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The eofs library provides a high-level Python interface for computing empirical orthogonal functions 
(EOFs) and related quantities, with a focus on correctness and ease of use. The library is implemented in 
a modular hierarchical fashion, allowing computations using plain arrays, or the inclusion of metadata. The 
software provides a convenient package for users wanting to perform EOF analysis in Python, and inte-
grates with popular libraries from atmospheric and climate science. The software is available on Github.
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(1) Overview
Introduction 
Data sets in meteorology, oceanography, and climate 
are typically very large, containing data covering large 
spatial areas, observed or modelled over long periods of 
time. Studying variability in these data sets can be chal-
lenging, with coherent modes of large-scale spatial and 
temporal variability in the atmosphere-ocean system 
hidden amongst the noise of smaller scale physical pro-
cesses. An often used technique for examining large-scale 
patterns of variability in such data sets is the analysis of 
empirical orthogonal functions (EOFs) [1]. Decomposing 
a complex data set varying in time and space into a set 
of EOFs and associated principal component time series 
(PCs) can allow insight into the most dominant modes of 
spatial variability, for example El Niño, one of the leading 
modes of climate variability, is often characterised by the 
first EOF and PC of sea surface temperature in the tropical 
Pacific [2].

The EOFs and PCs of a data set describe a new basis, 
where instead of a series of spatial observations varying 
in time, the data set is represented as a set of fixed spa-
tial patterns or modes, which represent a given amount of 
the total variance in the data set, and a set of time series 
describing how each pattern changes with time. In typi-
cal applications the first few EOFs account for a large por-
tion of the total variance, allowing the study of one or two 
modes to give insight into the variability present in the 
data set. The method of analysis is purely mathematical 
and does not depend on any physical properties of the 
quantity being analysed.

The process of computing and analysing EOFs and 
related structures is non-trivial, and highly error prone. 
For example, consider the computation of EOFs from 

a time-series of sea surface temperature on a latitude-
longitude grid. First one must correctly weight the input 
data to account for spatial variability in the size of grid 
cells due to convergence of the meridians. The input data 
must then be reconfigured into a 2-dimensional form, 
and care taken to remove any missing values (e.g., values 
of an oceanographic field over land) so that the covari-
ance matrix can be constructed, and the EOFs computed 
as the (possibly scaled) eigenvectors of the covariance 
matrix. In order to correctly interpret the EOFs it is neces-
sary to undo the data preparation steps listed above: the 
eigenvectors must be reformed into 2-dimensional maps, 
inserting any missing values back into their correct loca-
tions, and weighting often needs to be removed. Typically 
one will not just be interested in the EOFs themselves but 
also in other derived quantities such as the PC time series 
associated with each EOF, or the projection of other fields 
onto the EOFs. Similar data preparation and reconfigura-
tion procedures are required to construct these quantities 
and great care must be taken to ensure that the applica-
tion of these procedures is consistent in the computation 
of each quantity.

There are existing software packages and libraries for 
computing EOFs and related quantities [3,4], but this 
type of data analysis is often done in an ad-hoc manner 
using un-published code. The publically available tools for 
EOF analysis are typically libraries that provide separate 
procedures to compute each required output, a design 
that cannot automatically ensure the self-consistency of 
the analysis outputs. Therefore the user is responsible 
for keeping track of the integrity of the analysis. One 
of the major motivations behind the development of 
eofs was to resolve this problem by taking advantage of 
object-oriented design. Using an object to encapsulate 
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the core information about how the input data set was 
transformed in order to do the EOF computation allows 
the construction of method calls to compute any required 
related quantity in a manner consistent with the original 
decomposition. This is not only convenient for the pro-
grammer as it removes a lot of tedious overheads, but also 
ensures correctness of the resulting quantities. The eofs 
library has been used to analyse data in a number of sci-
entific studies [5,6].

Implementation and architecture
The eofs library is implemented in a hierarchical structure. 
The core of the library is an EOF solver object. The solver 
object is a numerical solver constructed by passing a data 
set to analyse in the form of a NumPy array [7], and option-
ally an array of weights that apply to that data. Method 
calls are then used to generate the required outputs, in 
the form of NumPy arrays (see Table 1). This design allows 
all methods of the solver object to know exactly what 
weighting, reconfiguration and scaling has taken place to 
produce the EOFs, and hence allows derived quantities to 
be computed in an internally consistent manner. This core 
solver object does not know (or care) about the meaning 
or structure of the input data set, and is thus generic.

On top of the core component there are interfaces that 
can apply the analysis to data structures that contain 
structured metadata as well as data values, specifically 
designed for meteorological and oceanographic data sets. 
These metadata-aware solvers are motivated the desire to 
improve data provenance and ensure the correctness of 
scientific results. These issues affect all scientific research, 
but have been strongly highlighted in the climate sci-
ence community in recent years [8]. The metadata-aware 
interfaces provide a layer on top of the core solver that 
interprets metadata from the input and uses it to deter-
mine how the data set is structured. The metadata-aware 
solvers are able to automatically reconfigure input data 
sets and generate appropriate weights for them according 
to pre-defined weighting schemes, and crucially they are 

able to return objects with correct metadata that can be 
used to identify the returned field outside the context of 
the analysis program.

