
(1) Overview
Introduction
In our research group at Aalborg University (AAU) we 
have recently launched a new research project, FastAFM1, 
seeking to utilise compressed sensing in accelerating the 
acquisition of atomic force microscopy images. This is a 
relatively unexplored application area where results have 
only just started to appear [1], [2]. With the present paper, 
we present the general software package magni, which 
we have developed to combine compressed sensing and 
AFM imaging techniques.

Compressed sensing is a theory which has attracted 
a great deal of attention recently. In brief, the theory 
states that a wide range of possible signal types can be 
accurately represented from a greatly reduced number of 
acquired samples [3], [4]. That is, these signal types can be 
accurately reconstructed from samples taken significantly 
below the Shannon-Nyquist rate which is normally seen as 
the ultimate limit.

Atomic Force Microscopy (AFM) is one of the most 
advanced tools for high-resolution imaging and manipu-
lation of nanoscale matter [5]. When used for imaging, it 
is able to generate a 3D surface map with sub nanometer 
resolution of an object [6]. To generate this map, a sharp 

probe is brought close to the surface of the object, and the 
probe tip and the object are then moved relative to each 
other. The mechanical probe tip is affected by the force 
on the surface and, loosely speaking, “feels” the surface 
[6], [7]. Unfortunately, standard AFM imaging requires a 
timescale on the order of minutes to hours to acquire an 
image [7].

In the course of our work with compressed sensing and 
AFM, we have identified three shortcomings. We find that 
these are not adequately met by available free and open 
source research software in this area:

1. Software for reconstruction of compressed sensing 
signals.

2. Software for consistent and rigorous testing of 
reconstruction algorithms, particularly of their 
reconstruction capabilities in terms of phase transi-
tion.

3. Software for acquisition and processing of AFM 
images in relation to compressed sensing.

While free and open source software for compressed 
sensing signal reconstruction is available as such [8], [9], 
most of this software relies on Matlab from MathWorks 

SOftware Metapaper

Magni: A Python Package for Compressive Sampling and 
Reconstruction of Atomic Force Microscopy Images
Christian Schou Oxvig1, Patrick Steffen Pedersen1, Thomas Arildsen1, Jan Østergaard1 
and Torben Larsen1

1 Signal and Information Processing Section, Department of Electronic Systems, Faculty of Engineering of Science, Aalborg Univer-
sity, Aalborg, Denmark 

Oxvig, C S, Pedersen , P S, Arildsen, T, Østergaard, J and Larsen, T 2014 Magni: A Python 
Package for Compressive Sampling and Reconstruction of Atomic Force Microscopy Images. 
Journal of Open Research Software, 2: e29, DOI: http://dx.doi.org/10.5334/jors.bk 

Keywords: Atomic Force Microscopy; Compressive Sensing; Python; Image Reconstruction; Reproducible 
Research
funding Statement: TThis project has been supported by 1) The Danish Council for Independent Research 
(DFF) via funding from DFF/Technology and Production (FTP), grant DFF–1335–00278, for the project 
“Enabling Fast Image Acquisition for Atomic Force Microscopy using Compressed Sensing”, and 2) by the 
Danish e-Infrastructure Cooperation (DeIC) via a grant for a high performance computing system for the 
project “High Performance Computing SMP Server for Signal Processing”.

Magni is an open source Python package that embraces compressed sensing and Atomic Force Microscopy 
(AFM) imaging techniques. It provides AFM-specific functionality for undersampling and reconstructing 
images from AFM equipment and thereby accelerating the acquisition of AFM images. Magni also provides 
researchers in compressed sensing with a selection of algorithms for reconstructing undersampled general 
images, and offers a consistent and rigorous way to efficiently evaluate the researchers own developed 
reconstruction algorithms in terms of phase transitions. The package also serves as a convenient plat-
form for researchers in compressed sensing aiming at obtaining a high degree of reproducibility of their 
research.

