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Counting n-grams lies at the core of any frequentist corpus analysis and is often considered a trivial mat-
ter. Going beyond consecutive n-grams to patterns such as skipgrams and flexgrams increases the demand 
for efficient solutions. The need to operate on big corpus data does so even more. Lossless compression 
and non-trivial algorithms are needed to lower the memory demands, yet retain good speed. Colibri Core 
is software for the efficient computation and querying of n-grams, skipgrams and flexgrams from corpus 
data. The resulting pattern models can be analysed and compared in various ways. The software offers a 
programming library for C++ and Python, as well as command-line tools.
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(1) Overview
Introduction
The n-gram, a sequence of n consecutive word tokens, 
is a core concept for many Natural Language Processing 
(NLP) applications. One of the most basic NLP tasks is to 
read corpus text and compute an n-gram frequency list, 
elementary for any kind of statistical analysis. The uni-
gram frequency list, i.e. the word frequency list, is the 
simplest instance of this task which is especially ubiqui-
tous. Computing n-gram frequency on a corpus text is 
fairly trivial, and any beginning computer science student 
will have no trouble to accomplish this in just a few lines 
of code in a modern high-level programming language. 
However, optimising this to reduce memory constraints, 
improve speed, and scale to large data, is a more complex 
matter. Colibri Core, the NLP software we introduce here, 
offers efficient algorithms to do this.

N-grams are typically distributed in a Zipfian fashion, 
implying there are only a few high-frequency patterns, with 
words such as common function words in the lead, and 
there is a long tail of patterns that occur only very sparsely. 
This basic fact makes counting a notoriously memory-hun-
gry enterprise, as patterns occurring below a minimum fre-
quency threshold can not be discarded from memory until 
the entire corpus has been processed sequentially.

When working with large data sets and higher-order 
n-ngrams, this memory problem becomes apparent 
quickly when trivial solutions are employed. Colibri Core, 
on the other hand, offers tools and programming librar-
ies that are heavily optimised to 1) reduce memory usage, 
and 2) offer high-speed performance.

The task of finding n-grams is generalised in Colibri 
Core to the task of finding patterns or constructions (we 

use the terms interchangeably). Furthermore, once pat-
terns are identified, resulting in a pattern model, Colibri 
Core can extract relations between the patterns.

As the name Colibri Core suggests, the software is 
geared to provide core functionality for modelling pat-
terns and exposes this functionality as a programming 
library as well as through command line tools. It aims to 
provide a solid foundation upon which more specialised 
software can be built, such as software for language mod-
elling. The software is aimed at NLP software developers 
and researchers with a solid technical background.

Related Work
Pattern extraction, and with it pattern matching, plays an 
important role in computer science. In the NLP literature, 
n-grams are a common type of pattern, and their model-
ling is often researched in the context of statistical lan-
guage modelling. Software that springs from such studies 
is widespread in the field. Examples, by no means exhaus-
tive, are SRILM [13], IRSTLM [2], and KenLM [5]. Focus on 
efficient modelling with regards to memory consump-
tion and look-up speed is an important component in 
such studies. Others also focus on big data storage in this 
field [4], though this study did not produce a usable open 
source software solution.

Colibri Core, however, takes a step back and is not a 
language modelling toolkit and therefore can’t be readily 
compared with one. It is, however, very suitable to be used 
as a foundation to that end, which has been done by one 
study already [10]. What we do have in common with lan-
guage modelling toolkits is that both types of systems con-
tain a store of patterns (i.e. n-grams or beyond) and their 
frequencies, in which quick look-up is essential, and both 
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provide a procedure to compute such a model. Both LM 
toolkits as well as Colibri Core employ various optimisa-
tions to reduce the memory usage of this store, and keep 
access times high.

Language Modelling toolkits do not generally offer any 
of the functionality Colibri Core offers when it comes to 
thresholding, indexing, nor the modelling of non-consec-
utive patterns such as skipgrams. The issue of skipgram 
extraction and modelling gained more traction in the past 
decade, see for instance [3]. The notion of skipgram (or 
rather flexgram in our terms, as shall become apparent 
later) also plays a part in vector space representations [9] 
that have become increasingly popular.

We think Colibri Core fills an interesting niche that is 
not covered by other readily available software. It provides 
solutions for the modelling of n-grams and skipgrams/
flexgrams in an efficient and sufficiently extensible 
manner.

Implementation and Architecture
The overall architecture of Colibri Core is visualised in 
Figure 1, from a data flow perspective. The components 
shown here will be discussed in this section.

We will present the various features and optimisations 
that are implemented in Colibri Core. We start with a intro-
duction of patterns and their encoding, Then discuss the 
implemented optimisation we use to count n-grams, and 
subsequently skipgrams. We then discuss more advanced 
parametrisation and end with a section on the computa-
tion of flexgrams.

