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(1) Overview
Introduction
When dealing with stochastic series of data measure-
ments, standard statistical tools, such as mean and cen-
tered moments, are able to catch the essential features 
of thedistribution of observed values. Last end, sufficient 
high-order moments will retrieve a good approximation 
of the probability density function (PDF) associated with 
the stochastic process. However, PDFs are not able to fully 
characterize the dynamics underlying the process. A typi-
cal example is the Gaussian distribution: if the stochastic 
variable assumes values according to a Gaussian distribu-
tion, the dynamics producing such distribution of values 
can be as simple as an Ornstein-Uhlenbeck process [25] 
but it may also be the result of a much more complicated 
dynamics, as we exemplify below. Thus, while knowing 
the distribution of observed values is important as a first 
approach to the data, uncovering the complete dynamics 
of the process provides a much deeper insight into the 
system, which cannot be accessed through standard sta-
tistical tools.

Starting from a stochastic differential equation, a pro-
cess can be statistically reconstructed through simple 
stochastic integration. The inverse problem however is 
much more complicated: would a set of measurements be 
enough for a bottom-up approach to infer the underlying 

dynamics of the process? The short answer is yes, there are 
cases where this is possible. In this paper we present the 
long answer implemented as a package for R (see [21]), 
which can be easily used, composing a method which 
we call the Langevin Approach. This approach was intro-
duced by Peinke and Friedrich in the late 1990s [5, 28]  
and further developed in the last decades. For a review see 
Friedrich et al. [6].

Stochastic equations: The Langevin model
A wide range of dynamical systems can be described by a 
stochastic differential equation, the (non-linear) Langevin 
equation (cf. [9, 25, 30]).

Consider a general stochastic trajectory X(t) in time t. 
The time derivative of the system’s trajectory dX

dt
 can be 

expressed as the sum of two complementary contributions: 
one being purely deterministic and another one being 
stochastic, governed by a stochastic “force” Γ(t), defined 
as a δ-correlated Gaussian white noise, i.e., 〈Γ(t)〉 =  0  
and 〈Γ(t)Γ(t’ )〉 = 2δ (t – t’ ). While the deterministic term 
is defined by a function, D(1)(X ) the stochastic contribu-
tion is weighted by another function, D(2)(X), yielding the 
evolution equation of X
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where the square root is taken for consistency, as will be 
clear below. We assume stationary time series here, so D(1) 
and D(2) are not time dependent but we show briefly how 
non-stationary time series can be treated in Section “A 
glimpse beyond the Langevin package”.

The Langevin equation should be interpreted as follows: for 
every time t where the system meets an arbitrary but fixed 
point X in phase space, X(t + t) with small t is defined by the 
deterministic function D(1)(X) and the stochastic function

(2) ( ) ( )D X tΓ , through trivial (Euler) stochastic integration [6]:

	
(1) (2)( ) ( ) ( ) ( ) ( ),X t X t D X D X tt t t h+ = + +

�
(2)

where η(t) is a normally distributed random variable. Here 
we use the Itô picture of stochastic integrals, for further 
details see Gardiner [7].

Functions D(1)(X) and D(2)(X) are usually called drift and 
diffusion coefficients respectively and they can be as 
simple as constants or linear functions of X, as e.g., the 
Ornstein-Uhlenbeck process, as well as more complicated 
nonlinear functions, typically polynomials up to a given 
order. In particular if D(2) is explicitly depending on X, the 
case is called multiplicative noise.

In all cases, through substitution of the selected func-
tions into Equation 2 one is able to generate samples of 
series having the same statistical features and obeying the 
same dynamics.

Figure 1a shows an illustration of a time series obtained 
through integration of Equation 2 for a cubic drift D(1)(X) = 
–X3 + X, and a quadratic diffusion, D(2) (X) = X2 + 1. Notice 
that these drift and diffusion coefficients describe a non-
trivial dynamics, namely the underlying deterministic pro-
cess, i.e., D(2) ≡ 0, has two attractive fixed points at X = ±1. 
The processes tends to converge to one of two stable 
states being at the same time perturbed by a stochastic 

fluctuation (D(2) ≠ 0) which is able to push the system from 
one stable fixed point to the other. As shown in Figure 1b, 
despite this non-trivial dynamics, the PDF is a Gaussian 
distribution with zero mean and unit standard deviation, 
the same PDF as for a simple Ornstein-Uhlenbeck process 
with D(1) = –X and D(2) = 1.

