
(1) Overview

Introduction
Mahotas is a computer vision library for the Python Pro-
gramming Language (versions 2.5 and up, including ver-
sion 3 and up). It operates on numpy arrays1. Therefore, 
it uses all the infrastructure built by that project for stor-
ing information and performing basic manipulations and 
computations. In particular, unlike libraries written in the 
C Language or in Java2,3, Mahotas does not need to define a 
new image data structure, but uses the numpy array struc-
ture. Many basic manipulation functionality that would 
otherwise be part of a computer vision library are handled 
by numpy. For example, computing averages and other 
simple statistics, handling multi-channel images, convert-
ing between types (integer and floating point images are 
supported by mahotas) can all be performed with numpy 
builtin functionality. For the users, this has the additional 
advantage that they do not need to learn new interfaces.

Mahotas contains over 100 functions with functionality 
ranging from traditional image filtering and morphologi-
cal operations to more modern wavelet decompositions 
and local feature computations. Additionally, by integrat-
ing into the Python numeric ecosystem, users can use 

other packages in a seamless way. In particular, mahotas 
does not implement any machine learning functionality, 
but rather advises the user to use another, specialised 
package, such as scikits-learn or milk.

Python is a natural “glue” language: it is easy to use 
state-of-the-art libraries written in multiple languages4. 
Mahotas itself is a mix of high-level Python and low-level 
C++. This achieves a good balance between speed and 
ease of implementation.

Version 1.0.2 of mahotas has been released recently 
and this is now a mature, well-tested package (the first 
versions were made available over 4 years ago, although 
the package was not named mahotas then). Mahotas runs 
and is used on different versions of Unix (including Linux, 
SunOS, and FreeBSD), Mac OS X, and Windows.

Implementation/architecture

Interface
The interface is a procedural interface, with no global 
state. All functions work independently of each other 
(there is code sharing at the implementation level, but 
this is hidden from the user). The main functionality is 
grouped into the following categories:

SOFTWARE METAPAPER

Mahotas: Open source software for scriptable 
computer vision
Luis Pedro Coelho1,2

1	Lane Center for Computational Biology, Carnegie Mellon University, Pittsburgh, United States of America
2	Instituto de Medicina Molecular, Lisboa, Portugal 

Mahotas is a computer vision library for Python. It contains traditional image processing functional-
ity such as filtering and morphological operations as well as more modern computer vision functions 
for feature computation, including interest point detection and local descriptors.

The interface is in Python, a dynamic programming language, which is appropriate for fast develop-
ment, but the algorithms are implemented in C++ and are tuned for speed. The library is designed 
to fit in with the scientific software ecosystem in this language and can leverage the existing 
infrastructure developed in that language.

Mahotas is released under a liberal open source license (MIT License) and is available from http://
github.com/luispedro/mahotas and from the Python Package Index (http://pypi.python.org/pypi/maho-
tas). Tutorials and full API documentation are available online at http://mahotas.readthedocs.org/.

Keywords: computer vision, image processing

Funding statement
The author was supported by the Fundação para a Ciência e Tecnologia (grant SFRH/BD/37535/2007 to the author 
and grant PTDC/SAU-GMG/115652/2009 to Musa Mhlanga), by NIH grant GM078622 (to Robert F. Murphy), by a grant 
from the Scaife Foundation, by the HHMI Interfaces Initiative, and by a grant from the Siebel Scholars Foundation.

Coelho, L P 2013 Mahotas: Open source software for scriptable computer vision. Journal 
of Open Research Software 1:e3, DOI: http://dx.doi.org/10.5334/jors.ac 

Journal of
open research software



CoelhoArt. e3, p.  2 of 7 

•	 Surf: Speeded-up Robust Features5. This includes 
both keypoint detection and descriptor computation.

•	 Features: Global feature descriptors. In particular, 
Haralick texture features6, Zernike moments, local 
binary patterns7, and threshold adjacency statistics 
(both the original8 and the parameter-free versions5).

•	 Wavelet: Haar and Daubechies wavelets10. Forward 
and inverse transforms are supported.

•	 Morphological functions: Erosion and dilation, as 
well as some more complex operations built on these. 
There are both binary and grayscale implementations 
of these operators.

•	 Watershed: Seeded watershed and distance map 
transforms11.

•	 Filtering: Gaussian filtering, edge finding, and gen-
eral convolutions.

•	 Polygon operations: Convex hull, polygon drawing.