Feature: Patterns
We distinguish three categories of patterns, and define 
them as follows:

1.	N-grams – A sequence of n word tokens that are all 
consecutive. For example: “to be or not to be”

2.	Skipgrams – A fixed-length sequence of p word 
tokens and q token placeholders/wildcards with 
total length n (n = p + q), the placeholders constitute 
gaps or skips and a skipgram can contain multiple of 
these. In turn, a gap can span one or more tokens. For 
example: “to  _  or  _ _  be”

3.	Flexgrams – A sequence with one or more gaps of 
variable length, which implies the pattern by itself is 
of undefined length. For example: “to * or * be”

Our definitions are defined narrowly and, with exception 
of n-grams do not necessarily match up precisely to the 
way the concepts are used in other studies. Some may use 
the term skipgram to include what we call flexgram, or use 
another term such as “elastigram” to refer to flexgrams.

Skipgrams are used in the field to obtain a higher level 
of generalisation than can be offered by n-grams. They 
can, for instance, be found as features in classification 
tasks [1], or as a means in language modelling to decrease 
perplexity [3,10].

Dealing with word tokens implies that the corpus data 
has to be in a tokenised form. We start from the basis of 
plain-text corpus data, containing one unit per line; a 
unit can correspond to a sentence, paragraph, tweet or 
whatever unit is deemed appropriate for the task at hand. 
Corpus data can alternatively be provided in FoLiA XML 
format [14] as well, although linguistic annotation will be 
ignored.

Text data is typically stored as a string of characters. The 
characters themselves draw their denotation from a char-
acter encoding. The storage of a huge amount of strings 
is inefficient from a memory perspective, considering the 
fact that words follow a Zipfian distribution. Colibri Core 
therefore works on the basis of a lossless compression, in 
which each unique word token is assigned a numeric type 
identifier, which we call a class. This effectively defines the 

Figure 1: The Colibri Core architecture; light green squares represent data models, yellowish rounded squares repre-
sent processes that manipulate data.
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vocabulary of your data, which we call a class encoding. A 
pattern is not represented as an array of characters, but as 
an array of these classes instead. Such methods are com-
monly employed in Language Modelling toolkits as well, 
where 24 or 32-bit integers uniquely assigned to words 
are typically chosen [4].

In Colibri Core, further lossless compression is achieved 
by holding this array of classes in a dynamic-length byte 
representation rather than fixed-sized integers. This allows 
for low class values to be stored in fewer bytes than high 
class values. Classes 0 to 127 can be stored in a single byte, 
higher classes require at least two bytes. To achieve maxi-
mum compression, classes are assigned to word tokens 
based on frequency (i.e. entropy encoding): words with 
the highest frequency receive the lowest classes. This is 
essentially a variant of Huffman coding [6]. Some of the 
lowest classes are reserved for special purposes, e.g. to 
delimit sentences (class 0) or as markers for out-of-vocab-
ulary words (class 2) or skipped content (classes 3 and 4).

Of each byte in the class representation, the highest 
bit is reserved as a continuation marker. As long as the 
continuation marker is set, the next byte is still part of 
the class. When it is low, we know we are at the final byte 
of a class representation. The class itself is stored in the 
remaining 7-bits of each byte. In practise this results in 
good compression and reduces memory usage; an exam-
ple corpus taking up 221 MB on disk in plaintext form is 
reduced to just 60 MB when compressed. A subset of the 
Google billion word corpus, 769 million words in 30 mil-
lion sentences, takes 3.9 GB in plaintext form, and 1.2 GB 
when compressed in this matter.

To encode a text corpus, a class encoding needs to be 
computed first, as visualised in the top-left corner of 
Figure 1. To decode the encoded corpus back to plain 
text, the class encoding is needed again. Colibri Core pro-
vides tools and exposes library functions to do this.

Optimisation: Informed Iterative Counting
N-gram frequency lists are often parametrised by a certain 
threshold. All n-grams below this occurrence threshold 
are pruned. We can circumvent the problem of having to 
hold a huge amount of patterns in memory that do not 
meet the threshold, as is typical in a Zipfian distribution. 

We do this by employing informed counting. Informed 
counting is an iterative procedure, shown in pseudo 
code in Algorithm 1. Here we take m to be the maximum 
n-gram order we intend to extract. The whole corpus is 
then processed for each n where 1 < n ≤ m, extracting the 
respective n-grams at each iteration. This means that at 
each iteration, we can consult the results of the previous  
iteration. We can then readily discard any n-gram with  
n > 1 for which either of the two n – 1-grams it contains 
does not meet the threshold, as it follows that the n-gam 
can never meet the threshold either. By outright discard-
ing an n-gram we do not need to store it and its count 
in memory. After each iteration of n, we prune all the 
n-grams that did not reach the threshold.

