
Beckham, C et al 2016 WekaPyScript: Classification, Regression, and Filter Schemes
for WEKA Implemented in Python. Journal of Open Research Software, 4: e33, DOI:
http://dx.doi.org/10.5334/jors.108

Journal of
open research software

SOFTWARE METAPAPER

WekaPyScript: Classification, Regression, and Filter
Schemes for WEKA Implemented in Python
Christopher Beckham1, Mark Hall2 and Eibe Frank1

1	Department of Computer Science, The University of Waikato, Hamilton 3240, New Zealand
2	Pentaho Corporation, Suite 340, 5950 Hazeltine National Dr., Orlando, FL 32822, USA
Corresponding author: Christopher Beckham (cjb60@students.waikato.ac.nz)

WekaPyScript is a package for the machine learning software WEKA that allows learning algorithms and
preprocessing methods for classification and regression to be written in Python, as opposed to WEKA’s
implementation language, Java. This opens up WEKA to its machine learning and scientific computing
ecosystem. Furthermore, due to Python’s minimalist syntax, learning algorithms and preprocessing methods
can be prototyped easily and utilised from within WEKA. WekaPyScript works by running a local Python
server using the host’s installation of Python; as a result, any libraries installed in the host installation
can be leveraged when writing a script for WekaPyScript. Three example scripts (two learning algorithms
and one preprocessing method) are presented.

Keywords: Python; WEKA; machine learning; data mining

(1) Overview
Introduction
WEKA [1] is a popular machine learning workbench
written in Java that allows users to easily classify, process,
and explore data. There are many ways WEKA can be used:
through the WEKA Explorer, users can visualise data, train
learning algorithms for classification and regression and
examine performance metrics; in the WEKA Experimenter,
datasets and algorithms can be compared in an automated
fashion; or, it can simply be invoked on the terminal or
used as an external library in a Java project.

Another machine learning library that is increasingly
becoming popular is Scikit-Learn [2], which is written in
Python. Part of what makes Python attractive is its ease
of use, minimalist syntax, and interactive nature, which
makes it an appealing language to learn for non-specialists.
As a result of Scikit-Learn’s popularity the wekaPython [3]
package was released, which allows users to build Scikit-
Learn classifiers from within WEKA. While this package
makes it easy to access the host of algorithms that Scikit-
Learn provides, it does not provide the capability of
executing external custom-made Python scripts, which
limits WEKA’s ability to make use of other interesting
Python libraries. For example, in the world of deep learning
(currently a hot topic in machine learning), Python is
widely used, with libraries or wrappers such as Theano [4],
Lasagne [5], and Caffe [6]. The ability to create classifiers
in Python would open up WEKA to popular deep learning
implementations.

In this paper we present a WEKA classifier and a WEKA
filter,1 PyScriptClassifier and PyScriptFilter (under the

umbrella “WekaPyScript”), that are able to call arbitrary
Python scripts using the functionality provided by the
wekaPython package. So long as the script conforms to
what the WekaPyScript expects, virtually any kind of
Python code can be called. We present three example
scripts in this paper: one that re-implements WEKA’s
ZeroR classifier (i.e., simply predicts the majority class from
the training data), one that makes use of Theano in order
to train a linear regression model, and a simple filter that
standardises numeric attributes in the data. Theano is a
symbolic expression library that allows users to construct
arbitrarily complicated functions and automatically
compute the derivatives of them – this makes it trivial to
implement classifiers such as logistic regression or feed-
forward neural networks (according to Baydin et al. [7],
the use of automatic differentiation in machine learning
is scant).

In our research, we used this package to implement new
loss functions for neural networks using Theano and com-
pare them across datasets using the WEKA Experimenter.