This is one of many possible examples that illustrates 
the deep insight, which an evolution equation like in 
Equation 1 can provide and which is not obtained by 
looking at a density distribution, see Appendix for further 
details.

From stochastic data to the Langevin model
As explained previously, it is easy to generate data through 
the integration of a stochastic equation, such as Equation 
2. More difficult is the inverse problem, to derive func-
tions D(1) and D(2) from given data.

A condition to derive the drift and diffusion numeri-
cally is that the time-steps t of the set of X-values 
are small enough (see Honisch and Friedrich [10] for 
details). If the system is at time t in the state x = X(t) 
the drift can be calculated for small t by averaging over 
the difference, X(t + t) — X(t), of the system state at t + t  
and the state at t. Check Equation 2 above. This aver-
age is the first conditional moment of the series and it 
can be mathematically proven that its time derivative 
yields the drift coefficient. Similarly, computing the 
second conditional moment, i.e., the average squared 
differences between X(t + t) and x, yields the diffusion 
coefficient [25].

Therefore, having a series of data, one estimates the drift 
and diffusion by computing the averages of the first and 
second power of the differences between X (t + t) and x:

	 ( )

( ) ( , ) ( ( ) ( )) ,
X t x

n nM x X t X tt t
=

= + - �
(3)

Figure 1: (a) Sketch of a stochastic process in time governed by a cubic drift and quadratic diffusion contributions and 
(b) its corresponding probability density function (PDF). Though the series shows a bistable dynamics (cubic drift) the 
PDF follows a Gaussian function, equivalent to an Ornstein-Uhlenbeck process (see text).
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where 〈·〉 represents the average over time t. Mathematically 
the drift and diffusion coefficients are defined as [25]

	

( ) ( )
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nt
t

t®
=
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(4)

which means that they are given by derivatives of the 
corresponding conditional moments M(n)(x, t) with 
respect to t. In many cases, for a fixed x, the conditional 
moments depend linearly on t for the smallest range of t 
values and consequently the drift and the diffusion coef-
ficients at this state x are estimated solely by the quotient 
between the corresponding conditional moment and t in 
this range.

Figures 2a and 2b show respectively the drift and 
diffusion coefficients of the series integrated in the pre-
vious section and sketched in Figure 1. The theoretical 
expressions of the coefficients used when generating the 
synthetic data through integration of Equation 1 are indi-
cated as red dashed lines, while the estimated values of the 
coefficients at each selected bin are plotted with bullets.

Back to the data
The Langevin Approach summarized previously is applied 
under a few conditions, though, as we discuss afterwards, 
when such conditions are not fulfilled in many cases it is 
still possible to overcome that and apply an alternative 
approach which also retrieves the dynamics underlying the 
stochastic process. For the completeness of this paper and 
for the consistency of the application of our R functions, 
we advise the user to briefly test the data. Three conditions 
should in general be tested as a preliminary checking pro-
cedure and two further conditions can afterwards be tested 
as cross-checking.

The first condition is that the data series is station-
ary. Indeed, the averages for computing the conditional 
moments have to be taken over all t = ti where X(ti) = x (see 
Equation 3). If the series is non-stationary these averages 
are in principle not meaningful.

The second condition is that the process should be 
Markovian, i.e., the present state should depend on the 
previous state solely. Mathematically it means an equiva-
lence between two-point statistics, p(X(t + t), X(t)), and any 
higher-order statistics, p(X(t + t), X(t), ..., X(t – nt)). This 
equivalence leads to the following equality between con-
ditional probabilities of finding a value of X (t + t) under 
the condition that X(t), X(t – t), ..., X(t – nt) have selected 
values:

	 ( ( ) ( )) ( ( ) ( ),  ..., ( )).p X t X t p X t X t X t nt t t+ = + - � (5)

This should hold for any positive integer n. In prac-
tice, one tests the equality for three-point statistics 
(n = 1) only and assumes that if the equality holds it  
will also hold for higher-order statistics, since all  
correlations shall decrease monotonically with time.

To test if the process is Markovian one can also use 
alternatively the Wilcoxon test [32], in case one is dealing  
with single variable stochastic processes. For details see 
Renner et al. [22, Appendix A].