Though not expressed in the simplified algorithm above, 
the actual implementation accounts for more param-
eters, such as setting a lower bound to n. The amount of 
back-off, going all the way up to m – 1 here, can also be 
fine-tuned.

This algorithm makes concessions to processing speed, 
as multiple passes over the data are needed, to conserve 
memory. A performance evaluation of this algorithm will 
be addressed later in the section on Quality Control.

Optimisation: Informed Skipgram Counting
The computation of skipgrams is parametrised by an 
upper limit l ≤ m in the number of tokens, i.e. the total 
length of the skipgram (including gaps) expressed in 
tokens. The possible configuration of gaps increase expo-
nentially with the total length spanned. A skipgram of size 
three has only one possible gap configuration1; a _ z, a 
skipgram of size four already has three possible configura-
tions; a _ _ z, a b _ z or a _ y z.

The algorithm, shown in Algorithm 2 considers all pos-
sible configurations in which skips can be inserted in all of 
the n-grams in the model. It can discard a skipgram candi-
date by looking at the non-skipped parts that make up the 
skipgram, and by checking whether those exceed the set 
threshold. Note that the computation of skipgrams first 
requires counts of all n-grams where 0 < n ≥ l.

In this algorithm, the possible Configurations (ngram) func-
tion returns all possible skipgram configurations for the given 
n-gram. Note that the configuration of gaps depends only on 

for n ∈ 2..m do
for line ∈ corpus do

for ngram ∈ extractNGrams (line, n) do
nm1gram1, nm1gram2 ← extractNGrams(ngram, n − 1)
if M (nm1gram1) ≥ t & M (nm1gram2) ≥ t then

M (ngram) ← M (ngram) + 1
end if

end for
end for
M ← pruneNGrams(M, n, t)

end for
return M

Algorithm 1: Informed Iterative Counting for n-grams. Take m to be the maximum n-gram order we intend to extract, 
t to be the minimum occurrence threshold, and M to be the pattern model in memory, with unigrams already counted 
in the more trivial fashion.
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the length of the n-gram, regardless of its content, and can 
therefore easily be pre-computed. The parts(skipgram) func-
tion returns all consecutive parts that are subsumed in the 
skipgram, i.e. the parts delimited by the gaps.

Like Algorithm 1, Algorithm 2 assumes a threshold  
t > 1. When t = 1, more trivial algorithms are invoked, as 
the user does not want to prune anything. These make 
only a single pass over the data. For skipgrams this leads to 
an explosion of resulting patterns, exponential with num-
ber of tokens, and is best avoided.

Parametrisation: What counts?
The counting algorithms are parametrised by various 
other parameters which are not shown in Algorithm 1 
and Algorithm 2 to reduce complexity. The wide variety 
of parameters allow the user to influence precisely what is 
counted and this is one of the main assets of Colibri Core. 
Parameters exist to affect the following:

•	 The minimum and maximum length (in words/
tokens) of the n-grams and/or skipgrams to be 
extracted. Setting minimum and maximum length to 
the same value will produce a model of homogeneous 
pattern length (e.g. only trigrams or words).

•	 A secondary word occurrence threshold can be config-
ured. This is a value set higher than the primary occur-
rence threshold. Only patterns occurring above the pri-
mary threshold, and for which each of the individual 
words/unigrams in the pattern passes the secondary 
threshold as well, will be included in the model.

•	 N-grams that are not subsumed by higher order 
n-grams, i.e. which do not occur as part of a higher 
order n-gram in the data/model, can be pruned from 
the model. This allows you to extract for instance all 
trigrams and all bigrams and unigrams that make up 
the trigrams, but not the bigrams and unigrams that 
are not subsumed in trigrams.

•	 Skipgrams can be constrained using the skip type 
threshold. This requires that at least the specified 
number of distinct patterns must fit in the gaps of the 
skipgram. Higher values will produce less skipgrams, 
but typically more generic ones. For instance, a skip-
gram such as The_house will then only be included in 
the model if the corpus has instances in which the 
gap can be filled by at least the specified number of 
distinct patterns. If the threshold is set to 2 for exam-
ple, and the corpus contains The big house and The 
small house, then the skipgram The_house is included. 
If the corpus only has one of these instantiations, and 
no other instantiations of the skipgram either, then 
the skipgram would not be included.

•	 Skipgrams and n-grams are typically computed using 
the same occurrence threshold, but it is also possible 
to use a different threshold for skipgrams.

Feature: Pattern Models
A pattern model is a key → value store, where the keys cor-
respond to patterns and the values typically correspond 
to occurrence counts, although any kind of other value is 
supported too. Our aim with pattern models is to have a 
data structure that allows for quick lookup and iteration, 
as well as quick insertion during training. Moreover, mem-
ory consumption should be as conservative as possible, to 
allow handling of big data.