Implementation and architecture
In this section, we explain how wekaPython is imple-
mented and how WekaPyScript makes use of it to allow
classifiers and filters to be implemented in Python.

wekaPython
WekaPyScript relies on a package for WEKA 3.7 called
wekaPython [3]. This package provides a mechanism that
allows the WEKA software, which is running in a Java JVM,
to interact with CPython – the implementation of the

http://dx.doi.org/10.5334/jors.108
mailto:cjb60@students.waikato.ac.nz

Beckham et al: WekaPyScript Art. e33, p.  2 of 10

Python language written in C. Although there are versions
of the Python language that can execute in a JVM, there is
a growing collection of Python libraries for scientific com-
puting that are backed by fast C or Fortran implementa-
tions, and these are not available when using a JVM-based
version of Python.

In order to execute Python scripts that can access pack-
ages incorporating native code, the wekaPython package
uses a micro-service architecture. The package starts a
small server, written in Python, and then communicates
with it over local sockets. The server implements a simple
protocol that allows WEKA to transfer and receive data-
sets, invoke CPython scripts, and retrieve the values of
variables set in Python. The format for transporting data-
sets to and from Python is comma-separated values (CSV).
On the Python side, the fast CSV parsing routine from
the pandas package [8] is used to convert the CSV data
read from a socket into a data frame data structure. On
the WEKA side, WEKA’s CSVLoader class is used to convert
CSV data sent back from Python.

The two primary goals of the wekaPython package are
to: a) allow users of WEKA to execute arbitrary Python
scripts in a Python console implemented in Java or as part
of a data processing workflow; and (b) enable access to
classification and regression schemes implemented in
the Scikit-Learn [2] Python library. In the case of the for-
mer, users can write and execute scripts within a plug-in
graphical environment that appears in WEKA’s Explorer
user interface, or by using a scripting step in WEKA’s
Knowledge Flow environment. In the case of the latter,
the package provides a “wrapper” WEKA classifier imple-
mentation that executes Python scripts to run Scikit-Learn
algorithms. Because the wrapper classifier implements
WEKA’s Classifier API, it works in the same way as a
native WEKA classifier, which allows it to be processed by
WEKA’s evaluation routines and used in the Experimenter
framework. Although the general scripting functionality
provided by wekaPython allows users to write scripts that
access machine learning libraries other than Scikit-Learn,
they do not appear as a native classifier to WEKA and can

not be evaluated in the same way as the Scikit-Learn wrap-
per. The goal of the WekaPyScript package described in
this paper is to provide this functionality.

WekaPyScript
The new PyScriptClassifier and PyScriptFilter components
contain various options such as the name of the Python
script to execute and arguments to pass to the script
when training or testing. The arguments are represented
as a semicolon-separated list of variable assignments. All
of WekaPyScript’s options are described below in Table 1.
Figures 1 and 2 show the GUI in the WEKA Explorer for
PyScript Classifier and PyScriptFilter, respectively.

When PyScriptClassifier/PyScriptFilter is invoked, it will
utilise wekaPython to start up a Python server on local-
host and construct a dictionary called args, which contains
either the training or the testing data (depending on the
context) and meta-data such as the attribute names and
their types. This meta-data is described in Table 2.

This args dictionary can be augmented with extra
arguments by using the -args option and passing a sem-
icolon-separated list of variable assignments. For instance,
if -args is alpha=0.01;reg=’l2’ then the diction-
ary args will have a variable called alpha (with value
0.01) and a variable reg (with value ’l2’) and these will
be available for access at both training and testing time.2

Given some Python script, PyScriptClassifier will execute
the following block of Python code to train the model:
import imp

cls = �imp.load_source(’train’, <name of python

script>)

model = cls.train(args)

In other words, it will try and call a function in the speci-
fied Python script called train, passing it the args object,
and this function should return (in some form) some-
thing that can be used to reinstantiate the model. When
the resulting WEKA model is saved to disk (e.g., through
the command line or the WEKA Explorer) it is the model
variable that gets serialised (thanks to wekaPython’s
ability to receive variables from the Python VM). If the

Table 1: Options for PyScriptClassifier and PyScriptFilter (* = applicable only to PyScriptClassifier, ** = applicable only
to PyScriptFilter). (Note that the names in parentheses are the names of the options as shown in the Explorer GUI, as
opposed to the terminal).