The third condition to be tested comes from a math-
ematical result called Pawula Theorem [25], from which  
it follows a necessary condition for Equation 1 to be 
valid: the fourth conditional moment must be con-
stant, i.e., D(4) = 0. To test that one computes its  
derivative with respect to the time-lag, the fourth 
coefficient

Figure 2: One-dimensional Langevin Approach: (a) drift coefficient, D (1)(x) = –x3 + x, and (b) diffusion coefficient,  
D(2)(x) = x2 + 1. Circles indicate the numerical results while the red dashed line indicates the theoretical coefficient, 
used when generating the synthetic data. Here 107 data points from the series illustrated in Figure 1a, were used for 
computing the averaged conditional moments.
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and checks if it vanishes, i.e., if it is small compared to the 
diffusion coefficient: D(4)(x) << (D(2)(x))2 ∀x. This coefficient 
is also useful for computing the numerical error of the dif-
fusion coefficient [19].

The tests whether conditions two and three hold ensure that 
Г(t) (see Equation 1) is δ-correlated and Gaussian distributed.

If all these conditions are fulfilled the Langevin Approach 
can be carried out and the two functions, drift coefficient 
D(1) and diffusion coefficient D(2), can be derived from the 
given data. With the derived coefficients two additional 
cross-checking tests can be done.

The first one is to check if the stochastic force in Equation 1  
fulfills the two conditions of a δ-correlated Gaussian 
white noise. To that end, one substitutes in Equation 2 the 
derived D(1)(X) and D(2)(X) and solves it with respect to η(t):
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Taking τ as the time-step of the observed time-series and 
substituting in X(t + τ) and X(t) successive values of that 
series one re-obtains a series for η(t) which should be nor-
mally distributed.

The second cross-checking test is to substitute in 
Equation 2 the derived D(1)(X) and D(2)(X) coefficients, gen-
erate synthetic series and compare if its increments

	 ( ) ( ) ( )t X t X ttD t= + - � (8)

have the same distribution as the original series for a fixed 
τ spanning from the time-step of the original series up to 
two or more orders of magnitude larger.

Some extra care should be taken if the derived D(1)(X) 
and D(2)(X) coefficients show linear drift and quadratic 
diffusion forms as this is also the case for every Langevin 
process if the sampling interval is large compared to the 
relaxation time of the process. Riera and Anteneodo [23] 
presented a method for cross-checking in this case.

Notice that, though the fulfillment of all such conditions 
through the proposed preliminary tests and cross-checking 
tests guarantees that the Langevin Approach can be applied, 
the rejection of one or more of these tests is still no reason 
for avoiding this approach. In Section “A glimpse beyond 
the Langevin package” we will come back to this issue.

Implementation and architecture
In this section we present the implementation of the 
Langevin Approach describing the two available R func-
tions, Langevin1D and Langevin2D. The func-
tion Langevin1D deals with single time-series while 
Langevin2D should be used for two-dimensional cases, 
when one has two stochastic variables to be analyzed 
simultaneously.

The one-dimensional case deals with an evolution equa-
tion similar to Equation 1 and the two-dimensional case 
comprehends two stochastic variables, X1(t) and X2(t), gov-
erned by:

   

(1)
1 11 1 2 12 1 2 11 1 2

(1)
2 21 1 2 22 1 2 22 1 2

( , ) ( , ) ( )( , )
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where clearly now the drift function (1) (1) (1)
1 2( , )D D=D  is a 

two-dimensional vector and the diffusion coefficient is a 
2 × 2-matrix given by D(2) = ggT, i.e., = (2)

ij ik jkk
D g g= ∑ . Similar 

to the one-dimensional case the integration of Equation 9 
follows from a simple Euler scheme leading to:
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(10)

where η1(t) and η2(t) are two independent normally dis-
tributed random variables. In our implementation the con-
ditional moments M(n)(x, τ), Equation 3, are estimated by 
dividing the state space of x in N intervals, or bins, (I1, ..., IN) 
and calculating the mean values for each interval Ii:

	
( )

( )( , ) ( ( ) ( )) .
i

n n
X t IM x X t X tt t Î= + -

� (11)

For estimating the drift and diffusion coefficients from 
the conditional moments we insert Equation 2 into 
Equation 11 and apply the conditional averages for  
n = 1, 2 leading to:

	
(1) (1)( , ) ( ) ,M x D xt t» � (12)

	
(2) (2) (1) 2( , ) 2 ( ) ( ( ) ) .M x D x D xt t t» + � (13)

Important to notice is that for M(2)(x, t), Equation 13, a 
term quadratic in D(1)(x) and t has to be considered. We 
estimate drift and diffusion coefficients from the slope of 
a weighted linear regression of Equations 12 and 13.

