
Eerland, W et al 2017 Teetool – A Probabilistic Trajectory
Analysis Tool. Journal of Open Research Software, 5: 14,
DOI: https://doi.org/10.5334/jors.163

Journal of
open research software

SOFTWARE METAPAPER

Teetool – A Probabilistic Trajectory Analysis Tool
Willem Eerland1, Simon Box1, Hans Fangohr1,2 and András Sóbester1

1	University of Southampton, GB
2	European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, DE
Corresponding author: Willem Eerland (w.j.eerland@soton.ac.uk)

Teetool is a Python package which models and visualises motion patterns found in two- and three-dimensional
trajectory data. It models the trajectories as a Gaussian process and uses the mean and covariance of the
trajectory data to produce a confidence region, an area (or volume) through which a given percentage
of trajectories travel. The confidence region is useful in obtaining an understanding of, or quantifying,
dispersion in trajectory data. Furthermore, by modelling the trajectories as a Gaussian process, missing data
can be recovered and noisy measurements can be corrected. Teetool is available as a Python package on
GitHub, and includes Jupyter Notebooks, showing examples for two- and three-dimensional trajectory data.

Keywords: Python; Gaussian process; motion patterns; trajectory patterns; confidence region
Funding statement: The authors gratefully acknowledge the funding provided under research grant
EP/L505067/1 from the Engineering and Physical Sciences Research Council and Cunning Running Software
Ltd. The research data and code generated as part of this study are openly available at https://doi.
org/10.5281/zenodo.251481.

(1) Overview
Introduction
In recent years, researchers have been focusing on the
analysis of large scale trajectory data sets obtained from
surveillance devices, which contains motion patterns of
objects [1]. A trajectory here is defined as the path of an
object through space. In most applications of interest
to scientists and engineers, objects do not move around
randomly. Examples are cars on the road, which follow
traffic rules, and aircraft near an airport, which follow
instructions from air traffic control. Modelling (i.e. create
a statistical model of where they may be located in space)
and visualising motion patterns is an important step in
understanding the behaviour of the trajectory data.

When analysing road traffic or pedestrian environments,
trajectory data are generally visualised in two dimensions
(usually a planar projection). Makris and Ellis [2] apply a
spline-like model to represent the motion patterns found
in the data. This model contains a mean function, the aver-
age of all trajectories, described by a discrete number of
equidistant nodes. Here, the dispersion of the trajectories
at each node is calculated by examining the cross section
perpendicular to the local node direction, and fitting a
univariate Gaussian to the points where the trajectories
cut this cross section. The result, seen in Figure 1, is an
envelope with a spline-like representation, capturing a
given percentage of trajectories in a two-dimensional
space. Another approach is to replace the mean func-
tion with a sequence of discrete Gaussian nodes [3]. The

result is similar, as both these methods produce models
that have an average trajectory and a surrounding region
representing the dispersion (a confidence region related
to a percentage of the data).

Motion patterns found in three-dimensional aircraft tra-
jectory data have been visualised as flight corridors, where
the data were clustered according to the flightpath [4].
The properties of the flight corridors are such that there
is an average trajectory, and a dispersion in vertical and
lateral direction, perpendicular to the mean trajectory.
Flight corridors have also been generated via Gaussian
processes, with the added benefits of being able to handle
missing data and noisy measurements [5].

In terms of software tools for trajectory data analysis,
there is a Python package named Flowtracks [6] available
that handles the storage of trajectory data, but includes
no specific algorithm for modelling motion patterns.
This package is a database management solution provid-
ing a bridge between different formats of trajectory data.
Furthermore, there is the Integrated Noise Model [7], a
computer model that was used to evaluate aircraft noise
impacts in the vicinity of airports, which has a functionality
to use weighted tracks to approximate the dispersion
found in the trajectory data. The use of weighted tracks
is required to keep the computational load of the sub-
sequent noise calculations in check, as otherwise the
number of flight trajectories will increase the number of
required calculations. However, placing these tracks is left
to the user and is not learned from the trajectory data.