Option Description

-cmd (pythonCommand) Name of the Python executable

-script (pythonFile) Path to the Python script

-args (arguments) Semicolon-separated list of arguments (variable assignments) to pass to the script
when training or testing

-binarize (shouldBinarize)* Should nominal attributes be converted to binary ones?

-impute (shouldImpute)* Should missing values be imputed (with mean imputation)?

-standardize (shouldStandardize)* Should attributes be standardised? (If imputation is set then this is done after it)

-stdout (printStdOut) Print any stdout from Python script?

-save (saveScript) Save the script in the model? (E.g., do not dynamically load the script specified by
–script at testing time)

-ignore–class (ignoreClass)** Ignore class attribute? (See Table 2 for more information.)

Beckham et al: WekaPyScript Art. e33, p.  3 of 10

Variable(s) Description Type

X_train,
y_train

Data matrix and label vector for training data. If -ignore-class
is set or the class attribute is not specified, y_train will not exist
and will instead be inside X_train as an extra column

numpy.ndarray (float 64),
numpy.ndarray (int 64)

X, y* Data matrix and label vector for data, when PyScriptFilter calls the
process method (see Listing 2)

numpy.ndarray (float 64),
numpy.ndarray (int 64)

X_test Data matrix for testing data numpy.ndarray (float 64)

relation_name Relation name of ARFF str

class_type Type of class attribute (e.g., numeric, nominal) str

num_classes Number of classes int

attributes Names of attributes list

class Name of class attribute str

attr_values Dictionary mapping nominal/string attributes to their values dict

attr_types Dictionary mapping attribute names to their types (possible values
are either nominal or numeric

dict

Table 2: Data and meta-data variables passed into args (* = only applicable to PyScriptFilter).

Figure 1: The graphical user interface for PyScriptClassifier.

Beckham et al: WekaPyScript Art. e33, p.  4 of 10

Figure 2: The graphical user interface for PyScriptFilter.

-save flag is set, the WEKA model will internally store
the Python script so that at testing time the script speci-
fied by -script is not needed – this is not ideal however
if the script is going to be changed frequently in the future.

When PyScriptClassier needs to evaluate the model on
test data, it deserialises the model, sends it back into the
Python VM, and runs the following code for testing:
cls = �imp.load_source(’test’, <name of python

script>)

preds = cls.test(args, model)

In this example, test is a function that takes a vari-
able called model in addition to args. This additional
variable is the model that was previously returned by the
train function. The test function returns an n × k
Python list (i.e., not a NumPy array) in the case of classifi-
cation (where ni is the probability distribution for k classes
for the i’th test instance), and an n-long Python list in the
case of regression.

To get a textual representation of the model, users must
also write a function called describe which takes two

arguments – the args object as described earlier, and
the model itself – and returns some textual representa-
tion of the model (i.e. a string). This function is used as
follows:
cls = �imp.load_source(’describe’, <name of

python script>)

model_description = cls.describe(args, model)

From the information described so far, the basic
skeleton of a Python script implementing a classifier will
look like what is shown in Listing 1.

PyScript Filter also has a train function that works in
the same way.3 Unlike a test function however, there is a
process(args, model) function, which is applied to
both the training and testing data. This function returns
a modified version of the args object (this is because
filters may change the structure, i.e., attributes, and con-
tents of the data):
cls = �imp.load_source(’process’, <name of python

script>)

new_args = cls.process(args, model)

Listing 1: Skeleton of a Python script for PyScriptClassifier.

def train(args):
  # code for training model
def test(args, model):
  # code for running model on new instances
def describe(args, model):
  # textual representation of model

Beckham et al: WekaPyScript Art. e33, p.  5 of 10

This new args object is then automatically converted
back into WEKA’s internal ARFF file representation, which
then can be input into another filter or classifier.