Journal of
open research software

http://dx.doi.org/10.5334/jors.bk


Oxvig et alArt. e29, p.  2 of 6 

which limits the reproducibility. Also, the available free 
and open source software for AFM image post-processing 
and visualisation [10] does not include compressed sens-
ing related functionality. Instead, to mitigate these short-
comings, we have built the magni software package to 
ensure the highest degree of reproducibility defined for 
signal processing [11]. This has been done by relying on 
the free and open source programming language Python2 

and by making all examples, figures, etc. easily reproduc-
ible. An example of the reconstruction of an AFM image 
is shown in Figure 1. Using magni, the original image 
was loaded, preprocessed, sampled, reconstructed and dis-
played in less than 25 lines with intuitive calls to magni 
such as:

f>>> magni.imaging.measurements.spiral_sample_
image(h, w, scan_length, num_points)
>>> magni.imaging.measurements.construct_meas
urement_matrix(img_coords, h, w)
>>> magni.imaging.dictionaries.get_DCT((h, w))
>>> magni.afm.reconstruction.reconstruct(domain.
measurements, Phi, Psi)

We have designed the magni software package to 
address the above three needs: it contains a selection of 
compressed sensing reconstruction algorithms, a frame-
work for evaluating reconstruction algorithms through 
Monte Carlo Simulations, and more AFM-specific func-
tionality for sampling and reconstructing images from 
AFM equipment. Further development of the package is 
planned through our ongoing FastAFM research project 
as this progresses over the coming years. This further 
development aims to extend the functionality of the pack-
age both in terms of directly interfacing the AFM equip-
ment and in terms of adding more post-processing and 
reconstruction algorithms.

Implementation and architecture
The magni package is written in the Python program-
ming language2. Python combined with a set of third-party 
libraries is an excellent tool for scientific and engineer-
ing applications [12]. The magni package uses the fol-
lowing third-party libraries to exploit code reuse, to ease 
the quality control process, and to enhance the end user 
experience:

•	 The numpy and scipy libraries are used for handling 
data (using the efficient ndarray data container 
class [13]) and for performing numerical computa-
tions. These are two of the core libraries for scientific 
computing using Python [12].

•	 The pytables library [14] is used for storing data 
through a high-abstraction HDF5 database interface.

•	 The matplotlib library [15] is used for visualising 
data.

•	 The easy-to-use IPython [16] Notebook is used for 
presenting a number of examples showing the capa-
bilities of the magni package.

The magni package is itself a library, i.e. it is a col-
lection of Python sub-packages and modules and as such 
does not provide any (graphical) user interface. The func-
tionality provided by magni may be grouped into five 
categories with a sub-package assigned to each category, 
as illustrated in Figure 2. Furthermore, each sub-package 
has a number of modules or nested sub-packages to group 
related functionality.

As for coding style, procedural programming is preferred 
over object-oriented programming, to avoid unnecessary 
overhead [17]. Also, the developers found procedural 
programming more transparent for implementing the 

Figure 1: An example compressive sensing reconstruction of an AFM image.



Oxvig et al Art. e29, p.  3 of 6 

desired functionality. Only in a few cases where the use 
of classes leads to significantly cleaner code, object-ori-
ented programming is applied. Thus each module has its 
functionality encapsulated in a number of functions and 
classes, for which a distinction is made between public, 
internal, and private accessibility [18]. These accessibility 
levels are reflected in the code by use of the weak “inter-
nal use” indicator underscore convention as suggested by 
PEP83:

•	 Private functionality is used only by the module itself. 
An underscore precedes the name of such functions 
or classes.

•	 Internal functionality is used by modules in the same 
or a nested sub-package. No underscore precedes the 
name of such functions or classes, but an underscore 
precedes the name of the module.

•	 Public functionality is available to the end-users and 
used by the package itself. No underscore precedes 
the name of such functions or classes, and no under-
score precedes the name of the module.

Both functions and methods are implemented as to 
ensure readability in addition to efficiency by limiting the 
number of logical tasks per routine, the cyclomatic com-
plexity [19], [20], and the number of physical code lines4. 
The cyclomatic complexity, i.e. the number of independ-
ent paths through the function, is kept below 10 for core 
functionality, consistent with observations on the level 
which programmers can usually handle flawlessly. This 
has been validated via the static code analyser radon5. 
The number of physical code lines is kept below 50 which 

is consistent with recommendations used at IBM and TRW 
[19] and general experiences in this field [21], [22].