Numpy arrays contain data of a specific type, such 
unsigned 8 bit integer or floating point numbers. While 
natural colour images are typically 8 bits, scientific data 
is often larger (12 and 16 bit formats are common). Pro-
cessing can generate floating point images. For example, 
a common normalization procedure is to subtract from 
each pixel location the overall pixel value mean; the result 
will be a floating point image even if the original image 
was integral. Mahotas works on all datatypes. This is per-
formed without any extra memory copies. Mahotas is 
heavily optimised for both speed and memory usage (it 
can be used with very large arrays).

There are a few interface conventions which apply to 
many functions. When meaningful, a structuring element 
is used to define neighbourhoods or adjacency relation-
ships (morphological functions, in particular, use this 
convention). Generally, the default is to use a cross as the 
default if no structuring filter is given.

When a new image is to be returned, functions take an 
argument named out where the output will be stored. 
This argument is often much more restricted in type. In 
particular, it must be a contiguous array. Since this is a 
performance feature (its purpose is to avoid extra memory 
allocation), it is natural that the interface is less flexible 
(accessing a contiguous array is much more efficient than 
a non-contiguous one).

Examples of Use
Code for this and other examples is present in the maho-
tas source distribution under the demos/ directory. In this 
example, we load an image, find SURF interest points, and 
compute descriptors.

We start by importing the necessary packages, including 
numpy and mahotas. We also use scipy.cluster, to dem-
onstrate how the mahotas output can integrate with a 
machine learning package.

import numpy as np
import mahotas as mh
from mahotas.features import surf
from scipy.cluster import vq

The first step is to load the image and convert to 8 bit 
numbers. In this case, the conversion is done using stand-

ard numpy methods, namely astype. We use the function 
mahotas.demos.image_path to access a demonstration 
image.

import mahotas.demos
impath = mh.demos.image_path(‘luispedro.jpg’)
f = mh.imread(impath, as_grey=True)
f = f.astype(np.uint8)

We can now compute SURF interest points and descriptors.

spoints = surf.surf(f, 4, 6, 2)

The surf.surf function returns both the descriptors and 
their meta data. We use numpy operations to retain only 
the descriptors (the meta data is in the first five positions):

descrs = spoints[:,6:]

Using scipy.cluster.vq, we cluster the descriptors into five 
groups. The function kmeans2 returns two values: the 
centroids, which we ignore; and the cluster ids, which we 
will use below to assign colours:

_,cids = vq.kmeans2(vq.whiten(descrs), 5)

Finally, we can show the points in different colours. In 
order to avoid a very cluttered image, we will only plot the 
first 64 regions.

colors = np.array([
	 [ 255,  25,   1],
	 [203,  77,  37],
	 [151, 129,  56],
	 [ 99, 181,  52],
	 [ 47, 233,   5]])
f2 = surf.show_surf(f, spoints[:64], cids, 
colors)

The show_surf only builds the image as a multi-channel 
(one for each colour) image. Using matplotlib [12], we 
finally display the image as Fig. 1.

colors = np.array([
[ 255,  25,   1],
[203,  77,  37],
[151, 129,  56],
[ 99, 181,  52],
[ 47, 233,   5]])
f2 = surf.show_surf(f, spoints[:64], cids, 
colors)

The easy interaction with matplotlib is another way in 
which we benefit from the numpy-based ecosystem. 
Mahotas does not need to support interacting with a 
graphical system to display images.

Implementation
Mahotas is mostly written in C++, but this is completely 
hidden from the user as there are hand-written Python 
wrappers for all functions.The main reason that mahotas is 
implemented in C++ (and not in C, which is the language 
of the Python interpreter) is to use templates. Almost all 
C++ functionality is split across 2 functions:

1.	 A py_function which uses the Python C API to get 
arguments and check them.

2.	 A template function <dtype> which works for the 
type dtype performing the actual operation.
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So, for example, this is how erode is implemented. py_
erode consists mostly of boiler-plate code:

PyObject* py_erode(PyObject* self, PyObject*
args) {
	 PyArrayObject* array;
	 PyArrayObject* Bc;
	 PyArrayObject* output;
	 if (!PyArg_ParseTuple(args,”OOO”,&array,&Bc,&
output) ||
	 !numpy::are_arrays(array, Bc, output) ||
	 !numpy::same_shape(array, output) ||
	 !numpy::equiv_typenums(array, Bc, output) ||
	 PyArray_NDIM(array) != PyArray_NDIM(Bc)
	 ) {
	 PyErr_SetString(PyExc_RuntimeError, 
TypeErrorMsg);
	 return NULL;
	 }
	 holdref r_o(output);

#define HANDLE(type) \
	 erode>type<(numpy::aligned_
array>type<(output), \
		  numpy::aligned_array>type<(array), \
		  numpy::aligned_array>type<(Bc));
	 SAFE_SWITCH_ON_INTEGER_TYPES_OF(array);
#undef HANDLE
...