The skeleton of a Python filter is shown in Listing 2.

Example use
In this section we present three examples: a classification
algorithm that simply predicts the majority class in the
training data; an excerpt of a linear regressor that uses
automatic differentiation; and a filter that standardises
numeric attributes in the data.

ZeroR
The first example we present is one that re-implements WEKA’s
ZeroR classifier, which simply finds the majority class in the
training set and uses that for all predictions (see Listing 3).

In the train function we simply count all the classes
in y_train and return the index (starting from zero)
of the majority class, m (lines 5–7). So for this particular
script, the index of the majority class is the “model” that is
returned. In line 15 of the test function, we convert the
majority class index into a (onehot-encoded) probability
distribution by indexing into a k × k identity matrix, and
in line 16, return this vector for all n test instances (i.e.,
it returns an n × k array, where n is the number of test
instances and k is the number of classes; nim = 1 and the
other entries in ni are zero).

Here is an example use of this classifier from a terminal
session (assuming it is run from the root directory of the
WekaPyScript package, which includes zeror.py in its
scripts directory and iris.arff in the datasets
directory)4:

java weka.Run .PyScriptClassifier \

  -cmd python \

  -script scripts/zeror.py \

  -t datasets/iris.arff \

  -no-cv

This example is run on the entire training set (i.e.,
no cross-validation is performed) since the standard
-no-cv flag for WEKA is supplied. We have also used
-cmd to tell WekaPyScript where the Python execut-
able is located (in our case, it is located in the PATH
variable so we only have to specify the executable
name rather than the full path). If -cmd is not speci-
fied, then WekaPyScript will assume that the value is
python. The output of this command is shown below
in Listing 4.

Linear regression
We now present an example that uses Theano’s
automatic differentiation capability to train a linear
regression classifier. We do not discuss the full script
and instead present the gist of the example. To intro-
duce some notation, let x = {x(1), x(2), . . . , x(n) } be the
training examples, where x(i) ∈ Rp, and y = {y(1), y(2),
 . . . , y(n) } where y(i) ∈ R. Then, the sum-of-squares loss
is simply:

() () 2

1

1
(,) [()]

n
i i

i

L w b wx b y
n =

= + -å � (1)

where w ∈ Rp is the vector of coefficients for the linear
regression model and b ∈ R is the intercept term. To fit
a model, i.e., find w and b such that L (w, b) is minimised,

Listing 2: Skeleton of a Python script for PyScriptFilter.

from collections import Counter

import numpy as np

def train(args):

 y_train = args[“y_train”].flatten()

 counter = Counter(y_train)

 return counter.most_common()[0][0]

def describe(args, model):

 return “Majority class: %i” % model

def test(args, model):

 num_classes = args[“num_classes”]

 n = args[“X_test”].shape[0]

 majority_cls = np.eye(num_classes)[model].tolist()

 return [majority_cls for x in range(0, n)]

def train(args):

  # code for training filter

def process(args, model):

  # code for processing instances(training or testing)

Listing 3: Python implementation of ZeroR.

Beckham et al: WekaPyScript Art. e33, p.  6 of 10

we can use gradient descent and iteratively update
w and b:

: (,)w w L w b
w

a
¶

= -
¶

� (2)

: (,)b b L w b
b

a
¶

= -
¶ � (3)

We repeat above until we reach a maximum number of
epochs (i.e., scans through the training data) or until we
reach convergence (with some epsilon, ∈). Fortunately, we
do not need to manually compute the partial derivatives
because Theano can do this for us. Listing 5 illustrates
this.