The underlying C++ library allows for choosing the 
actual underlying container implementation and value 
type through templating. The default container datatype 
is a hash map,2 which guarantees O(1) access and update 
times under ideal hashing conditions. The hash3 is com-
puted directly from the binary representation of a pat- 
tern. Storing each pattern individually results in a lot of 
redundant information to be stored, as patterns overlap 
to a large degree. To conserve memory, the models can 
store pattern pointers4 instead. Instead of duplicating the 

for n ∈ 3..l do
for ngram ∈ getNGrams(M, n, t) do

for skipgram ∈ possibleConfigurations(ngram) do
docount ← True
for part ∈ parts(skipgram) do

if M (part) < t then
docount ← False Break

end if
end for
if docount then

M(skipgram) ← M(skipgram) + 1
end if

end for 
end for
M ← pruneSkipgrams(M, n, t)

end for
return M

Algorithm 2: Informed Counting for skipgrams. Take l to be the maximum skipgram order we intend to extract, t to be 
the minimum occurrence threshold, and M to be the pattern model in memory, with ngrams already counted.
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content for each pattern, these point to the original cor-
pus data which is held in memory.

The use of hash maps can be contrasted to the use of suf-
fix (or prefix) tries [17], a common datastructure for storing 
n-grams in which a tree is constructed and any path in the 
tree, complete or incomplete, corresponds to a suffix (or 
prefix). Although suffix tries also benefit from decreased 
memory use due to no overlap in pattern data, the strongly 
linked nature of tries causes a significant overhead in mem-
ory use5 that quickly exceeds the memory footprint of hash 
maps. For this reason, hash maps are the default and tries 
are currently not implemented in Colibi Core. The templat-
ing, however, does allow for such an implementation to 
be added in the future. This flexibility to abstract over the 
underlying data structure is one of the assets of Colibri Core.

At this point, we need to address suffix arrays [8] as 
well, which is a sorted array of suffixes, derived from suffix 
tries but with significantly decreased space requirements. 
Suffix arrays with longest common prefix (LCP) arrays 
will consume less memory than our hash maps, but are 
typically much slower to construct and query. Though no 
exhaustive experiment was conducted to this end, we did 
compare a predecessor of Colibri Core with a suffix array 
implementation [12] and found our implementation to be 
significantly faster in model construction.

We distinguish two types of pattern model, depending 
on the type of the values, which in the underlying C++ 
implementation is subject to templating as well:

1.	Unindexed Pattern Models – Values are simple 
integers

2.	Indexed Pattern Models – Values are arrays of indi-
ces where the pattern’s occurrences in the corpus are 
stored.

Obviously, indexed pattern models make a considerably 
higher demand on memory. They do, however, allow for a 
broader range of computations, as shall become apparent 
in subsequent sections.

The command-line tool colibri-patternmod-
eller exposes most of the functionality for training, 
viewing and editing pattern models (see also Figure 1). 
In the C++ and Python APIs, this functionality is gener-
ally available through methods on some flavour of the 
PatternModel class.

Optimisation: Two-step training
Training indexed patterns models is more memory inten-
sive than training unindexed models, especially in very 
large corpora (say at least a hundred million words). To 
lower the demand on memory for such corpora, we imple-
ment a two-step training procedure. This involves first con-
structing an unindexed pattern model and subsequently 
constructing an indexed model on the basis of that, by 
making another pass over the corpus and gathering all 
indices. The gain here is in avoiding temporary storage of 
the indices that will not pass the occurrence threshold but 
that cannot be ruled out a priori by the informed counting 
algorithm. This conservation of memory comes at the cost 
of extended execution time.

Feature: Corpus Comparison
The computation of pattern models on two or more dis-
tinct corpora, provided the class encoding is the same 
for all of them, provides a basis for comparative corpus 
analysis. One measure for corpus comparison introduced 
in the software is the notion of coverage. This metric is 
expressed as the number of tokens in the test corpus that 
is covered by the patterns from the training corpus. This 
makes it an asymmetric metric, so the choice of training 
and test corpus matters. The metric can be represented 
either in absolute counts, or in normalised form as a frac-
tion of the total amount of tokens in the test corpus.

To perform such comparisons, we first compute a pat-
tern model on the training corpus, and subsequently 
compute a second pattern model on the test corpus, but 
constrained by the former pattern model. The ability to 
train constrained models is present throughout the soft-
ware and can for instance also be used to train a pattern 
model based on a custom preset list of patterns, effectively 
limiting the model to this preselection. The previously 
described two-step training algorithm is also an example 
of constrained training.

Summarised statistics are computed at multiple levels. 
Measures such as occurrence count and coverage can be 
consulted for aggregates of n-grams, skipgrams, or flex- 
grams, as well as specific patterns. The former two can 
be inspected specifically for each of the different pattern 
sizes present in the model, i.e. for each value of n.