The metadata-aware solvers are implemented as wrap-
per classes around the core solver object. This allows 
them to interpret the metadata of their input, and recon-
figure the data set and any weights appropriately ready 
to be passed to the core solver. The core solver is used to 
perform all computations, and the wrapper class applies 
appropriate metadata to the computed quantities before 
returning them to the user. This prevents users having to 
manually throw away metadata to apply a computation, 
then having to reconstruct the metadata for the output, a 
process which is time consuming and open to errors. The 
eofs library currently provides metadata-aware solvers that 
understand data structures from iris [9], xarray [10] and 
cdms2 (part of UV-CDAT) [11]. The design of metadata-
aware interfaces as wrapper classes around a numerical 
core makes extending the library to accommodate other 
data structures relatively straightforward.

The hierarchical design concept is also extended to 
variations on the EOF computation methodology. The eofs 
library provides extra interfaces for computing multivari-
ate EOFs. These are similar to normal EOFs but they are 
computed from a covariance matrix formed from observa-
tions of different variables. A pertinent example of the use 
of this type of analysis is the computation of the real-time 
multivariate Madden-Julian Oscillation index [12]. The 
implementation of multivariate EOFs in eofs consists of a 
multivariate solver, which is wrapper class around the core 
solver, and whose job is to combine separate input data 
sets with their own weights into a single array with a single 
set of weights ready for input into the core solver, and to 
reverse this process for output quantities where necessary. 
There are metadata-aware interfaces layered on top of the 
multivariate solver that do the translation between meta-
data-carrying data structures and plain NumPy arrays. This 
design pattern could be followed in order to implement 
some of the numerous variations on EOF analysis [13].

Method name Description

pcs The (optionally scaled) principal component time series (PCs).

eofs The (optionally scaled) empirical orthogonal functions (EOFs).

eofsAsCorrelation The EOFs expressed as the correlation between each PC and the input data set at each grid point.

eofsAsCovariance The EOFs expressed as the covariance between each PC and the input data set at each grid point.

eigenvalues The eigenvalues (decreasing variances) associated with each EOF mode.

varianceFraction The fraction of the total variance explained by each EOF mode.

totalAnomalyVariance The total variance (sum of the eigenvalues).

northTest The typical error associated with each eigenvalue using North’s rule of thumb [16].

reconstructedField Reconstructs the input data set using a specified number of EOFs.

projectField Projects an arbitrary field onto the EOFs to produce a set of pseudo-PCs.

getWeights The array of weights used for the analysis.

Table 1: The method calls available to all solver objects.
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Quality control 
The eofs library is provided with a suite of unit and integra-
tion tests to test the core functionality and correctness of 
the library. The end user can easily run these tests against 
the version of the library they have installed to verify it is 
working correctly before use.

The test suite is intrinsically part of the development 
process, and is expanded as the software is developed and 
new features are added. The tests are automatically run 
on the Travis CI continuous integration and delivery ser-
vice [14] every time a pull request to the eofs repository is 
made, which helps prevent breakage of existing code and 
functionality by new contributions.

The eofs library also comes with some example code and 
data, which allow the end user to verify that the output of 
the library is as expected, as well as see an example of how 
the library can be used.

(2) Availability 
Operating system
Linux, OSX, Windows.

Programming language
Python 2.7 or Python > = 3.3

Dependencies
setuptools > = 0.7.2

NumPy > = 1.6
iris > = 1.2 (optional; needed for iris metadata-aware 

solver)
cdms2 (optional; needed for cdms2 metadata-aware 

solver)
xarray (optional; needed for the xarray metadata-aware 

solver)
nose (optional; only needed for running the test suite)
pep8 (optional; only needed for running the test suite)
Some of the provided examples in the documentation 

require extra dependencies to run, which are not required 
for normal use of the software: netCDF4, matplotlib, 
cartopy

Software location
Archive (e.g. institutional repository, general reposi-
tory) (required – please see instructions on journal web-
site for depositing archive copy of software in a suitable 
repository) 

Name: Zenodo
Persistent identifier: http://dx.doi.org/10.5281/

zenodo.46871
Licence: GNU General Public License Version 3
Publisher: Andrew Dawson
Version published: 1.1.0
Date published: 03/03/2016

Code repository (e.g. SourceForge, GitHub etc.) (required) 
Name: Github
Identifier: https://github.com/ajdawson/eofs 
Licence: GNU General Public License Version 3
Date published: 03/03/2016

Language
English.

(3) Reuse potential 
eofs is already used frequently by weather and climate 
researchers at institutions across the world. The library is 
distributed as part of the Ultrascale Visualization Climate 
Data Analysis Tools (UV-CDAT) project [11], and has been 
used in a number of publications that the author is aware 
of [e.g., 5, 6]. The potential for reuse is huge since eofs 
allows a complex and custom EOF analysis methodology 
to be implemented quickly and correctly in just a few 
object-oriented method calls. The library is flexible and 
well documented making it suitable for use in applica-
tions ranging from an interactive data exploration to inte-
gration within a complex data processing pipeline.

There is also much potential for reuse of eofs outside of 
the originally intended audience of meteorology, ocean-
ography, and climate research. The term EOF analysis is 
used predominantly in the geophysical sciences, with 
the terms principal component analysis (PCA) and factor 
analysis commonly used to refer to the same procedure 
in other fields. The core library components implement 
this standard mathematical technique in a way that does 
not make assumptions about the form or meaning of the 
input data. Therefore eofs can be applied to any data set 
that it is believed can be understood in terms of an EOF 
decomposition, with the caveat that some of the termi-
nology used in eofs originated in meteorology and may 
require some mental translation to transfer to other fields.

The software is documented on-line at http://ajdaw-
son.github.io/eofs. The software is supported on a vol-
untary basis through the code repository’s issue tracker. 
Contributions to the project are welcomed, and can be 
submitted by making a pull request to the eofs Github 
repository.
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