The magni package complies with the PEP8 recom-
mendation for Python coding conventions. This ensures 
that all Python code conforms to a number of recommen-
dations with the aim of making the code user-friendly and 
thus easier and more robust from a maintenance point-of-
view. The recommendations cover e.g. line width, variable 
naming conventions, package importing, indentations, 
and source encoding. Furthermore, magni is extensively 
documented using numpydoc6 formatted doc-strings 
which describe the objective of the code, specify inputs 
and outputs of functions, elaborate on the functionality of 
the code, mention relevant references, and present exam-
ples of the use of the package. Finally, the input of every 
public (i.e. user-accessible) function and class is validated 
according to the known requirements with appropriate 
Python exceptions raised for invalid input. This is done 
to avoid runtime errors with hard-to-debug messages and 
stack traces.

Quality control
The code development procedure was built on what was 
found to be the best choice of methods from: 1) Well 
defined stage-based methods such as the structured water-
fall approach [23] and the spiral approach [24] allowing 
backward interaction between different development 
phases; and 2) The test and adaptive centred Agile pro-
cedure [25] including e.g. Scrum [26], [27] and extreme 
programming [28], [29] with parts such as code reviews, 
code iteration, simplicity of design, frequent refactoring 
and collective ownership. All code modules were first 

Figure 2: The functionality of the 5 sub-packages of magni along with the dependencies of magni.



Oxvig et alArt. e29, p.  4 of 6 

developed with tight links to the algorithm and refactoring 
was then performed to ensure maintainability, readability, 
robustness and sufficient performance. Multiple smaller 
and one large code review were held by 2-6 researchers 
including the main developers. Throughout the develop-
ment process, Git was used for version control and issue 
tracking [30], and multiple branches were used to ensure 
that only tested code entered the master branch.

Testing and code validation has been handled by differ-
ent instruments:

•	 15 carefully designed end-to-end examples have been 
implemented in IPython Notebook (the .ipynb 
files). United, these examples exercise all critical code 
segments and serve the purpose of integration and 
regression testing.

•	 Doc-strings for all public functions include examples 
that are used in automated doctests7. This helps with 
the regression testing and ensures that the docstrings 
are kept up-to-date.

•	 pyflakes and pylint static source code analysers 
for Python have been used in the code development 
process to catch bugs and bad coding quality.

As always, no software package is better than its docu-
mentation and examples provided along with the package. 
The examples and part of the documentation have already 
been mentioned. Some of the examples use an AFM 
image, which is provided with the package. Furthermore, 
a full documentation in html is automatically generated 
from the doc-strings. A pdf version of this is shipped with 
the code.

(2) availability
Operating system
Tested on Ubuntu 12.04 LTS Linux, Apple Mac OS X 10.9, 
and Microsoft Windows 7. Since magni is written in pure 
Python, it should run on any system on which Python and 
the magni dependencies run.

programming language
The magni package is written in pure Python. Python 2 
(>=2.7) or Python 3 (>=3.3) is required to use the package. 
The package has been tested with the Anaconda8 Python 
distribution by Continuum Analytics.

additional system requirements
magni is designed to process data sets of all sizes. 
Hardware requirements in terms of processor power, 
memory capacity, etc. depend primarily on the size of the 
data sets that are processed. 

Dependencies
magni depends on numpy, scipy, pytables, and 
matplotlib. The package has been tested with:

•	 numpy version 1.8
•	 scipy version 0.13
•	 pytables version 3.1

•	 matplotlib version 1.3

The following libraries are optional requirements for 
magni:

•	 IPython Notebook >= 1.1 (for running examples)
•	 Math Kernel Library (mkl) >= 11.1 (for accelerated 

vector operations)
•	 sphinx >= 1.2 (for building the documentation 

from source)
•	 napoleon >= 0.2.6 (for building the documentation 

from source)

List of contributors
•	 Christian Schou Oxvig (Aalborg University) - Develop-

ment
•	 Patrick Steffen Pedersen (Aalborg University) - Devel-

opment
•	 Jan Østergaard (Aalborg University) - Testing and code 

review
•	 Thomas Arildsen (Aalborg University) - Testing and 

code review
•	 Tobias L. Jensen (Aalborg University) - Testing and 

code review
•	 Torben Larsen (Aalborg University) - Testing and code 

review

archive
Name
Videnbasen (VBN), Aalborg University

Persistent identifier
DOI: http://doi.org/10.5278/VBN/MISC/Magni

License
BSD 2-Clause

publisher
Christian Schou Oxvig

Date published
23/05/14

Code repository
Name
GitHub

Identifier
https://github.com/SIP-AAU/Magni/

License
BSD 2-Clause

Date published
23/05/14

Language
English

http://doi.org/10.5278/VBN/MISC/Magni


Oxvig et al Art. e29, p.  5 of 6 

(3) reuse potential
The magni package has been designed to facilitate reuse 
through extensive documentation of functionality and 
interfaces. The code has been implemented with focus on 
readability. And the package is accompanied by a number of 
examples to demonstrate its use in various use-cases.