https://doi.org/10.5334/jors.163
mailto:w.j.eerland@soton.ac.uk
https://doi.org/10.5281/zenodo.251481
https://doi.org/10.5281/zenodo.251481

Eerland et al: Teetool – A Probabilistic Trajectory Analysis ToolArt. 14, p. 2 of 6

Teetool is a Python package that learns the motion
patterns found in trajectory data by modelling the motion
patterns found in trajectory data via Gaussian processes.
This approach enables the recovery of missing data and
the handling of noisy measurements. The package takes
as input both two- and three-dimensional trajectory
data as a function of another value (e.g. time or absolute
distance covered). However, as an output the statistical
modelling only concerns itself with the spatial charac-
teristics and by default considers the complete range of
this value. Furthermore, the package assists in visualising
the patterns in two and three dimensions. The modelling
methods are similar to the one applied to aircraft trajec-
tories in Eerland, Box and Sóbester [5] to identify flight
corridors. We have made modifications to their method,
notably to reduce the computational cost when the avail-
able trajectory data is not noisy, or when there are no
parts missing. The calculations in the Teetool package are
performed using NumPy [8] and Scipy [9]. The data are
visualised in two and three dimensions using Matplotlib
[10] and Mayavi [11] respectively. Data are handled via
Pandas [12], and examples are included using Jupyter
Notebooks [13]. Teetool has already been utilised to
model and visualise rocket trajectory data as produced by
a stochastic rocket simulator [14, 15].

The remainder of this paper covers the implementation
and architecture, quality control, the availability, and
reuse potential of the software.

Implementation and architecture
The package is written in Python and consists of seven
classes. An overview how these classes communicate with
the user is available in Figure 3. The user starts by ini-
tialising a World class and adding trajectory data – this
class handles multiple sets of trajectory data. From each
set, a model is created with parameters as specified by the
user. The specifics of these parameters are described in the
documentation and include a selection of the modelling
method. Based on these parameters the GaussianProcess
and Basis classes are initialised and called. Note that from
a user’s perspective the classes Model, GaussianProcess,
and Basis are not visible, as these are called via the World
class, hence there is no direct line going towards these
classes starting from the user. The visualisations are pre-
sented via the Visual_2d and Visual_3d classes, for
two- and three-dimensional representations respectively.
A sequence diagram of the initialization of a World object
and the modelling via resampling is displayed in Figure 2.

An example using two-dimensional trajectory is visible in
Figure 4. It shows the trajectory data (Figure 4a) and the

Figure 1: An example of a route model, capturing the main axis and borders of a specific route [2].

Figure 2: A sequence diagram visualising the chain of events following the initialization of a World object and the
modelling via resampling.

Eerland et al: Teetool – A Probabilistic Trajectory Analysis Tool Art. 14, p. 3 of 6

confidence region corresponding to two standard deviations
(Figure 4b). The trajectory data in this example is artificially
generated using random sampling from a Gaussian distri-
bution, and aims to demonstrate the confidence region
in two dimensions. An example using three-dimensional
rocket flight trajectories is shown in Figure 5. These flight
trajectories are generated using a stochastic rocket simulator,
and emulates uncertainties in launch and atmospheric con-
ditions [15]. The settings are such that a rocket is launched
from position (0, 0, 0) towards the North (positive Northing
direction), at a 10 degree declination angle. It shows only 50
trajectories of the 500 used to create the model, and also
includes the confidence region corresponding to one stand-
ard deviation. The final example shows five flightpaths of air-
craft approaching an airport. The three-dimensional view is

seen in Figure 6, while a two-dimensional slice at a constant
altitude of the confidence region (of two standard deviations),
is visible in Figure 7. All figures shown here are generated
using the Jupyter notebooks included in the repository.