In this code, which we would place into the train
function of the script for PyScriptClassifier, we define our
parameters w and b in lines 7–9, initialising w and b to
zeros. In lines 12–13, we define our symbolic matrices
x ∈ Rn×p and y ∈ Rn×1, and in line 15, the output function
h(x) = wx+b, where h(x) ∈ Rn×1. In line 18, we finally com-
pute the loss function in Equation 1 and in lines 20–21 we
compute the gradients

w
¶
¶

L(w, b) and
b
¶
¶

L(w, b). We define
our learning rate α in line 23 and in line 24, we define
the parameter updates as described in Equations 2 and
3. Finally, in line 26 we define the iter_train func-
tion: given some x and y (which can be the entire training

set, or a mini-batch, or a single example), it will output
the loss (Equation 1) and automatically update the param-
eters as per Equations 2 and 3.

We can run this example from a terminal session by
executing:
java weka.Run .PyScriptClassifier \

  -script scripts/linear-reg.py \

  -args “alpha=0.1; epsilon=0.00001“ \

  -standardize \

  -t datasets/diabetes_numeric.arff \

  -no-cv

In this example we have used the -standardize flag
to perform zero-mean unit-variance normalisation on all
the numeric attributes. Also note that we did not have to
explicitly specify an alpha and epsilon since the script has
default values for these – this was done just to illustrate
how arguments work. The output of this script is shown
below in Listing 6.

Because we created a textual representation of the
model with the describe function, we get the equation
of the linear classifier in the output.

Standardise filter
Lastly, we present an example filter script that stand-
ardises all numeric attributes by subtracting the mean
and dividing by the standard deviation. This is shown in
Listing 7.

Options: –script scripts/zeror.py

Majority class: 0

Time taken to build model: 2.54 seconds

Time taken to test model on training data: 0.02 seconds

=== Error on training data ===

Correctly Classified Instances	 50		 33.3333 %
Incorrectly Classified Instances	 100		 66.6667 %
Kappa statistic	 0
Mean absolute error	 0.4444
Root mean squared error	 0.6667
Relative absolute error	 100     %
Root relative squared error	 141.4214  %
Coverage of cases (0.95 level)	 33.3333  %
Mean rel. region size (0.95 level)	 33.3333  %
Total Number of Instances	 150

=== Detailed Accuracy By Class ===

TP Rate	 FP Rate	Precision	 Recall	 F–Measure	 MCC	 ...
1.000	 1.000	 0.333	 1.000	 0.500	 0.000	 ...
0.000	 0.000	 0.000	 0.000	 0.000	 0.000	 ...
0.000	 0.000	 0.000	 0.000	 0.000	 0.000	 ...
Weighted Avg.	0.333	 0.333	 0.111	 0.333	 0.167	 ...

=== Confusion Matrix ===

a	 b	 c	 <--  classified  as
50	 0	 0  |	 a = Iris	–	setosa
50	 0	 0  |	 b = Iris	–	versicolor
50	 0	 0  |	 c = Iris	–	virginica

Listing 4: Output from zeror.py script.

Beckham et al: WekaPyScript Art. e33, p.  7 of 10

import theano
from theano import tensor as T
import numpy as np

assume 5 attributes for this example
num_attributes = 5
w = theano.shared(
 np.zeros((num_attributes, 1)), name =’w’)
b = theano.shared(0.0, name =’b’)

let x be a n*p matrix, and y be a n*1 matrix
x = T.dmatrix(’x’)
y = T.dmatrix(’y’)
prediction is simply xw + b
out = T.dot(x, w) + b

loss function is mean squared error
loss = T.mean((out - y)**2)
compute gradient of cost w.r.t. w and b
g_w = T.grad(cost = loss, wrt = w)
g_b = T.grad(cost = loss, wrt = b)

alpha = 0.01
updates = [(w, w - alpha * g_w), (b, b - alpha * g_b)]

iter_train = theano.function(
 [x, y], outputs=loss, updates=updates)

Listing 5: Optimising sum-of-squares loss in Theano.