We expect the magni package to have significant reuse 
potential for researchers in the area of AFM, particularly 
in relation to compressed sensing acquisition and recon-
struction of AFM images. This applies to both users inter-
ested in developing and testing new sampling patterns for 
use in conjunction with compressed sensing techniques 
and users developing new algorithms for compressed 
sensing in the context of AFM.

Furthermore, the magni package is applicable to com-
pressed sensing in general and can be particularly useful 
to those looking for compressed sensing reconstruction 
algorithms for use in Python, which have so far been 
scarce. In addition to reconstruction algorithms, the pack-
age provides a consistent framework which can be used to 
empirically estimate the reconstruction capabilities of the 
users’ own reconstruction algorithms in terms of recon-
struction phase transitions.

Due to the magni package being based on well estab-
lished Python libraries, it fits naturally into the Python eco-
system [31] of high-quality tools for scientific computing. 
The software complies with the reproducible research para-
digm as used in the field of signal processing [11]. The intent 
of reproducible research is to create an open and transpar-
ent approach to the software related to some specific con-
ducted research – see e.g. [32], [33], [34], [35]. We thus 
provide full open access to all source code and full reuse 
rights via the generous BSD 2-Clause license, making it easy 
for others to use the code base. While it is the plan of the 
developers to continuously expand the functionality of the 
software, others are free to use it in separate branches. The 
reproducibility subpackage goes one step further by 
providing functionality for reading and writing the version 
and complete configuration of magni. Furthermore, infor-
mation about conda, git revision, and the system platform 
is included if available. This information can be automati-
cally shipped alongside the results, by letting magni use 
the same HDF5 database for storing the two. With these fea-
tures, the developers hope to inspire others to make their 
results reproducible.

Notes
 1 See http://dx.doi.org/10.5278/vbn/projects/Fas-

tAFM/.
 2 See https://www.python.org/.
 3 Python Enhancement Proposal, see http://legacy.py-

thon.org/dev/peps/pep-0008/.
 4 See https://docs.python.org/2/reference/lexical_

analysis.html.
 5 See https://github.com/rubik/radon.
 6 See https://github.com/numpy/numpy/blob/mas-

ter/doc/HOWTO_DOCUMENT.rst.txt/.
 7 See https://docs.python.org/2/library/doctest.html/.
 8 See http://www.continuum.io/anacondace.html/.

references
1. Song, B, Xi, N, Yang, R, Lai, K W C and Qu, C 2011 

Video Rate Atomic Force Microscopy (AFM) Imaging 
using Compressive Sensing. 11th IEEE International 
Conference on Nanotechnology. 15-18 August 2011, 
Portland, Oregon, USA: 1056–1059, DOI: http://
dx.doi.org/10.1109/NANO.2011.6144587

2. Andersson, S B and Pao, L Y 2012 Non-Raster Sam-
pling in Atomic Force Microscopy: A Compressed Sens-
ing Approach. American Control Conference (ACC). 27-
29 June 2012, Montréal, Canada: 2485–2490.

3. Baraniuk, R G 2007 Compressive sensing [lecture 
notes]. IEEE Signal Processing Magazine 24(4): 118–121, 
DOI: http://dx.doi.org/10.1109/MSP.2007.4286571

4. Candès, E J and Wakin, M B 2007 An Introduction To 
Compressive Sampling. IEEE Signal Processing Maga-
zine 25(2): 21–30, DOI: http://dx.doi.org/10.1109/
MSP.2007.914731

5. Abramovitch, D Y, Andersson, S B, Pao, L Y and 
Schitter, G 2007 A Tutorial on the Mechanisms, Dy-
namics, and Control of Atomic Force Microscopes. 
American Control Conference. 11-13 July 2007, New 
York City, USA: 3488–3502, DOI: http://dx.doi.
org/10.1109/ACC.2007.4282300