Quality control
Unit tests with an overall coverage of 87% are available and
executed using pytest. Instructions on how to run these
tests are included in the readme.md file. Continuous integra-
tion has been implemented using Travis CI, and the lat-
est test results are available online at https://travis-ci.org/
WillemEerland/teetool. The Jupyter notebooks used to pro-
duce Figures 4 to 7 can be found in the example folder, and
provide a demonstration of basic functionality to the user. A
code snippet of example/example_toy_2d.ipynb is included here:

Figure 4: Gaussian distributed artificially generated trajectory data (a), aimed at demonstrating the functionality of the
confidence region (b).

Figure 3: A schematic representation of the seven classes found within Teetool, and the interaction with the user.

https://travis-ci.org/WillemEerland/teetool
https://travis-ci.org/WillemEerland/teetool

Eerland et al: Teetool – A Probabilistic Trajectory Analysis ToolArt. 14, p. 4 of 6

import package
import teetool as tt
create a world
world = tt.World(name=‘toy’, ndim=2,
resolution=[100, 100])
add data
world.addCluster(cluster_data=cluster_data_1,
cluster_name=‘one’)

where cluster_data is a list of (x, Y). Here Y is a [N × D]
matrix, representing the multi-dimensional coordinates

as a function of the [N × 1] vector x. These are NumPy
arrays where N is the total number of data-points and D is
the dimensionality of the trajectory data.

(2) Availability
Operating system
Teetool is able to function on any operating system that
supports a standard Python installation, which includes
Linux, Windows, and macOS.

Figure 5: Rocket flight trajectory data (lines) as produced by a stochastic rocket simulator in uncertain launch- and
atmospheric conditions, including the corresponding one standard deviation confidence region (shaded volume).

Figure 6: Aircraft trajectory data of approaching aircraft as measured by a ground-based radar at the Dallas/Fort Worth
(DFW) airport, bundled in five common flightpaths.

Eerland et al: Teetool – A Probabilistic Trajectory Analysis Tool Art. 14, p. 5 of 6

Figure 7: Confidence regions (i.e. flight corridors) at a constant altitude (i.e. a horizontal plane intersection of the flight
corridors), and mean trajectories (dashed lines), as generated from the trajectory data seen in Figure 6.

Programming language
Python == 2.7

Additional system requirements
No special requirements.

Dependencies
The following Python libraries are a required dependency:

NumPy ≥ 1.11
SciPy ≥ 0.18.1

The following Python library is a requirement for
Visual_2d class:

Matplotlib ≥ 1.5.1
The following Python library is a requirement for
Visual_3d class:

Mayavi ≥ 4.5.0
The following Python library is a requirement for handling
the data used in the Jupyter Notebook examples:

Pandas ≥ 0.19.2

List of contributors
1. Willem Eerland (developer)

Software location
Archive

Name: Zenodo
Persistent identifier: https://doi.org/10.5281/

zenodo.251481
Licence: MIT
Publisher: Zenodo
Version published: 1.0
Date published: 19/01/2017

Code repository
Name: GitHub
Persistent identifier: https://github.com/

WillemEerland/teetool/releases/tag/v1.0
Licence: MIT
Version published: 1.0

Date published: 11/01/2017

Language
English.

(3) Reuse potential
The software is capable of modelling (i.e. create a statistical
model of where they may be located in space) and visual-
ising the motion trend of any kind of trajectory data. It
has already been applied to model the motion patterns of
three-dimensional trajectory data in two applications. The
first application is to visualise the flight corridors as found
in trajectory data as measured by a ground-based radar.
In the second application the software has been used to
visualise the behaviour of the output trajectory data from
a stochastic rocket simulator. Furthermore, examples have
been included to analyse two-dimensional trajectories,
which are often seen in the field of road traffic analysis.

The modelling methods are accessible via the World
class, and when desired it is possible to access this
class directly and request the raw output of the model.
Documentation on how to address each of the classes is
available at https://willemeerland.github.io/teetool/,
and is automatically generated via doxygen. The software
is open-source and available on GitHub (https://github.
com/WillemEerland/teetool), which is the preferred
channel for any potential contributors to contact the
developers. Support is available and provided via GitHub
Issues.