This functions retrieves the arguments, performs some 
sanity checks, performs a bit of initialization, and finally, 
switches in the input type with the help of the SAFE_
SWITCH_ON_INTEGER_TYPES macro, which call the right 
specialisation of the template that does the actual work. 
In this example erode implements erosion:

template>typename T<
void erode(numpy::aligned_array>T< res
			   numpy::aligned_array>T< array,
			   numpy::aligned_array>T< Bc) {
		  gil_release nogil;
		  const int N = res.size();
		  typename numpy::aligned_array>T<:iterator
								        iter = array.begin();
		  filter_iterator>T< filter(array.raw_array(),

				    Bc.raw_array(),
			   ExtendNearest,
				    is_bool(T()));
		  const int N2 = filter.size();
		  T* rpos = res.data();

		  for (int i = 0;
			   i != N;
				    ++i, ++rpos, filter.iterate_
both(iter)) {
		  T value = std::numeric_limits>T<::max();
		  for (int j = 0; j != N2; ++j) {
			   T arr_val = T();
			   filter.retrieve(iter, j, arr_val);
			   value = std::min>T<(value,
								        erode_sub(arr_val, 
filter[j]));
		  }
		  *rpos = value;
	 }
}

The template machinery makes the functions that use it 
very simple and easy to read. The only downside is that 
there is some expansion of code size when the compiler 
instantiates the function for the several integer and float-
ing point types. Given the small size of these functions, the 
total size of the compiled library is reasonable (circa 6MiB 
on an Intel-based 64 bit system for the whole library).

In the snippet above, you can see some other C++ 
machinery:

•	gil_release: This is a “resource-acquisition is object ini-
tialisation” (raii)4 object that releases the Python global 
interpreter lock (gil)5 in its constructor and gets it back 
in its destructor. Normally, the template function will 
release the gil after the Python-specific code is done. 
This allows several mahotas functions to run concur-
rently.

•	array: This is a thin wrapper around PyArrayObject, 
the raw numpy data type, which has iterators which 
resemble the C++ standard library. It also handles 

Fig. 1: Example of Usage. On the left, the original image is shown, while on the right SURF detections are represented 
as rectangles of different colours.
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type-casting internally, making the code type-safer. 
This is also a raii object in terms of managing Python 
reference counts. In mahotas debug builds, this object 
additionally adds several checks to all the memory 
acesses.

•	filter_iterator: This was adapted from code in the 
scipy.ndimage packages and it is useful to iterate over 
an image and use a centered filter around each pixel (it 
keeps track of all of the boundary conditions).

The inner loop is as direct an implementation of erosion 
as one would wish for: for each pixel in the image, look at 
its neighbours, subtract the filter value, and compute the 
minimum of this operation.

Efficiency
Operation mahotas pymorph scikits-

image
OpenCV

erode 1.6 15.1 7.4 0.4

dilate 1.5 9.1 7.3 0.4

open 3.2 24.3 14.8 NA

median 
filter (2)

226.9 NA 2034.0 NA

median 
filter (10)

2810.9 NA 1877.1 NA

center mass 5.0 NA 3611.2 NA

sobel 34.1 NA 62.5 6.2

cwatershed 174.8 58440.3 287.3 44.9

daubechies 18.8 NA NA NA

haralick 233.1 NA 7760.7 NA

Table 1: Efficiency Results for mahotas, pymorph, 
scikits-image, and openCV (through Python wrappers). 
Shown are values as multiples of the time that numpy.
max(image) takes to compute the maximum pixel value 
in the image (all operations are over the same image). 
For scikits-image, features on the grey-scale cooccur-
rence matrix were used instead of Haralick features, 
which it does not support. In the case of median filter, 
the radius of the structuring element is shown in paren-
theses. NA stands for “Not Available.”