6. Bhushan, B and Marti, O 2010 Scanning Probe Mi-
croscopy – Principle of Operation, Instrumentation, 
and Probes In: Springer Handbook of Nanotechnol-
ogy. Berlin Heidelberg: Springer, DOI: http://dx.doi.
org/10.1007/978-3-642-02525-9_21

7. Hansma, P K, Schitter, G, Fantner, G E and Prater, 
C 2006 High-Speed Atomic Force Microscopy. Science 
314(5799): 601–602, DOI: http://dx.doi.org/10.1126/
science.1133497

8. van den Berg, E and Friedlander, M P 2008 Probing 
the Pareto Frontier for Basis Pursuit Solutions. SIAM 
Journal on Scientific Computing 31(2): 890–912, DOI: 
http://dx.doi.org/10.1137/080714488

9. Yang, J and Zhang, Y 2008 Alternating Direction 
Algorithms for l1-Problems in Compressive Sensing. 
SIAM Journal on Scientific Computing 33(1): 250–278, 
DOI: http://dx.doi.org/10.1137/090777761

10. Klapetek, P 2013 Quantitative Data Processing in 
Scanning Probe Microscopy: SPM Applications for Na-
nometrology. 1st ed. Elsevier.

11. Vandewalle, P, Kovačević, J and Vetterli, M 2009 Re-
producible Research in Signal Processing [What, why, 
and how]. IEEE Signal Processing Magazine 26(3): 37–
47, DOI: http://dx.doi.org/10.1109/MSP.2009.932122

12. Oliphant, T E 2007 Python for Scientific Computing. 
Computing in Science & Engineering 9(3): 10–20, DOI: 
http://dx.doi.org/10.1109/MCSE.2007.58

13. van der Walt, S, Colbert, S C and Varoquaux, G 2011 
The NumPy Array: A Structure for Efficient Numerical 
Computation. Computing in Science & Engineering 13(2): 
22–30, DOI: http://dx.doi.org/10.1109/MCSE.2011.37

14. Alted, F and Fernández-Alonso, M 2003 PyTables : 
Processing And Analyzing Extremely Large Amounts 
Of Data In Python. PyCon2003. April 2003, Washing-
ton, D.C., USA: 1–9.

http://dx.doi.org/10.5278/vbn/projects/FastAFM/
http://dx.doi.org/10.5278/vbn/projects/FastAFM/
https://www.python.org/
http://legacy.python.org/dev/peps/pep-0008/
http://legacy.python.org/dev/peps/pep-0008/
https://docs.python.org/2/reference/lexical_analysis.html
https://docs.python.org/2/reference/lexical_analysis.html
https://github.com/rubik/radon
https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt/
https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt/
https://docs.python.org/2/library/doctest.html/
http://dx.doi.org/10.1161/01.CIR.101.23.e215
http://dx.doi.org/10.1161/01.CIR.101.23.e215
http://dx.doi.org/10.1161/01.CIR.101.23.e215
http://dx.doi.org/10.1161/01.CIR.101.23.e215
http://dx.doi.org/10.1161/01.CIR.101.23.e215
http://dx.doi.org/10.1161/01.CIR.101.23.e215
http://dx.doi.org/10.1109/MCSE.2007.58


Oxvig et alArt. e29, p.  6 of 6 

How to cite this article: Oxvig, C S, Pedersen , P S, Arildsen, T, Østergaard, J and Larsen, T 2014 Magni: A Python Package for 
Compressive Sampling and Reconstruction of Atomic Force Microscopy Images. Journal of Open Research Software, 2: e29, DOI: 
http://dx.doi.org/10.5334/jors.bk

published: 07 October 2014

Copyright: © 2014 The Author(s). This is an open-access article distributed under the terms of the Creative Commons 
Attribution 3.0 Unported License (CC-BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original author and source are credited. See http://creativecommons.org/licenses/by/3.0/.

Journal of Open Research Software is a peer-reviewed open access journal published by 
Ubiquity Press OpeN aCCeSS

15. Hunter, J D 2007 Matplotlib: A 2D Graphics Environ-
ment. Computing in Science & Engineering 9(3): 90–95, 
DOI: http://dx.doi.org/10.1109/MCSE.2007.55

16. Pérez, F and Granger, B E 2007 IPython: A System 
for Interactive Scientific Computing. Computing in 
Science & Engineering 9(3): 21–29, DOI: http://dx.doi.
org/10.1109/MCSE.2007.53

17. Jürgens, D 2009 Survey on Software Engineering for 
Scientific Applications: Reuseable Software, Grid Com-
puting and Applications. Germany: Institute of Scien-
tific Computing, Carl-Friedrich-Gauss-Fakultät, Tech-
nische Universität Braunschweig.