The coverage metric is a fairly crude metric of corpus 
overlap, despite the ability to assess it for different aggre-
gates. A more widely established metric for corpus com-
parison is log-likelihood. Log likelihood expresses how 
much more likely any given pattern is for either of the two 
models. It therefore allows you to identify how indicative 
a pattern is for a particular corpus. Our implementation 
follows the methodology of [11]. They compute the log-
likelihood (L) given the frequency of a pattern in corpus 
1 (a), and corpus 2 (b) as follows6:
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Feature: Relations between Patterns
Various relations can be extracted between patterns in 
a pattern model, either through the API or a dedicated 
query tool. For all but the first of the relation types an 
indexed pattern model is required.

•	 Subsumption Relation – n-gram xyz subsumes  
n−1-grams xy and yz.

•	 Succession Relation – Patterns that occur in a 
sequence in the corpus data. For example: pattern x 
precedes yz and pattern z succeeds xy.

•	 Instantiation Relation – Skipgrams or flexgrams 
may be instantiated by other patterns. For example, 
“to be _ not _” be is instantiated by “or _ to”, resulting 
in the 6-gram “to be or not to be”. This type of relation 
thus allows you to precisely determine what patterns 
occur in certain gaps.
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•	 Co-occurrence Relation – Different patterns can 
naturally co-occur multiple times within the the 
structural “units” you decided upon for the corpus 
(e.g. sentences, paragraphs, tweets, etc). These units 
are newline delimited in your original input. The 
measure of such co-occurrence can be expressed by 
established metrics such as Jaccard and (normalised) 
mutual pointwise information.

For each of these categories, the relationship is bidirec-
tional, i.e. you can query for the subsuming patterns as well 
as the subsumed patterns, the left neighbours as well as the 
right neighbours, the instantiations as well as the abstrac-
tions. The co-occurrence relationship is fully symmetrical.

These latter three relationships rely on both the forward 
index inherent in an indexed pattern model, as well as the 
reverse index, a function from positions in the corpus to 
an array of patterns that are found at said position. The 
reverse index is not modelled in memory as an explicit 
mapping from positions to patterns, that would use too 
much memory, but as a simpler reverse index that only 
keeps track of where each unit/sentence starts. This can 
then be used to quickly resolve specific positions to all 
possible patterns.

Feature: Flexgram Counting
Thus far, we have explained the algorithms for n-gram 
counting and skipgram counting, but have not yet done 
so for flexgrams, i.e. patterns with variable-width gaps. The 
implementation allows flexgrams to be computed in two 
different ways. The first is by extracting skipgrams first, 
and then abstracting flexgrams from these skipgrams. 
In this case the flexgram computation is constrained by 
the same maximum-size limit under which the skipgrams 
have been extracted. The second method for flexgram 
extraction proceeds through the co-occurrence relation. 
A flexgram is formed whenever two patterns (within the 
same structural unit) co-occur above a set threshold. The 
implementation of this latter method is currently limited 
to flexgrams with a single variable-width gap. This method 
is recommended when the user is interested in long-dis-
tance flexgrams, whereas the abstraction method is rec-
ommended when the user is more interested in having 
multiple gaps or the relationship between flexgrams and  
skipgrams.

Quality Control
Unit tests
To ensure the software is working as intended, an exten-
sive series of unit tests is available. The tool colibri-
test tests the various functions of the C++ library. 
The test.py script tests the Python binding. Testing in the 
form of continuous integration is made possible through 
Travis CI, where all test results are publicly available for  
inspection. 7

Performance Evaluation
In this section we conduct a performance evaluation of 
Colibri Core by measuring the time to compute a pattern 
model, and the memory resources used.

Comparisons can be made between Colibri Core’s unin-
dexed vs indexed models, between the optimised pointer 
models vs standard pattern models, and between preload- 
ing a corpus in memory or reading it directly from file. For 
the experiments, shown in Table 1, we used a corpus of 
Dutch translations of TED talks of 127, 806 sentences and 
2, 330, 075 words.8

We perform tests without thresholding as well as with 
an occurrence threshold of 2, and extract anything from 
unigrams to 8-grams.

For reference, we include a naive Python implemen-
tation that simply counts n-grams and stores them in a 
Python dictionary where the keys are strings and the 
values integers. We also include a comparable imple-
mentation that uses NLTK.9 Similarly, we include a naive 
C++ implementation based on a std::unordered_
map<string,uint32_t>. The memory reduction 
that can be observed when comparing these against the 
Colibri Core models is attributed to the class encoding 
scheme we use. These memory opti- misations do come 
with a performance drawback that is especially noticeable 
when no thresholding is applied.

The pattern pointer models prove capable of further 
reduction in memory consumption, and offer a clear 
speed advantage as well. The pointer models use a repre-
sentation of patterns that refer to the original corpus data, 
which is fully loaded into memory, rather than storing a 
separate copy for each pattern.