Options: –script scripts/linear–reg.py...

f(x)=
  age *0.266773099848 +
  deficit *0.289990210412 +
  4.74354333559

Time taken to build model: 8.49 seconds
Time taken to test model on training data: 1.18 seconds

=== Error on training data ===

Correlation coefficient	 0.607
Mean absolute error	 0.448
Root mean squared error	 0.5659
Relative absolute error	 82.3838 %
Root relative squared error	 79.4711 %
Coverage of cases (0.95 level)	 0	 %
Mean rel.region size (0.95 level)	 0	 %
Total Number of Instances	 43

Listing 6: Output from linear-reg.py script.

In lines 11–18, we iterate through all attributes
in the dataset and store the means and standard devia-
tions for the numeric attributes. The “model” that we
return in this script is a tuple of two lists (the means
and standard deviations). In lines 26–28, we perform
the standardisation. From there, we return the args
object (which has changed due to the modification
of X).

We can run this example on the diabetes dataset:
java weka.Run .PyScriptFilter \

  -script scripts/standardise.py \

  -i datasets/diabetes_numeric.arff \

  -c last

The output of this script is the transformed dataset. An
excerpt of this, in WEKA’s ARFF data format, is shown in
Listing 8.

Beckham et al: WekaPyScript Art. e33, p.  8 of 10

@relation diabetes_numeric—weka.filters.pyscript.PyScriptFilter ...

@attribute age numeric
@attribute deficit numeric
@attribute c_peptide numeric

@data

—0.952771, 0.006856, 4.8
—0.057814, —1.116253, 4.1
0.364805, 1.017655, 5.2
0.389665, 0.048973, 5.5
0.339945, —2.927268, 5
...

Listing 8: Output from standardise.py script.

Listing 7: Standardise filter in Python.

from wekapyscript import \
    ArffToArgs,  get_header,  instance_to_string
import numpy as np

def train(args):
    X_train = args[“X_train”]
    means = []
    sds = []
    attr_types = args[“attr_types”]
    attributes = args[“attributes”]
    for i in range(0, X_train.shape[1]):
       if attr_types[attributes[i]] == “numeric”:
         means.append(np.nanmean(X_train[:,i]))
         sds.append(
            np.nanstd(X_train[:,i],ddof=1))
       else:
         means.append(None)
         sds.append(None)
    return (means, sds)

def process(args, model):
    X = args[“X”]
    attr_types = args[“attr_types”]
    attributes = args[“attributes”]
    means, sds = model
    for i in range(0, X.shape[1]):
       if attr_types[attributes[i]]  ==  “numeric”:
         X[:,i] = (X[:,i] - means[i]) / sds[i]
    return args

Because we have set the class attribute using -c,
standardisation is not applied to it. However, if we wish
to also apply standardisation to it, we can add the flag
-ignore-class to the end of the command.

Note that we are not limited to just modifying the
existing data inside args – we can do more complex
things such as adding new attributes, and an example of
this is shown in the Gaussian noise filter (add-gauss-
noise.py) located in the scripts folder.

Quality control
WekaPyScript contains a collection of unit tests written
for the JUnit framework. WEKA also contains an abstract
test class (that includes regression tests) for classifiers and
filters to implement, which we have used to ensure that

WekaPyScript performs correctly with other algorithms in
WEKA.

(2) Availability
Operating system
WekaPyScript has been tested on OS X Yosemite, Ubuntu
14.04.1, and Windows 10.

Programming language
Java 7+, CPython 2.7 or 3.4.