The implementation of the functions heavily relies on 
the C++ linear algebra library Armadillo [26] for which 
RcppArmadillo and Rcpp provide the integration with R 
[3, 4]. We choose Armadillo as it results in fast code 
especially for large data sets and has an easy readable 
syntax. The functions Langevin1D and Langevin2D 
use OpenMP [2] if available to take advantage of shared 
memory multiprocessing. Here we parallelize the evalua-
tion of the drift and diffusion coefficients for the bins as 
their evaluation is independent for each bin.

In the following subsections we present one- and two-
dimensional examples of Langevin processes and walk 
through the analysis based on the framework described in 
the previous section.

Example for analyzing one-dimensional data sets1

As an example we integrate the Langevin equation illus-
trated in Figure 1a with cubic drift and quadratic diffu-
sion, namely

	

3 2( ) ( ) ( ) 1 ( ).
dx

x t x t x t t
dt

= - + + G
�

(14)

The presented package provides the function time-
series1D to do the integration using an Euler integra-
tion scheme:
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R> library("Langevin")
R> sf <– 1000
R> set.seed(4711)
R> x <– timeseries1D(N = 1e7, d11 = 1, d13 = –1, 
+    d22 = 1, d20 = 1, sf = sf)

Extracting drift and diffusion coefficients from the gener-
ated time series is done by the function Langevin1D. 
Here two parameters that are important for the estima-
tion have to be given as arguments.

The first one is the number of bins dividing the variable 
space x in discrete bins at which drift and diffusion are 
estimated. This integer should not be so large that each 
bin does no longer include a significant number of points 
(typically ∼ 100) and also not so small that no depend-
ence of the drift and diffusion on the state variable can 
be observed.

The second parameter is the vector steps to calculate the 
conditional moments for different t values (Equation 3). 
The conditional moments will be computed for each bin 
and for each step. For each bin, a linear fit is computed 
for all steps in steps. Typically a vector of up to ten steps is 
given in samples (= t · sf).

R> bins <- 40
R> steps <- c(1:3)

R> ests <- Langevin1D(x, bins, steps)

From the resulting list ests, plots of the estimated drift 
and diffusion coefficients can be generated (see Figure 2). 
Here we use plotrix [18] to add errorbars.

R> library("plotrix")
R> attach(ests)
R> par(mfrow = c(1, 2))
R> plotCI(mean_bin, D1, uiw = eD1, xlab =	"x [a.u.]",
+    ylab = expression(paste("Drift coefficient",  
+    Dˆ(1), "(x) [a.u.]")),
+	   cex = 2, pch = 20)
R> lines(mean_bin, mean_bin – mean_binˆ3,  
+	   col = "red", lwd = 3, lty = 2)
R> plotCI(mean_bin, D2, uiw = eD2, xlab =	
+	   "x [a.u.]", ylab = expression(paste 
+	   ("Diffusion coefficient", Dˆ(2), 
+	   "(x) [a.u.]")),
+	   cex = 2, pch = 20)
R> lines(mean_bin, mean_binˆ2 + 1, col = "red", 
+	   lwd = 3, lty = 2)

We now want to walk through some of the remarks given 
in Section “Back to the data” to check if the conditions 
under which we applied the Langevin Approach are ful-
filled. We do not check if the time series is stationary and 
fulfills the Markovian properties, since here we already 
know this (as we are using synthetic data).

Therefore we concentrate on cross-checking the esti-
mated drift and diffusion coefficients. For checking if D(4)

(X) is small compared to D(2)(X) (Pawula Theorem) we use 
the function summary which also computes the ratio 
between D(4) and (D(2))2:

R> summary(ests)
Number of bins: 40
Population of the bins:

Min. : 3
Median: 32034
Mean : 250000
Max. : 1053446

Number of NA’s for D1: 7
Number of NA’s for D2: 7
Ratio between D4 and D2^2:

Min. : 0.002004
Median: 0.002102
Mean : 0.002385
Max. : 0.004487

The result shows that D(4)(X) is smaller than 0.5% of the 
squared diffusion coefficient, indicating the necessary 
condition of the Pawula Theorem holds.

As a second cross-check we compare the increments, as 
defined in Equation 8, of the original time series with the 
ones computed from the reconstructed time series based 
on the estimated drift and diffusion functions.

