
(1) Overview
Introduction
Open-source image processing tools are rapidly spreading
across programming languages and scientific domains.
The widely-used ImageJ[1] platform, along with its dis-
tributions such as Fiji[2], offer an excellent Java-based
suite. In the last few years, image processing and com-
puter vision in Python has rapidly matured1 with the
emergence of libraries like scikit-image[3], Mahotas[4],
and SimpleCV[5]. scikit-image and Mahotas utilize 2d
NumPy[6] arrays for their image data structures, thus pro-
viding a familiar API to users of NumPy and the other core
SciPy libraries, especially Matplotlib[7], IPython[8].

The motivation for pyparty arose from difficulties
encountered when quantifying nanoparticle distributions
on silica substrates. We had found that after acquiring
an image, preprocessing, segmentation and labelling
techniques were easily applied; however, separating and
measuring the various particle species in post-processing
was difficult. This is primarily because the objects of inter-
est were stored as boolean or integer-labeled arrays, which
become unwieldy under heavy manipulation.

pyparty emerged as a means to abstract the concept of
particles (i.e. image blobs) into custom data structures
for intuitive manipulation and characterization whilst
preserving the image API. In addition to integrating new
particle constructs with the existing array and image pro-
cessing functions, pyparty extends scikit-image’s rasteriza-
tion toolbox with new particle types, patterning, and an
interface to Matplotlib patch objects for vectorized parti-
cle renderings. Thus, pyparty leverages the conventional
imaging pipeline at both ends; it provides a tool set for

artificial image composition, and a framework for particle
post-processing.

Implementation and architecture
Rasterization, as well as particle labels and descriptors
(e.g. area, eccentricity etc...), are all deferred to algorithms
implemented in scikit-image[14-16]. pyparty adds a con-
venience layer to extend some of this functionality. For
example, pyparty’s implements a Grid object for pattern-
ing, and provides a simple framework for drawing multi-
particles, for example circle dimers and trimers.

The Canvas is pyparty’s primary datastructure. The
Canvas is comprised of a background image, a Grid and
ParticleManager, which is a container for particle stor-
age and manipulation. The Canvas fully decouples parti-
cle information such as position, color, and pixel from the
background image. Since particle information is stored in
python containers, slicing, arithmetic, boolean indexing
and other common operations are very easy to perform.
For example, an operation like dilate all circular particles in
an image that are over a certain size and mean brightness
is a simple task in pyparty. In addition to the Canvas, the
MultiCanvas is provided for images with multiple particle
types.

Finally, pyparty simplifies some common image process-
ing tasks involving thresholding, artificial noise genera-
tion, color assignment, image type conversions, plotting
and blob filtering, albeit not to the extent of IJBlob[9].
Examples of Use
We will first highlight pyparty’s drawing capabilities to cre-
ate pseudo electron microscope images. A more involved
version is used to compare segmentation algorithms in a

SOftwarE MEtapapEr

pyparty: Blob Detection, Drawing and Manipulation in
Python
Adam Hughes1

1 Department of Physics, The George Washington University, USA

Hughes, A 2014 pyparty: Blob Detection, Drawing and Manipulation in Python. Journal of Open
Research Software, 2: e26, DOI: http://dx.doi.org/10.5334/jors.bh

Keywords: image processing; images; nanoparticles; python; particle analysis; scipy; scikit-image
funding Statement: Tupported in part by the George Gamow Research and Luther Rice Collaborative
Research fellowship programs, as well as the George Washington University (GWU) Knox fellowship.

pyparty complements image processing workflows by providing utilities for drawing, manipulating and
quantifying blob features in 2d-images. pyparty is built around the scientific Python stack, designed espe-
cially for compatibility with scikit-image. After a brief introduction, characterization and construction
of faux nanoparticle images are provided. The source, documentation and more examples are available at
https://github.com/hugadams/pyparty. pyparty is released under an open BSD 3-Clause License and sup-
port is available through pyparty@googlegroups.com