Dependencies
WEKA 3.7.13, the wekaPython package for WEKA, and
Python. Python packages NumPy, Pandas, Matplotlib and
Scikit-Learn are also required (the easiest way to install

Beckham et al: WekaPyScript Art. e33, p.  9 of 10

these is through Anaconda).5 To run the linear regression
example, Theano should also be installed.6

Software location
Archive

•	 Name: WekaPyScript
•	 Identifier: http://dx.doi.org/10.5281/zenodo.50198
•	 License: GPLv3
•	 Publisher: Zenodo
•	 Date published: 04/22/2016

Code repository
•	 Name: Github
•	 URL: http://github.com/christopher-beckham/

weka-pyscript
•	 License: GPLv3
•	 Current version: 0.5.0
•	 Date published: 04/22/2016

Documentation
•	 Mailing list: https://groups.google.com/forum/

#!forum/weka-pyscript
•	 Installation instructions: https://github.com/

christopher-beckham/weka-pyscript/blob/master/
README.md

•	 Wiki: https://github.com/christopher-beckham/
weka-pyscript/wiki

(3) Reuse potential
PyScriptClassifier and PyScriptFilter can be used to imple-
ment filters and classifiers without requiring the end user
to know Python. For example, we created LasagneNet,7 a
classifier that wraps the deep neural network framework
Lasagne. Users can easily define network architectures
within WEKA, and once trained, the WekaLasagne classifier
will use PyScript Classifier to generate the necessary Python
code in order to train the neural network. This enables
users not familiar with Python or Lasagne to train a vari-
ety of neural networks within WEKA which are relatively
fast to train, thanks to the latter’s utilisation of native linear
algebra libraries. Within the machine learning community,
researchers can use WekaPyScript to compare Python imple-
mentations of learning algorithms with ones in WEKA (or in
R)8, by using the WEKA Experimenter tool.

Author roles
•	 Christopher Beckham (cjb60 at students dots
waikato dot ac dot nz)

–– �Department of Computer Science, The University of
Waikato, Hamilton 3240, New Zealand

–– �Wrote software (WekaPyScript), co-wrote manuscript
•	 Mark Hall (mhall at pentaho dot com)

–– �Pentaho Corporation, Suite 340, 5950 Hazeltine
National Dr., Orlando, FL 32822, USA

–– �Wrote software (wekaPython), co-wrote manuscript,
software feedback and testing

•	 Eibe Frank (eibe at waikato dot ac dot nz)
–– �Department of Computer Science, The University of
Waikato, Hamilton 3240, New Zealand

–– �Project supervisor, manuscript and software feed-
back and testing

Competing Interests
The authors declare that they have no competing interests.

Notes
	 1	 Filters are used to preprocess the data before being

provided to a learning algorithm. Examples of filter
applications include binarisation of nominal attributes,
standardisation of data, and discretisation. In the
context of WEKA, a “classifier” refers to either a clas-
sification or regression learning algorithm. Additional
information can be found at https://weka.wikispaces.
com/Primer.

	 2	 Since args is a list of Python variable assign-
ments separated by semicolons, something like
“a=[1,2,3,4,5];b=abs(−2)” is valid because
it will result in the assignments args[’a’] =
[1,2,3,4,5] and args[’b’] = abs(−2),
which are syntactically valid Python statements.

	 3	 “Training” may be a confusing term depending on the
filter. For example, a filter that randomly adds noise to
values in the data need not be “trained”, but a supervised
filter (such as a discretisation algorithm) will. In the case
of the former, we can simply perform no operation in this
method and return anything, such as an empty string.

	 4	 This assumes that weka.jar is located in the
CLASSPATH variable. For more information, see the
README located in the root of the package directory.

	 5	 https://www.continuum.io/downloads
	 6	 https://github.com/Theano/Theano
	 7	 http://www.github.com/christopher-beckham/weka-

lasagne
	 8	 R algorithms can be called from WEKA using the

RPlugin package: http://weka.sourceforge.net/package
MetaData/RPlugin/index.html

References
  1.	Hall, M, Frank, E, Holmes, G, Pfahringer, B,

Reutemann, R and Witten, I H 2009 (November)
The WEKA data mining software: An update. SIG-
KDD Explor. Newsl., 11(1): 10–18. DOI: http://dx.doi.
org/10.1145/1656274.1656278

  2.	Pedregosa, F, Varoquaux, G, Gramfort, A,
Michel, V, Thirion, B, Grisel, O, Blondel, M,
Prettenhofer, P, Weiss, R, Dubourg, V, Vanderplas, J,
Passos, A, Cournapeau, D, Brucher, M, Perrot, M
and Duchesnay, E 2011 Scikit-learn: Machine learn-
ing in Python. Journal of Machine Learning Research,
12: 2825–2830.

