://doi.org/10.1002/mrd.22489

8.	 Breiman, L 2001 Random forests. Machine
learning, 45(1): 5–32. DOI: https://doi.
org/10.1023/A:1010933404324

9.	 Frank, E, Hall, M A and Witten, I H 2016 The WEKA
Workbench. Morgan Kaufmann, Fourth Edition.

10.	Supek, F 2015 FastRandomForest. Google Code.
Available at: https://code.google.com/archive/p/fast-
random-forest/.

https://github.com/mintern-java/primitive
https://github.com/mintern-java/primitive
https://doi.org/10.5281/zenodo.819556
https://doi.org/10.5281/zenodo.819556
https://github.com/omaraa/ImageSURF
https://github.com/omaraa/ImageSURF/issues
https://github.com/omaraa/ImageSURF/issues
https://github.com/omaraa/ImageSURF/wiki
https://github.com/omaraa/ImageSURF/wiki
https://doi.org/10.1146/annurev.bioeng.2.1.315
https://doi.org/10.1242/dev.076414
https://doi.org/10.1109/ISBI.2011.5872394
https://doi.org/10.1109/ISBI.2011.5872394
https://doi.org/10.1109/ISBI.2008.4540992
https://doi.org/10.1109/ISBI.2008.4540992
https://doi.org/10.1038/nm.2224
https://doi.org/10.5281/ZENODO.59290
https://doi.org/10.5281/ZENODO.59290
https://doi.org/10.1002/mrd.22489
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://code.google.com/archive/p/fast-random-forest
https://code.google.com/archive/p/fast-random-forest

O’Mara et al: ImageSURF Art.  31, p.  7 of 7

11.	O’Mara, A R, Collins, J M, King, A E, Vickers, J C and
Kirkcaldie, M T K 2017 ImageSURF MOAB2 Image
Examples. DOI: https://doi.org/10.5281/zenodo.819511

12.	Rose, J and Goetz, B 2017 Minimal Value Types.
Retrieved from: http://cr.openjdk.java.net/~jrose/
values/shady-values.html May 2017.

How to cite this article: O’Mara, A, King, A E, Vickers, J C and Kirkcaldie, M T K 2017 ImageSURF: An ImageJ Plugin for Batch
Pixel-Based Image Segmentation Using Random Forests. Journal of Open Research Software, 5: 31. DOI: https://doi.org/10.5334/
jors.172

Submitted: 28 March 2017 Accepted: 29 September 2017 Published: 06 November 2017

Copyright: © 2017 The Author(s). This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

Journal of Open Research Software is a peer-reviewed open access journal published by
Ubiquity Press OPEN ACCESS

https://doi.org/10.5281/zenodo.819511
http://cr.openjdk.java.net/~jrose/values/shady-values.html
http://cr.openjdk.java.net/~jrose/values/shady-values.html
https://doi.org/10.5334/jors.172
https://doi.org/10.5334/jors.172
http://creativecommons.org/licenses/by/4.0/

	(1) Overview
	Introduction
	Implementation and architecture
	Quality control

	(2) Availability
	Operating system
	Programming language
	Additional system requirements
	Dependencies
	List of contributors
	Software location
	Archive Zenodo
	Code repository GitHub

	Language

	(3) Reuse potential
	Acknowledgements
	Competing Interests
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9