Competing Interests
The authors declare that Hans Fanghor is an Associate
Editor of the Journal of Open Research Software.

References
1.	 Zheng, Y 2015 ‘Trajectory Data Mining: An Overview’.

In: ACM Transactions on Intelligent Systems and
Technology, 6(3), pp. 1–41, ISSN: 2157–6904. DOI:
https://doi.org/10.1145/2743025

https://doi.org/10.5281/zenodo.251481
https://doi.org/10.5281/zenodo.251481
https://github.com/WillemEerland/teetool/releases/tag/v1.0
https://github.com/WillemEerland/teetool/releases/tag/v1.0
https://willemeerland.github.io/teetool/
https://github.com/WillemEerland/teetool
https://github.com/WillemEerland/teetool
https://doi.org/10.1145/2743025

Eerland et al: Teetool – A Probabilistic Trajectory Analysis ToolArt. 14, p. 6 of 6

2.	 Makris, D and Ellis, T 2005 ‘Learning semantic scene
models from observing activity in visual surveillance’,
In: Systems, Man, and Cybernetics, Part B: Cybernetics,
IEEE Transactions on, 35(3), pp. 397–408. DOI: https://
doi.org/10.1109/TSMCB.2005.846652

3.	 Hu, W, Xiao, X, Fu, Z, Xie, D, Tan, T and Maybank, S
2006 ‘A system for learning statistical motion patterns’,
In: IEEE Transactions on Pattern Analysis and Machine
Intelligence, 28(9), pp. 1450–1464. ISSN: 0162–8828.
DOI: https://doi.org/10.1109/TPAMI.2006.176

4.	 Salaun, E, Gariel, M, Vela, A E and Feron, E 2012
‘Aircraft proximity maps based on data-driven flow mod-
eling’, Journal of Guidance, Control, and Dynamics, 35(2),
pp. 563–577, DOI: https://doi.org/10.2514/1.53859

5.	 Eerland, W J, Box, S, and Sóbester, A 2016 ‘Modeling
the Dispersion of Aircraft Trajectories Using Gauss-
ian Processes’, In: Journal of Guidance, Control, and
Dynamics, 39(12), pp. 2661–2672. DOI: https://doi.
org/10.2514/1.G000537. eprint: https://eprints.so-
ton.ac.uk/399818/

6.	 Meller, Y and Liberzon, A 2016 ‘Particle Data
Management Software for 3D Particle Tracking
Velocimetry and Related Applications – The Flowtracks
Package’, Journal of Open Research Software, 4(1), DOI:
https://doi.org/10.5334/jors.101

7.	 He, B, Dinges, E, Hemann, J, Rickel, D, Mirsky,
L, Roof, C J, Boeker, E R, Gerbi, P J and Senzig, D
2007 Tech. rep. Federal Aviation Administration (FAA),
Integrated Noise Model (INM) Version 7.0 User’s Guide,
pp. 116–117. URL: https://www.faa.gov/.

8.	 Walt, S v d, Colbert, S C and Varoquaux, G 2011 ‘The
NumPy Array: A Structure for Efficient Numerical Com-
putation’, In: Computing in Science & Engineering, 13(2),
pp. 22–30, DOI: https://doi.org/10.1109/MCSE.2011.37

9.	 Jones, E, Oliphant, T, Peterson, P, et al. 2001 SciPy:
open source scientific tools for Python, URL: https://
www.scipy.org (visited on 20/04/2017).

10.	Hunter, J D 2007 ‘Matplotlib: A 2D graphics environ-
ment’, Computing in Science & Engineering, 9(3), pp.
90–95, DOI: https://doi.org/10.1109/MCSE.2007.55

11.	Ramachandran, P and Varoquaux, G 2011 ‘Maya-
vi: 3D Visualization of Scientific Data’, In: Com-
puting in Science & Engineering, 13(2), pp. 40–51,
ISSN: 1521–9615, DOI: https://doi.org/10.1109/
MCSE.2011.35

12.	McKinney, W 2010 ‘Data Structures for Statistical
Computing in Python’. In: van der Walt, S and Millman,
J. Proceedings of the 9th Python in Science Conference,
pp. 51–56, URL: http://conference.scipy.org/proceed-
ings/scipy2010/pdfs/mckinney.pdf.