  3.	Hall, M 2015 wekaPython: Integration with CPython
for WEKA. Available at: http://weka.sourceforge.net/
packageMetaData/wekaPython/index.html.

  4.	Bastien, F, Lamblin, P, Pascanu, R, Bergstra, J,
Goodfellow, I J, Bergeron, A, Bouchard, N and
Bengio, Y 2012 Theano: new features and speed im-
provements. Deep Learning and Unsupervised Feature
Learning NIPS 2012 Workshop.

http://dx.doi.org/10.5281/zenodo.50198
http://github.com/christopher-beckham/weka-pyscript
http://github.com/christopher-beckham/weka-pyscript
https://groups.google.com/forum/#!forum/weka-pyscript
https://groups.google.com/forum/#!forum/weka-pyscript
https://github.com/christopher-beckham/weka-pyscript/blob/master/README.md
https://github.com/christopher-beckham/weka-pyscript/blob/master/README.md
https://github.com/christopher-beckham/weka-pyscript/blob/master/README.md
https://github.com/christopher-beckham/weka-pyscript/wiki
https://github.com/christopher-beckham/weka-pyscript/wiki
https://weka.wikispaces.com/Primer
https://weka.wikispaces.com/Primer
https://www.continuum.io/downloads
https://github.com/Theano/Theano
http://www.github.com/christopher-beckham/weka-lasagne
http://www.github.com/christopher-beckham/weka-lasagne
http://weka.sourceforge.net/packageMetaData/RPlugin/index.html
http://weka.sourceforge.net/packageMetaData/RPlugin/index.html
http://dx.doi.org/10.1145/1656274.1656278
http://dx.doi.org/10.1145/1656274.1656278
http://weka.sourceforge.net/packageMetaData/wekaPython/index.html
http://weka.sourceforge.net/packageMetaData/wekaPython/index.html

Beckham et al: WekaPyScript Art. e33, p.  10 of 10

  5.	Dieleman, S, Schlüter, J, Raffel, C, Olson, E, Sønderby,
S K and Contributors 2015 (August) Lasagne: First re-
lease. DOI: http://dx.doi.org/10.5281/zenodo.27878

  6.	Jia, Y, Shelhamer, E, Donahue, J, Karayev, S,
Long, J, Girshick, R, Guadarrama, S and Darrell, T
2014 Caffe: Convolutional architecture for fast feature
embedding. arXiv preprint arXiv:1408.5093.

  7.	Baydin, A G, Pearlmutter, B A and Radul, A A 2015
Automatic differentiation in machine learning: a
survey. CoRR, abs/1502.05767.

  8.	McKinney, W 2010 Data structures for statistical
computing in Python. In: van der Walt, S and Mill-
man, J (Eds.) Proceedings of the 9th Python in Science
Conference, pp. 51–56.

How to cite this article: Beckham, C, Hall, M and Frank, E 2016 WekaPyScript: Classification, Regression, and Filter Schemes for
WEKA Implemented in Python. Journal of Open Research Software, 4: e33, DOI: http://dx.doi.org/10.5334/jors.108

Submitted: 09 December 2015 Accepted: 01 July 2016 Published: 08 August 2016

Copyright: © 2016 The Author(s). This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

Journal of Open Research Software is a peer-reviewed open access journal published by
Ubiquity Press OPEN ACCESS

http://dx.doi.org/10.5281/zenodo.27878
http://dx.doi.org/10.5334/jors.108
http://creativecommons.org/licenses/by/4.0/