To this end we fit a cubic function to the estimated drift coef-
ficient and a quadratic function to the diffusion coefficient:
R> estDl <- coef(lm(D1 ~ mean_bin  
+    I(mean_binˆ2) + I(mean_binˆ3),
+    weights = 1/eDl))
R> estD2 <- coef(lm(D2 ~ mean_bin  
+    I(mean_binˆ2), weights = 1/eD2))

The resulting coefficients are used to generate a new time 
series with timeseries1D:
R> rec_x <- timeseries1D(N = 1e7, d10 =  
+    estD1[1], dll = estD1[2],
+	   d12 = estD1 [3], d13 = estD1[4], d20 =  
+    estD2[1], d21 = estD2[2],
+	   d22 = estD2[3], sf = sf)

We want to emphasize here that the Langevin Approach 
does not require the drift and the diffusion coefficients to 
be of any particular functional form, from the estimated 
coefficients one could directly integrate a stochastic time 
series which can be used to calculate the increments. We fit 
the estimated coefficients to polynomials only to be able 
to use the function timeseries1D for the integration.

From the original and the reconstructed time series we 
now calculate PDFs of the increments for different t and 
plot them to inspect their agreement visually:
R> plot(1,1, log = "y", type = "n", xlim = 
c(–11, 12), ylim = c(1e–17, 5),
+	   xlab = expression(Delta[tau]/ 
+	   sigma[Delta[tau]]), ylab = "density")

R> tau <- c(1,10,100,1000)
R> for(i in 1:4) {
+ 		  delta <- diff(Ux, lag = tau[i])
+ 		  rec_delta <- diff(rec_x, lag = tau[i])
+ 		  den <- density(delta)
+ 		  den$x <- den$x/sd(delta, na.rm = TRUE)
+ 		  rec_den <- density(rec_delta)
+ 		  rec_den$x <- rec_den$x/sd(rec_delta,  
+ 		  na.rm = TRUE)
+ 		  lines(den, lwd = 2, col = i)
+ 		  lines(rec_den, lwd=2, lty = 2, col = i)
+ }

Figure 3 shows the output: there is indeed good agree-
ment of both increment PDFs for a wide range of t values. 
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Therefore we can assume that our estimated drift and dif-
fusion coefficients describe the process sufficiently.

Notice once again that while the PDF of the series gen-
erated by Equation 14 is the same as the one of the simple 
Ornstein-Uhlenbeck process, ( ) ( )dx

dt x t t=- +G , our Langevin 
Approach is able to uncover the correct dynamics with a 
bistable drift and a non-constant diffusion (see Appendix).

Example for analyzing two-dimensional data sets1

As a two-dimensional example we integrate the coupled 
Langevin equations in Equations 9 for a particular choice 
of the drift and diffusion coefficients, namely [28]

   
1

2 1( )
X

X a t
dt

= + G
�

(15a)

   
3 22

1 2 1 1 2 20.02 0.03 ( ),
X

X X X X X a t
dt

= + - - + G
�

(15b)

where a is a constant. Figure 4a shows the integrated 
trajectory (X1, X2) for a = 0, a case where no stochastic 
contribution is present, whereas in Figure 4b the same 
trajectory is plotted now with stochastic forces having a 
constant amplitude of a = 0.05.

The integration is performed by timeseries2D. Drift 
and diffusion functions are full cubic and quadratic poly-
nomials respectively and the elements aij of the matrices 
are defined by the corresponding equations for the drift 
and diffusion terms (see Equations 9 and 10):

4 5
(1) ( 1) ( 1)

1,2 1 2

1 1

3 4
( 1) ( 1)

11,12,21,22 1 2

1 1
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i
i j
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i j

i
i j

ij

i j

D a x x

g a x x

-
- -
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-
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= =

=

=

åå
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Estimating the drift and diffusion coefficients is done by 
Langevin2D, here the same rules for bins and steps 
apply as for the one-dimensional case.

The results shown in Figure 5 are generated by the fol-
lowing command lines (the source code for plotting the 
figure can be found in the aforementioned examples.r):
R> D1_1 <- matrix(0, nrow = 4, ncol = 4)
R> D1_1 [1, 2] <- 1
R> D1_2 <- matrix(0, nrow = 4, ncol = 4)
R> D1_2 [2, 1] <- 0.02
R> D1_2[1, 2] <- 0.03
R> D1_2[4, 1] <- –1
R> D1_2[3, 2] <- –1