18. Moock, C 2007 Essential ActionScript 3.0. 1st ed. 
O’Reilly Media / Adobe Dev Library.

19. McCabe, T J 1976 A Complexity Measure. IEEE Trans-
actions on Software Engineering SE-2(4): 308–320, 
DOI: http://dx.doi.org/10.1109/TSE.1976.233837

20. Watson, A H and McCabe, T J 1996 Structured Test-
ing: A Testing Methodology Using the Cyclomatic Com-
plexity Metric. National Institute of Standards and 
Technology (NIST): 500-235.

21. Shen, V Y, Yu, T J, Thebaut, S M and Paulsen, L R 
1985 Identifying Error-Prone Software -- An Empiri-
cal Study. IEEE Transactions on Software Engineering 
11(4): 317–324, DOI: http://dx.doi.org/10.1109/
TSE.1985.232222

22. Kelly, D, Hook, D and Sanders, R 2009 Five Recom-
mended Practices for Computational Scientists Who 
Write Software. Computing in Science & Engineer-
ing 11(5): 48–53, DOI: http://dx.doi.org/10.1109/
MCSE.2009.139

23. Royce, W W 1970 Managing the Development of 
Large Software Systems. IEEE WESCON. August 1970, : 
328–338.

24. Boehm, B W 1988 A Spiral Model of Software Devel-
opment and Enhancement. Computer 21(5): 61–72, 
DOI: http://dx.doi.org/10.1109/2.59

25. Sletholt, M T, Hannay, J E, Pfahl, D and Langtan-
gen, H P 2012 What Do We Know about Scientific 
Software Development’s Agile Practices?. Computing 

in Science & Engineering 14(2): 24–37, DOI: http://
dx.doi.org/10.1109/MCSE.2011.113

26. Mahnic, V 2012 A Capstone Course on Agile Software 
Development Using Scrum. IEEE Transactions on Edu-
cation 55(1): 99–106, DOI: http://dx.doi.org/10.1109/
TE.2011.2142311

27. Rising, L and Janoff, N S 2000 The Scrum Software De-
velopment Process for Small Teams. IEEE Software 17(4): 
26–32, DOI: http://dx.doi.org/10.1109/52.854065

28. Beck, K 1999 Embracing Change with Extreme Pro-
gramming. Computer 32(10): 70–77, DOI: http://
dx.doi.org/10.1109/2.796139

29. Maurer, F and Martel, S 2002 Extreme Programming: 
Rapid Development for Web-Based Applications. IEEE 
Internet Computing 6(1): 86–90, DOI: http://dx.doi.
org/10.1109/4236.989006

30. Loeliger, J and McCullough, M 2012 Version Control 
with Git: Powerful tools and techniques for collaborative 
software development. 2nd ed. O’Reilly Media.

31. Pérez, F, Granger, B E and Hunter, J D 2011 Python: 
An Ecosystem for Scientific Computing. Computing in 
Science & Engineering 13(2): 13–21, DOI: http://dx.doi.
org/10.1109/MCSE.2010.119

32. Schwab, M, Karrenbach, M and Claerbout, J 2011 
Making Scientific Computations Reproducible. Com-
puting in Science & Engineering 2(6): 61–67, DOI: 
http://dx.doi.org/10.1109/5992.881708

33. LeVeque, R J, Mitchell, I M and Stodden, V 2012 Re-
producible Research for Scientific Computing: Tools 
and Strategies for Changing the Culture. Computing in 
Science & Engineering 14(4): 13–17, DOI: http://dx.doi.
org/10.1109/MCSE.2012.38

34. Barni, M and Perez-Gonzalez, F 2005 Pushing Sci-
ence into Signal Processing. IEEE Signal Process-
ing Magazine 22(4): 120–119, DOI: http://dx.doi.
org/10.1109/MSP.2005.1458324

35. Fomel, S and Claerbout, J F 2009 Guest Editors’ In-
troduction: Reproducible Research. Computing in 
Science & Engineering 11(1): 5–7, DOI: http://dx.doi.
org/10.1109/MCSE.2009.14

http://dx.doi.org/10.5334/jors.bk