Journal of
open research software

https://github.com/hugadams/pyparty
mailto:pyparty@googlegroups.com

HughesArt. e26 p.  2 of 5

corollary study[10]. In the example code snippets, Canvas
and MultiCanvas methods are bolded for clarity. To begin,
let us define the parameters corresponding to ranges for
particle size and intensity, the noise fill-fraction and the
image resolution. For brevity, we load a previously gener-
ated pyparty background image (see documentation) of a
trigonometrically-varying contrast gradient.

from pyparty import Canvas, MultiCanvas

BG = ‘https://raw.github.com/hugadams...’
REZ = (1024, 1024) #Image resolution
RAD = (12, 18) #Radius range (px)
COLOR = (200, 255) #Color range
NOISE = 0.10 #Percent noise

The Canvas crops the image to our desired resolution
upon initialization. Next, randomly-sized ellipses are
added, and the Canvas grid is set to 20 pixels per division;
this controls the inter-particle spacing.

from random import randint as R_int

cnvs = Canvas(rez=REZ, background=BG)
cnvs.grid.div = 20 #20x20 grid

for (cx, cy) in cnvs.gpairs(‘centers’):
 cnvs.add(‘ellipse’,
 center = (cx,cy),
 xradius = R_int(*RAD),
 yradius = R_int(*RAD),
 phi = R_int(0, 360),
 color = R_int(*COLOR))

cnvs.show(annotate=True)

This results in 380 particles covering 23% of the image
surface as shown in Figure 1. Next, we apply a Gaussian
filter through scikit-image (σ = 3px) to smooth the par-
ticle boundaries. This negligibly affects the background,

which varies over a much larger scale. In pyparty, spectral
noise can be assigned according to any NumPy distribu-
tion function (Gaussian, gamma etc..), but for clearer visu-
alization, we’ll use black pixels, also known as “pepper”
noise (see Figure 2).

from skimage.filter import gaussian_filter
from pyparty.noise import pepper
from pyparty.plots import zoom

smooth = gaussian_filter(cnvs.image, 3)
noisy = pepper(smooth, NOISE)
zoom(noisy, (0, 0, 250, 250))

As a final exercise, we employ the MultiCanvas to char-
acterize nanoparticle species in an electron microscope
image. The image, which is packaged with pyparty, has
been segmented using Ilastik’s[11] object classification
workflow into groups labelled as singles, dimers, trimers
and clusters as shown in Figure 3. pyparty has an API for
shape filtering, but it is not explored here. The MultiCanvas

Figure 1: Randomly sized ellipses drawn using pyparty’s
Canvas and gridding.

Figure 2: Zoomed view of particles after smoothing and
adding black noise.

Figure 3: Bundled image of gold nanoparticles on a glass
surface, grouped into four color-coded categories: sin-
gles, dimers, trimers and clusters.

Hughes Art. e26, p.  3 of 5

is built directly from the image via the from_labels() con-
structor. Persistent names and colors are assigned to the
labels for easier identification between plots. Figures 4
and Figure 5 shows pyparty’s decomposition of the image
into these colored particle groups.

from pyparty.plots import showim, splot
from pyparty.data import nanolabels

NANOLABELS = nanolabels()
NAMES = (‘singles’, ‘dimers’, ‘trimers’,

‘clusters’)
showim(NANOLABELS, ‘spectral’, title=’Labeled
Nanoparticles’)

mc = MultiCanvas.from_labeled(nanolabels(),
*NAMES)
mc.set_colors(‘r’, ‘g’, ‘y’, ‘magenta’)
mc.show(names = True, ncols=2, figsize=(7,5))

ax1, ax2 = splot(1,2)
mc.hist(ax1, attr=’eccentricity’, bins=30)
mc.pie(ax2, attr=’area’, explode=(0,0,0, 0.1))

Figure 4: Separation of particle families based on color.

Figure 5: Eccentricity and area distribution of families of nanoparticles.