R> g_11 <- matrix(0, nrow = 3, ncol = 3)
R> g_12 <- matrix(0, nrow = 3, ncol = 3)
R> g_21 <- matrix(0, nrow = 3, ncol = 3)
R> g_22 <- matrix(0, nrow = 3, ncol = 3)
R> g_11[1, 1] <- 0.0025
R> g_22[1, 1] <- 0.0025

R> set.seed(4711)
R> x <- timeseries2D(N = 1e8, 0.145, 0.0002,  
+	   D1_1, D1_2, + g_11, g_12, g_21, g_22,  
+	   sf = sf)
R> ests <- Langevin2D(x, bins, steps)

The numerical results can be properly fitted through 
the functions used for the integration in Equations 15, 
namely: (1)

1 2D X= , (1) 3 2
2 1 2 1 1 20.02 0.03D X X X X X= + - - ,  

(2) (2) 2
11 22 0.05D D= =  and (2) (2)

12 21 0D D= = . Notice that the 
large deviations in the boundaries are due to the finite 
length of the time series and thus the lower population in 
the boundary bins resulting in a poorer estimation of the 
drift and the diffusion.

A glimpse beyond the Langevin package
The two examples exposed above show cases where all 
conditions are fulfilled. When analyzing real empirical 
data sets this is often not the case: one or more of the 

Figure 3: PDFs of the increments for τ =1, τ =10, τ = 100 and τ = 1000  time lags (from top to bottom). Solid lines show 
the results for the original time series, broken lines the result for the reconstructed time series.
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conditions under which the Langevin Approach is applied 
are not met. Still, in the last years we developed different 
alternatives and extensions to this approach to overcome 
specific situations in stochastic data analysis. In this sec-
tion we briefly describe these alternatives and extensions.

One first problem that researchers face is the non-sta-
tionary character often appearing in real data. Here, one 
of two approaches may be possible. One is to ascertain if 
for “shorter” time-windows of the data series stationarity 
may be assumed. In case the data set can be decomposed 

Figure 4: (a) Trajectory (X1(t), X2(t)) from Equations 15 with a = 0 and (b) the same trajectory integrating the same equa-
tions with non-zero stochastic terms (a = 0.05). For plotting 106 resp. 105 data points where used.

Figure 5: Drift coefficient of (a) the X1 component, (1)
1D , and (b) the X2 component, D(1)

2 , together with all diffusion 
coefficients, namely (c) (2)

11D , (d) (2)
22D , (e) (2) (2)

12 21D D= . See Equation 9. Estimated with added noise, i.e., a = 0.05 in 
Equation 15.
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in a series of time-windows which may overlap, each one 
having more or less constant statistical moments of the 
observable, the Langevin approach can be applied sepa-
rately to each one of them, yielding a set of drift and dif-
fusion coefficients, one for each time-window. In the end 
one extracts one drift and one diffusion coefficient, both 
functions of the observable and also of time.

Another possibility to handle non-stationary data sets 
is to check if they can be conditioned to other observ-
ables. In that case, considering the periods of the data 
sets associated to a particular value of the conditioning 
observable may be itself stationary. This is the case of the 
stochastic series measured of wind turbines [20, 31]. The 
power output of one wind turbine or the loads applied 
to it by the wind field are two observables whose meas-
urement series are by themselves non-stationary. The 
wind velocity is the observable driving those properties 
and it is also non-stationary. However, we have shown 
that both wind power production [31] and instantane-
ous loads [20] can be analyzed through the Langevin 
Approach if we conditioned both the drift and the dif-
fusion coefficients to each particular admissible value of 
the wind speed.

Another problem researchers often face are situations 
where the correlation function of the process is not fully 
resolved, i.e. the sampling rate of the data is too low. When 
this is the case, the correlation length is overestimated 
leading to wrong estimation of the time scale associated 
with the drift [12]. Kleinhans and Friedrich [12], Lade [14] 
and Honisch and Friedrich [10] developed optimization 
methods to still resolve drift and diffusion coefficients 
properly for cases where data is poorly sampled. These 
optimizations are computationally demanding, particu-
larly when no functional form of the drift and diffusion 
coefficients is known a priori. 