For the experiments with thresholding, we added a 
simple Python implementation of iterative counting and 
assess the value of the algorithm as such by comparing 
it against the naive Python implementation that simply 
prunes values below threshold at the very end. We clearly 
observe a drastic reduction in memory usage, at the cost 
of a longer execution time due to the multiple iterations.

Though Colibri Core is not a Language Modelling 
toolkit in itself, a comparison with a popular third-party 
LM toolkit may be of interest. We compare an unindexed 
pattern model containing unigrams, bigrams and trigrams 
to a similar model in SRILM [13].10 Due to the many other 
features Colibri Core offers regarding thresholding, index-
ing, skipgrams and flexgrams, it can not yet rival the per-
formance and memory efficiency of dedicated LM systems, 
which allow for more specific optimisations.

Indexed Pattern Models are by definition larger in mem-
ory than unindexed models, but they do offer a significant 
speed benefit in the computation of skipgrams, both of 
this can be observed in Table 1.

The C++ library allows for easy swapping of the under-
lying datastructure for pattern models. The default 
hashmap (std::unordered_map) solution can be 
contrasted to a pattern model using using an ordered 
map (std::map11). As expected, the ordered map 
proves to be significantly slower and does not yield a 
memory advantage either.

As Colibri Core is suited for the processing of large data 
sets, provided sensible thresholds are set, we conduct 
extra experiments on the JRC-Acquis corpus, containing 
31.3 million words in over 850, 000 sentences, and on a 
portion of the Google Billion Word corpus, where we use 
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a set of 768 million words in 30 million sentences. These 
results are shown in Table 2.

Noticeable in the big data experiments is the explosion in 
memory consumption when skipgrams are computed on an 
unindexed pattern model. This is attributed directly to the 
sheer amount of skipgrams that can be extracted from the data, 
and the fact that unindexed models can only compute skip-
grams exhaustively and do not support the skip type threshold 
discussed in Section “Parametrisation: What counts?”.

Documentation
Extensive documentation, including API references for both 
Python and C++, is provided at https://proycon.
github.io/colibri-core. An interactive tutorial 
for Python is also available. The next section will provide 
a small example of possible usage from the command line.

Usage Example
Although we refer to the aforementioned documentation 
and the Python tutorial for extensive usage instructions, 
we include a short use case in this section and show how 

to use the command line tools. Assume you have a corpus 
corpus.txt and you want to extract all n-grams, skip-
grams and flexgrams that occur more than five times. We 
set the maximum length to 8. For skipgrams, we add the 
additional constraint that it abstracts over at least three 
distinct ngrams, i.e. there are three different ways of filling 
the gaps. Flexgrams we derive from skipgrams.

First we should ensure this corpus is properly tokenised 
and that sentence splitting has been performed, putting 
each sentence on one line to make this the basic unit 
Colibri Core can count with. This preprocessing is not 
done by Colibri Core but using an external tokeniser such 
as ucto12:
$ ucto ucto - L en -n corpus.txt > corpus.tok.txt

Once preprocessing is done, we can encode the cor-
pus in a form suitable for Colibri Core, computing a class 
encoding and converting the data to it, as explained in 
section “Feature: Patterns”. The flow of this and all subse-
quent steps is also visualised in the architectural scheme 
in Figure 1.
$ colibri-classencode corpus.tok.txt

Experiment CPU time Memory

IWSLT data, without thresholding (t = 1, l = 8)

* Naive Python implementation 20.0 s 1404 MB

* Python NLTK implementation 18.7 s 1413 MB

* Naive C++ implementation 10.5 s 1398 MB

Unindexed Pattern Model (from file) 29.7 s 775 MB (787 MB)

Unindexed Pattern Pointer Model (preloaded corpus) 19.8 s 615 MB (627 MB)

IWSLT data, with thresholding (t = 2, l = 8)

* Naive Python implementation 28.8 s 1485 MB

* Python with iterative counting 70.9 s 171 MB

Unindexed Pattern Model (from file) 14.6 s 64 MB (76 MB)

Unindexed Pattern Model (preloaded corpus) 11.3 s 64 MB (76 MB)

Unindexed Pattern Pointer Model (preloaded corpus) 9.0 s 50 MB (62 MB)

Indexed Pattern Model (preloaded corpus) 13.6 s 148 MB (160 MB)

Indexed Pattern Pointer Model (preloaded corpus) 10.1 s 133 MB (146 MB)

Unindexed Pattern Model (ordered map) 30.5 s 84 MB (96 MB)

Unindexed Pattern Model (preloaded corpus), with skipgrams 62.4 s 105 MB (118 MB)

Unindexed Pattern Pointer Model (preloaded), skipgrams 50.0 s 89 MB (102 MB)