13.	Kluyver, T, Ragan-Kelley, B, Pérez, F, Granger, B,
Bussonnier, M, Frederic, J, Kelley, K, Hamrick, J,
Grout, J, Corlay, S, Ivanov, P, Avila, D, Abdalla, S,
Willing, C, et al. 2016 ‘Jupyter Notebooks — a publish-
ing format for reproducible computational workflows’,
In: Positioning and Power in Academic Publishing:
Players, Agents and Agendas: Proceedings of the 20th
International Conference on Electronic Publishing. IOS
Press. pp. 87–90, DOI: https://doi.org/10.3233/978-
1-61499-649-1-87

14.	Eerland, W J, Box, S, Fangohr, H and Sóbester,
A 2017 ‘An open-source, stochastic, six-degrees-of-
freedom rocket flight simulator, with a probabilistic
trajectory analysis approach’, In: AIAA Modeling
and Simulation Technologies Conference, Texas, USA:
American Institute of Aeronautics and Astronautics,
5(1), eprint: https://eprints.soton.ac.uk/403364/.
DOI: https://doi.org/10.2514/6.2017-1556

15.	Eerland, W J, Box, S and Sóbester, A 2017
‘Cambridge Rocketry Simulator – A Stochastic Six-De-
grees-of-Freedom Rocket Flight Simulator’, In: Journal
of Open Research Software, 5(1), eprint: https://
eprints.soton.ac.uk/id/eprint/405278. DOI: https://
doi.org/10.5334/jors.137

How to cite this article: Eerland, W, Box, S, Fangohr, H and Sóbester, A 2017 Teetool – a Probabilistic Trajectory Analysis Tool.
Journal of Open Research Software, 5: 14, DOI: https://doi.org/10.5334/jors.163

Submitted: 31 January 2017 Accepted: 04 May 2017 Published: 17 May 2017

Copyright: © 2017 The Author(s). This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

Journal of Open Research Software is a peer-reviewed open access journal published by
Ubiquity Press OPEN ACCESS

https://doi.org/10.1109/TSMCB.2005.846652
https://doi.org/10.1109/TSMCB.2005.846652
https://doi.org/10.1109/TPAMI.2006.176
https://doi.org/10.2514/1.53859
https://doi.org/10.2514/1.G000537
https://doi.org/10.2514/1.G000537
https://eprints.soton.ac.uk/399818/
https://eprints.soton.ac.uk/399818/
https://doi.org/10.5334/jors.101
https://www.faa.gov/
https://doi.org/10.1109/MCSE.2011.37
https://www.scipy.org
https://www.scipy.org
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2011.35
https://doi.org/10.1109/MCSE.2011.35
http://conference.scipy.org/proceedings/scipy2010/pdfs/mckinney.pdf
http://conference.scipy.org/proceedings/scipy2010/pdfs/mckinney.pdf
https://doi.org/10.3233/978-1-61499-649-1-87
https://doi.org/10.3233/978-1-61499-649-1-87
https://eprints.soton.ac.uk/403364/
https://doi.org/10.2514/6.2017-1556
https://eprints.soton.ac.uk/id/eprint/405278
https://eprints.soton.ac.uk/id/eprint/405278
https://doi.org/10.5334/jors.137
https://doi.org/10.5334/jors.137
https://doi.org/10.5334/jors.163
http://creativecommons.org/licenses/by/4.0/

	(1) Overview
	Introduction
	Implementation and architecture
	Quality control

	(2) Availability
	Operating system
	Programming language
	Additional system requirements
	Dependencies
	List of contributors
	Software location:
	Archive

	Code repository
	Language

	(3) Reuse potential
	Competing Interests
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7