The second condition listed above is the Markov prop-
erty. When the series of measurements fails to fulfill the 
Markov tests described above, it cannot be reconstructed 
through stochastic Euler integration since the next state 
cannot be estimated from the present state alone (see 
Equation 2). This happens, for instance, when a Markov 
process is spoiled by additional additive noise when 
a measurement is taken (see [13]). While the process 
alone, X(t), is Markovian, the actual measurement, which 
retrieves X(t) + Y(t), does not fulfill the Markov property. 
In such cases the limits computed for the coefficients D(1) 
and D(2) diverge (see Equation 4): when t → 0 the con-
ditional moment for the measured values (numerator) 
does not vanish. Still, it is frequently possible to obtain 
the correct drift and diffusion coefficients for the Markov 
process X(t) through simple changes of their estimates [1, 
16, 17, 27]. In cases of correlated noise where ( ) 0tG =  
holds the drift coefficient D(1)(X) can still be reconstructed 
correctly.

A third problem that may appear during preliminary 
tests of empirical data is the non-vanishing fourth coef-
ficient D(4). As stated above in Section “Back to the data”, 
according to Pawula Theorem [25] the fourth condi-
tional moment must be independent of the time-lag t. 
If not, one cannot assume that the stochastic process is 

governed by a Langevin equation, Equation 1. However, 
in such cases, although no evolution equation can be 
extracted and therefore the estimated functions D(1) and 
D(2) have not the meaning of drift and diffusion contribu-
tions, one can still use both to provide valuable insight 
about the system being analyzed. One example is the 
work of Rinn et al. [24] on in-situ analysis of the elas-
tic features of a mechanical beam structure for realistic 
excitations with correlated noise as it appears in real-
world situations. They could show that the slope of the 
drift coefficient D(1) is a sensitive indicator of the dam-
age and compared to frequency based approaches, like 
power spectra, which estimate changes of the eigenfre-
quency of the structure, it is even more sensitive to small 
damages.

Finally, it is also important to stress that, while the 
functions of the presented package were prepared for 
analyzing data series as processes in time, the Langevin 
Approach can be adapted for analyzing processes in scale. 
In fact, when the process is not Markovian in time, violat-
ing Equation 5, there is the possibility that it is Markovian 
in “scale”. What does this mean? It means that the incre-
ments Δτ introduced above follow a Markovian process 
in t i.e., in time-lags but are instationary. Such analysis in 
scale is able to reproduce e.g., turbulence energy cascades 
[5, 29] or ocean rogue waves [8].

More details on all these extensions and alternatives 
to the Langevin Approach can be found in Friedrich 
et al. [6].

Discussion and conclusions
In this paper we present an R package for stochastic 
data analysis that is able to extract the stochastic evolu-
tion equations of physical properties from sets of their 
measurements.

The introduced functions serve as a framework to ana-
lyze one- and two-dimensional time series. They provide 
estimation of drift and diffusion coefficients describ-
ing the deterministic and the stochastic part of the ana-
lyzed process respectively. Integrating Langevin processes 
numerically enables one for cross-checking the obtained 
result and for generation of synthetic data sets.

Through illustrative examples we have shown that the 
Langevin evolution equation is able to uncover complex 
dynamics, even in cases when the associated statistics is 
identical to many other stochastic processes.

The presented package can be straightforwardly applied 
by R-users and it implies only a few preliminary tests to 
ascertain if all conditions on which the Langevin Approach 
is built are fulfilled. In case they are not, we briefly explain 
how to overcome them with simple extensions to the 
method that were already successfully applied in several 
applications [6].

Still, additional improvements of the presented func-
tions are possible. For instance, instead of using the 
common average bin value when performing the bin-
ning of the data, one can incorporate a kernel-based 
regression of such values [15] or a maximum likelihood 
framework [11] for estimating the drift and diffusion 
functions.
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Appendix: Different stochastic dynamics, same 
stationary distribution
In this appendix we show that a large family of two-point 
statistical distributions, each one univocaly defining one 
Langevin equation, Equation 1, corresponds to a one-
point statistics given by the standard normal distribution

	

2

0 ( ) exp  ,
2

X
P X

æ ö÷ç ÷µ -ç ÷ç ÷çè ø �
(16)

i.e., a Gaussian distribution with zero mean and unit variance.
To that end, we start with one important remark con-

cerning the evolution equation of one stochastic vari-
able X, Equation 1: this equation is related to an another 
evolution equation, namely the one of the probability 
density function (PDF) of X, so-called Fokker-Planck 
Equation [25]:

	

2
(1) (2)

2

( )
( ) ( ) ( ).

P X
D X D X P X

t X X

æ ö¶ ¶ ¶ ÷ç ÷= - +ç ÷ç ÷ç¶ ¶ ¶è ø �
(17)

The stationary solution ( 0)P
t

¶
¶ =  of the one-dimension 

Fokker-Planck is given by Risken [25]:

	

(1)
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For the simple Ornstein-Uhlenbeck process, governed by 
Equation 1 with D(1) = — x and D(2) = 1, the stationary PDF 
reduces to P0 in Equation 16.