Indexed Pattern Model (preloaded corpus), with skipgrams 24.2 s 165 MB (178 MB)

IWSLT data, LM comparison, trigram model (t = 1, l = 3)

Unindexed Pattern Model (from file) 5.9 s 152 MB (164 MB)

* SRILM ngram-count 1.5 s 80 MB

Table 1: Colibri Core performance benchmarks on the IWSLT data set. Performed by the colibri-benchmarks tool 
and the benchmarks.py script for the Python baselines. All non-Colibri Core references are marked with an asterisk 
(*). Memory usage is measured as the difference in resident memory after training and before training. Peak memory 
usage is measured absolutely as reported by the OS and included in parentheses. All experiments were performed on a 
Linux system with an Intel Xeon CPU (E5-2630L v3) at 1.80GHz and 256GB RAM. Parameter t refers to the occurrence 
threshold, l to the maximum pattern length.

https://proycon.github.io/colibri-core
https://proycon.github.io/colibri-core
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This will result in the encoded corpus corpus.tok.
colibri.dat and the corresponding vocabulary file 
corpus.tok.colibri.cls.

The main tool colibri-patternmodeller can 
now be invoked to extract ngrams, skipgrams and flex-
grams and output a pattern model, as described in section 
“Feature: Pattern models”, to file:

$ colibri-patternmodeller --datafile corpus.tok.
colibri.dat \
--outputmodel corpus.colibri.patternmodel \
--threshold 5 --maxlength 8 --skipgrams --skip
types 3 --flexgrams S

We have opted for an indexed pattern model, which 
gives us more thresholding options such as --skip-
types, and makes skipgram extraction more efficient, 
but at the cost of a much higher memory footprint com-
pared to the simpler unindexed models.13

We can now read the model from file and produce 
output to standard output in the form of 1) a print of all 
patterns in the model, 2) a statistical report summarising 
counts for various groups of patterns, and 3) a histogram 
of pattern frequencies:

$ colibri-patternmodeller --inputmodel cor
pus.colibri.patternmodel \
--classfile corpus.tok.colibri.cls \
--print --report --histogram

This step could have been combined with the previous 
one as well.

We again urge the reader to consult the documentation 
and tutorials for a more extensive description of all avail-
able options and use cases, as this example only covers 
one out of many use cases, and further in-depth examples 
fall beyond the scope of this paper.

Support
Support, including but not limited to bug reports, fea-
ture requests and general pleas for assistance, is provided 
through the Github issue tracker at https://github.
com/proycon/colibri-core/issues. As such, 
the archive of issues is always publicly consultable.

(2) Availability
Operating System
Colibri Core should be able to run on modern POSIX-
compliant operating systems, including Linux, FreeBSD 
and Mac OS X. It is tested to compile with current versions 
of both gcc as well as clang.

Programming Language
Colibri Core is written in C++, adhering to the C++11 stand-
ard. The Python binding is written in Cython (0.23 or above) 
and supports both Python 2.7 as well as Python 3. The latter 
is recommended.

The Python binding ensures that the functionality of Colibri 
Core is easily accessible from Python without sacrificing the 
great performance benefit native code provides. Python was 
chosen as it is a high-level programming language in wide-
spread use in the scientific community, and the NLP commu-
nity in particular. It demands less expertise from the developer 
than C++ and is more suitable for rapid prototyping.

Additional system requirements
Colibri Core provides memory-based techniques where models 
are held entirely in memory to guarantee maximum perfor-
mance on lookup and computation. This approach can be con-
trasted to e.g. database approaches which have much higher 
latency. It does place considerable memory requirements on 

Experiment CPU time Memory
JRC-Acquis data, with thresholding (t = 2, l = 8)

*Naive Python implementatio 8m 4s 11407 MB

Unindexed Pattern Model (from file) 4m 18s 1704 MB (1803 MB)

Unindexed Pattern Model (preloaded corpus) 3m 58s 1700 MB (1800 MB)

Unindexed Pattern Pointer Model (preloaded corpus) 3m 1s 1344 MB (1445 MB)

Indexed Pattern Model (preloaded corpus) 4m 36s 4117 MB (4217 MB)

Unindexed Pattern Model (preloaded corpus), skipgrams 61m 1s 30420 MB (30520 MB)

Indexed Pattern Model (prel.), skipgrams, skiptypes = 12 80m 11s 29746 MB (29846 MB)

JRC-Acquis data, LM comparison, trigram model (t = 1, l = 3)

Unindexed Pattern Model (from file) 42s 716 MB (847 MB)

*SRILM ngram-count 12s 348 MB

Google Billion Words corpus, with heavy thresholding (t = 10, l = 4, y = 20)

Unindexed Pattern Pointer Model (preloaded corpus) 83m 14s 12279 MB (15317 MB)

Google Billion Words corpus, trigram model (t = 1, l = 3)

Unindexed Pattern Model (from file) 25m 16s 16568 MB (19788 MB)

Table 2: Benchmarks on two large data sets. Same setup as Table 1. Parameter y represents the occurrence threshold 
specifically for skipgrams.

https://github.com/proycon/colibri-core/issues
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the system on which is it run, though this depends entirely on 
the size of the data and the thresholds the user uses. We rec-
ommend at least 16GB RAM. In practise, using Colibri Core on 
high-end computing servers with 256GB RAM is not uncom-
mon for extensive computation on big data sets.