HughesArt. e26 p.  4 of 5

Quality control
Development and testing is performed on Mac, Linux and
Windows 7 systems. Tutorials and case studies are pro-
vided as IPython notebooks, which are also integrated into
a quasi regression test suite.

(2) availability
Operating system
pyparty runs on operating systems that support Python
and the numpy stack. It has been tested on Ubuntu 10.04,
12.04, 13.10; Mac OS X 10.7, 10.8, and Windows 7.

programming language
Python 2.7; some features of pyparty may be inaccessible
on older versions. pyparty has not been tested for Python
3 compatibility.

additional system requirements
At least 4GB RAM is suggested for working with multiple
high-resolution images.

Dependencies
scikit-image, Matplotlib, Traits. IPython2 is required to
run notebooks; static versions are provided as well. We
recommend Enthought Canopy for a powerful scientific
computing environment with intrinsic notebook support.

List of contributors
Adam Hughes, Zhaowen Liu

archive
Name
pyparty

Persistent identifier
DOI: 10.5281/zenodo.11194

License
BSD 3-Clause License

publisher
Zenodo

Date published
08/05/2014 (v 0.3.1)

Code repository
Name
Github

Identifier
https://github.com/hugadams/pyparty

License
Revised BSD

Date published
Fall 2013; some legacy code hosted since 2011.

(3) reuse potential
Although developed in the context of nanotechnology,
pyparty’s post-processing and drawing capabilities are gen-
eral to 2D imaging workflows, especially those found in
microscopy2. pyparty is currently used for in-house research
pursuits[13] and continues to develop. New applications
like Ilastik integrate semi-supervised learning and object
classification tools with unprecedented accessibility. This
trend suggests that the need for general particle analysis
tools will increase in coming years. As image analysis in
Python continually expands to meet the needs of research-
ers, we believe pyparty will emerge as a small but important
component in particle analysis workflows.

acknowledgements
Thank you Annie Matsko for excellent revision sugges-
tions. I’d also like to thank the scikit-image team for
several helpful discussions that ultimately inspired this
project, and for their exhaustive efforts in creating a
superb library.

Notes
1 SciPy’s ndimage collection pre-dates scikit-image for ex-

ample.
2 Cell profiler[12] is a great example of a specialized mi-

croscopy application in Python.

references
1. Schneider, C A, Rasband, W S and Eliceiri, K 2012

NIH Image to ImageJ: 25 Years of Image Analysis. Na-
ture Methods: Focus on Bioimage Informatics, 9(7), 671–
675. DOI: http://dx.doi.org/10.1038/nmeth.2089

2. Schindelin, J, Arganda-Carreras, I, Frise, E, Kaynig,
V, Longair, M, Pietzsch, T, Preibisch, S, Rueden, C,
Saalfeld, S, Schmid, B, Yinevez, J Y, James, W D,
Hartenstein, V, Eliceiri, K, Pavel, T and Cardona,
A 2012 Fiji: An Open-source Platform for Biological-
Image Analysis. Nature Methods, 9(7), 676–682. DOI:
http://dx.doi.org/10.1038/nmeth.2019

3. van der Walt S, Schönberger J L, Nunez-Iglesias
J, Boulogne F and Warner J D 2014 scikit-image:
Image Processing in Python. PeerJ PrePrints, 2:
e336v2. DOI: http://dx.doi.org/10.7287/peerj.
preprints.336v2.

4. Coelho, L P 2013 Mahotas : Open Source Software for
Scriptable Computer Vision. Journal of Open Research
Software, 1, 1-7.

5. Demaagd, K, Oliver, A, Oostendorp, N and Scott, K
2012 Practical Computer Vision with SimpleCV: The
Simple Way to Make Technology. O’Reily Media, Inc.

6. Oliphant, T E 2007 Python for Scientific Computing.
Computing in Science & Engineering, 9(90). Available at
http://numpy.org.

7. Hunter, J D 2007 Matplotlib: A 2D Graphics Environ-
ment. Computing in Science & Engineering, 9(90). Avail-
able at http://matplotlib.org.