One could, however, consider a much more complex 
dynamics such as the one exemplified in this paper, with a 
bistable (cubic) drift coefficient and a non-constant diffu-
sion, depending quadratically on the stochastic variable X:

	 
(1) ( ) ( )( ),D X aX b X b X= - + �

(19a)

	 (2) 2( ) .D X c dX= +
�

(19b)

Here, D(1) has two stable fixed points at ±b, with a maxi-
mum amplitude between them proportional to a, while 
D(2) has a minimum value c and a broadness proportional 
to 1/d.

Substituting the cubic drift and the quadratic diffu-
sion, given in Equations 19, into the stationary solu-
tion, Equation 18, and integrating, yields the stationary 
solution:
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2 3
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(20)

As one sees, the solution in Equation 20 has, in gen-
eral, not only a Gaussian part, like Ornstein-Uhlenbeck 
processes, but also a polynomial part with an exponent 

depending on all parameters of D(1) and D(2). However, if the 
exponent is exactly zero,

	

2 1 0
2
a c

b
d d

æ ö÷ç + - =÷ç ÷÷çè ø �
(21)

the polynomial part vanishes and the stationary solution 
reduces to the Gaussian distribution. In the example used 
in Section “Example for analyzing one dimensional data 
sets” with a = b = c = d = 1, this is the case (see Figures 1 
and 2 and Equation 14).

In general, the one-point statistic in the stationary 
regime given by Equation 18 yields Gaussian distribu-
tions even in more complex dynamics than the one here 
chosen. One only needs to have a drift coefficient given 
by one polynomial of odd degree n > 0 and simultane-
ously have a diffusion coefficient given by a polynomial 
of degree n – 1. In that case, whatever general expression 
both coefficients have, it is always possible to find a com-
bination of their parameter values for which the quotient 
D(1)/D(2) in the stationary solution reduces to a linear func-
tion in x yielding the PDF of a Gaussian distribution. The 
two-point statistic, P (X(t)|X(t – τ)), however is able to dis-
tinguish between sets of (D(1), D(2)) yielding the same one- 
point statistic.

The ambiguity of one-point statistics in characterizing 
the dynamics of stochastic processes in general, motivates 
the Langevin Approach implemented in our R package. 
Our approach has the advantage of being parameter free: 
since it computes numerically D(1) and D(2) without any 
given Ansatz, it can easily distinguish between higher-
order drift and diffusion coefficients.

Quality control
All functions of the presented package have been tested 
against analytically solvable problems. Both example sec-
tions of this paper show how those tests where carried out 
in principle.

(2)Availability
Operating system
Any system capable of running R ≥ 3.0.2.

Programming language
R ≥ 3.0.2.

Dependencies
R ≥ 3.0.2, Rcpp ≥ 0.11.0 and RcppArmadillo ≥ 0.4.600.0.

List of contributors
1.	 Philip Rinn (Developer)
2.	 Pedro G. Lind (Contributed to timeseries2D)
3.	 David Bastine (Contributed to timeseries1D)

Software location
Archive

Name: CRAN
Persistent identifier: https://cran.r-project.org/web/

packages/Langevin/
Licence: GPL-2+

https://cran.r-project.org/web/packages/Langevin/
https://cran.r-project.org/web/packages/Langevin/
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Publisher: Philip Rinn 
Version published: 1.1.1 
Date published: 03/11/2015 

Code repository
Name: GitLab, C.v.O. University of Oldenburg
Persistent identifier: https://gitlab.uni-oldenburg.de/

TWiSt/Langevin 
Licence: GPL-2+
Date published: 11/03/2016

Language
English.

(3) Reuse potential
The Langevin package serves as a basis for the analysis of 
a wide range of dynamic systems, therefor it is applica-
ble for a wide range of scientific fields. We already out-
lined where the Langevin Approach was already used in 
the section “A glimpse beyond the Langevin package” and 
believe that this provides a good basis for potential users 
to judge if the presented package might be suitable for 
there research. The authors welcome interested develop-
ers to contribute code by mail or as a pull request in the 
code repository.

Notes
	 1	 The source code of these examples is availiable at  

https://gitlab.uni-oldenburg.de/TWiSt/Langevin/
blob/master/examples.r
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