Colibri Core is single-threaded due to the non-distribut-
able nature of most of the algorithms. A 64-bit architec-
ture is required, 32-bit is not supported.

Dependencies
Colibri Core relies on the standard C/C++ library and a 
full build environment including autoconf and automake; 
Python 2.7 or 3; Cython 0.23 or above. Support for read-
ing the FoLiA XML format for text is entirely optional and 
requires the libfolia library.14

List of contributors
Developed by Maarten van Gompel, with contributions 
and feedback from Louis Onrust and Antal van den Bosch 
(Centre for Language Studies, Radboud University Nijmegen).

Software Location
Archive

Name: Zenodo
�Persistent Identifier: https://dx.doi.
org/10.5281/zenodo.55641
Publisher: Maarten van Gompel
Licence: GNU General Public Licence v3
Date published: June 15th, 2016 (v2.4.1)

Code repository
Name: GitHub
�Identifier: https://github.com/proycon/
colibri-core
�Website: https://proycon.github.io/
colibri-core
Licence: GNU General Public Licence v3
�Date published: since September 21st, 2013, latest 
release at the time of writing is v2.4.1 (June 15th, 2016)

Language
English

(3) Reuse potential
Colibri Core explicitly aims to provide a foundation for 
researchers in the NLP community to build their tools 
and research on. The software is already being employed 
in ongoing research on Machine Translation,15 Bayesian 
Language Modelling,16 Kneser-Ney Language Modelling,17 
spelling correction,18 and event prediction in social media 
streams.19 This has culminated in the publication of sev-
eral studies that use Colibri Core [16,10,7].

As a programming library for both C++ and Python, 
Colibri Core can be potentially adopted by a wide variety of 
third party developers. As a set of tools and scripts, Colibri 
Core also has merit standalone. It is, however, focused on 
command-line usage and therefore still requires a certain 
technical expertise from the end-user.

To increase the accessibility of Colibri Core, a RESTful 
webservice as well as generic web interface is already 

provided through CLAM[15]. With this we hope to meet 
the needs of less technical end-users, as well as auto-
mated networked clients. This webservice is hosted at 
https://webservices-lst.science.ru.nl.

Future work building upon Colibri Core may focus on 
offering high-level user-interfaces to reach a wider audi-
ence, and on further improvement of its performance.

Competing Interests
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Notes
	 1	 The initial and final token may never be gaps in the 

extracted skipgrams.
	 2	 using the unordered map STL container in C++11
	 3	 Spooky Hash v2 is used for hashing: http://burtle-

burtle.net/bob/hash/spooky.html
	 4	 Each pattern pointer takes up 16 bytes
	 5	 Each pointer consumes 8 bytes on 64-bit architectures, 

and one would be needed for every transition between 
two tokens.

	 6	 Here, Ei expresses expected values, Ni is the total 
amount of tokens in the respective corpus

	 7	 https://travis-ci.org/proycon/co-
libri-core

	 8	 The data is from the IWSLT 2012 Evaluation Campaign, 
http://hltc.cs.ust.hk/iwslt/index.
php/evaluation-campaign/ted-task.
html#MTtrack. Tokenisation was performed using 
ucto, https://languagemachines.github.
io/ucto.

	 9	 Natural Language Toolkit, a popular platform for 
NLP on Python: http://www.nltk.org. Our im-
plementation follows the naive approach but uses 
ngrams () from nltk.util and FreqDist 
from nltk.probability

	 10	 SRILM’s ngram-count is run in vanilla form, i.e. no 
smoothing or interpolation, with the options -no-
bos -no-eos. Note that the encoding of classes is 
a separate step in Colibri Core, so our total CPU time 
should be considered to be a second longer than re-
ported for a more fair comparison.

	 11	 the hash key is still computed as it determines the or-
dering

	 12	 https://languagemachines.github.io/
ucto

	 13	 Use the --unindexed flag to build an 
unindexed model

	 14	 https://proycon.github.io/folia
	 15	 https://github.com/proycon/colibri-mt
	 16	 https://github.com/naiaden/cococpyp
	 17	 https://github.com/naiaden/apodiformes
	 18	 https://github.com/proycon/gecco
	 19	 https://github.com/fkunneman/ADNEXT_

predict
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