8. Perez, F and Granger, B 2007 IPython: a System for
Interactive Scientific Computing. Computing in Science

http://doi.org/10.5281/zenodo.11194
https://github.com/hugadams/pyparty
http://dx.doi.org/10.1038/nmeth.2089
http://dx.doi.org/10.1038/nmeth.2019
http://dx.doi.org/10.7287/peerj.preprints.336v2
http://dx.doi.org/10.7287/peerj.preprints.336v2
http://numpy.org
http://matplotlib.org

Hughes Art. e26, p.  5 of 5

and Engineering, 9(3), 21-29. Available at http://ipython.
org. DOI: http://dx.doi.org/10.1109/MCSE.2007.53

9. Wagner, T and Lipinski, H 2013 IJBlob : An Im-
ageJ Library for Connected Component Analysis
and Shape Analysis. Journal of Open Research Soft-
ware, 1(6), 6-8. DOI: http://dx.doi.org/10.5334/
jors.ae.

10. Hughes, A and Liu, Z 2014 A Guide to Imaging Gold
Nanoparticles. Manuscript Submitted for Publication.

11. Sommer, C, Straehle, C, Köthe, U and Hamprecht,
F 2011 ilastik: Interactive Learning and Segmentation
Toolkit. In: 8th IEEE International Symposium on Bio-
medial Imaging (ISBI).

12. Jones, T, Kang, I H, Wheeler, D, Lindquist, R, Pa-
pallo, A, Sabatini, D, Golland, P and Carpenter, A
2008 CellProfiler Analyst: Data Exploration and Analy-

sis Software for Complex Image-based Screens. IBMC
Bioinformatics, 9(482).

13. Reeves Lab 2014 SEM Imaging of Nanoparticles: A
case study. Available at https://github.com/hugad-
ams/imgproc_supplemental.

14. Burger, W and Buege, M 2009 Principles of Digital Image
Processing: Core Algorithms. London: Springer-Verlag.

15. Jähne, B 2005 Digital Image Processing. 6th ed. Berlin-
Heidelberg: Springer-Verlag.

16. Reiss, T H 1993 Recognizing Planar Objects Using In-
variant Image Features. In: Lecture Notes in Computer
Science. Berlin: Springer.

17. Hughes, A 2014 Github Example. Available at http://
nbviewer.ipython.org/github/hugadams/pyparty/
blob/master/examples/Notebooks/JORS_data.
ipynb?create=1 [Last accessed 5 August 2014].

How to cite this article: Hughes, A 2014 pyparty: Blob Detection, Drawing and Manipulation in Python. Journal of Open
Research Software 2:e26, DOI: http://dx.doi.org/10.5334/jors.bh

published: 23 September 2014

Copyright: © 2014 The Author(s). This is an open-access article distributed under the terms of the Creative Commons
Attribution 3.0 Unported License (CC-BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited. See http://creativecommons.org/licenses/by/3.0/.

Journal of Open Research Software is a peer-reviewed open access journal published by
Ubiquity Press OpEN aCCESS

http://ipython.org
http://ipython.org
http://dx.doi.org/10.1109/MCSE.2007.53
http://dx.doi.org/10.5334/jors.ae
http://dx.doi.org/10.5334/jors.ae
https://github.com/hugadams/imgproc_supplemental
https://github.com/hugadams/imgproc_supplemental
http://nbviewer.ipython.org/github/hugadams/pyparty/blob/master/examples/Notebooks/JORS_data.ipynb?create=1
http://nbviewer.ipython.org/github/hugadams/pyparty/blob/master/examples/Notebooks/JORS_data.ipynb?create=1
http://nbviewer.ipython.org/github/hugadams/pyparty/blob/master/examples/Notebooks/JORS_data.ipynb?create=1
http://nbviewer.ipython.org/github/hugadams/pyparty/blob/master/examples/Notebooks/JORS_data.ipynb?create=1