Table 1 shows timings for different operations. These 
were normalized to multiples of the time it takes to go 
over the image and find its maximum pixel value (using 
the expression numpy.max(image)). The measurements 
shown were obtained on an Intel 64 bit system, running 
Ubuntu Linux. Due to the normalization, measurements 
obtained on another system (Intel 32 bits running Mac 
OS) were qualitatively similar.

The comparison is against Pymorph13, which is a pure 
Python implementation of some of the same functions; 
scikits-image, which is a similar project to mahotas, but 
with a heavier emphasis on the use of Cython14; and 
OpenCV, which is a C++ library with automatically gener-
ated Python wrappers.

OpenCV is the fastest library, but this comes at the cost 
of some flexibility. Arguments to its functions must be of 
the exact expected type and it is possible to crash the inter-
preter if types do match the expected type (in the other 
libraries, including mahotas, all types are checked and an 
exception is generated which can be caught by user code). 
This is particularly relevant for interactive use as the user 
is often exploring and is willing to pay the speed cost of a 
few extra type checks to avoid a hard-crash.

Distribution and Installation
In keeping with the philosophy of blending in with the 
ecosystem, Mahotas uses the standard Python build 
machinery and distribution channels. Building and install-
ing from source code is done using python setup.py install
Alternatively, Python based package managers (such as 
easy_install or pip) can be used (mahotas works well with 
these systems).

For compiling from source, a C++ compiler is needed, as 
well as the development headers for Python and numpy.

There are binary packages available for Windows, main-
tained by Christoph Gohlke, and for FreeBSD and Linux 
Frugalware through their respective package systems.

Quality Control
Mahotas includes a complete automated suite of unit 
tests, which tests all functionality and include several 
regression tests. There are no known bugs in version 1.0.2. 
Occasional bugs discovered in previous released versions 
have been corrected before the next release.

The development is completely open-source and devel-
opment versions are available. Many users have submitted 
bug reports and fixes.

(2) Availability

Operating system
Mahotas runs and is used on different versions of Unix 
(including Linux, SunOS, and FreeBSD), Mac OS X, and 
Windows.

Programming Language
Mahotas works in Python (minimal version is 2.5, but 
mahotas works with all more recent versions, including 
version in the Python 3 series).

Additional system requirements
None at runtime. Compilation from source requires a C++ 
compiler and the Python development headers.

Dependencies
At runtime, mahotas requires numpy to be present and 
installed.

List of contriubutors
Luis Pedro Coelho (Carnegie Mellon University and Insti-
tuto de Medicina Molecular), Zachary Pincus (Stanford 
University), Peter J. Verveer (European Molecular Biology 
Laboratory), Davis King (Northrop Grumman ES), Robert 
Webb (Carnegie Mellon University), Matthew Goodman 
(University of Texas at Austin), K.-Michael Aye (University 
of Bern), Rita Simões (University of Twente), Joe Kington 
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(University of Wisconsin), Christoph Gohlke (University of 
California, Irvine), Lukas Bossard (ETH Zurich), and Sandro 
Knauss (University of Bremen).

Code Repository

Name
Github

Persistent identifier
https://github.com/luispedro/mahotas

License
MIT

Publisher
Konstantin Nikolic

Date published
Since 2010 as mahotas. Some of the code had been previ-
ously made available under other names.

Archive

Name
PyPI

Persistent identifier
https://pypi.python.org/packages/source/m/mahotas/
mahotas-1.0.2.tar.gz#md5=bc3e478a5deb0f2f05e9eb38
5bbb07ff
MD5: bc3e478a5deb0f2f05e9eb385bbb07ff

License
MIT

Date published
2013-05-04 (Mahotas v1.0.2)

(3) Reuse potential

Originally, this code was developed in the context of cellu-
lar image analysis. However, the code was designed so that 
mahotas would contain functionality that is not specific 
to cell image analysis and many computer vision pipelines 
can make use of it.

This package (or earlier versions of it) have been used 
by myself 15,16 and close collaborators in several publica-
tions17. Other groups have used it in published work in cell 
image analysis18 and in other areas19. Ploshnik et al.20used 
mahotas to detect nanoparticles in electron microscopy 
images.

Mahotas provides many basic tools which can be com-
bined to process images. It can be used in any problem 
which requires the processing of images to extract quan-
titative information.

Discussion

Python is an excellent language for scientific program-
ming because of the inherent properties of the language 
and because of the infrastructure that has been built 
around the numpy project. Mahotas works in this envi-
ronment to provide the user with image analysis and com-
puter vision functionality.

Mahotas does not include machine learning related 
functionality, such as k-means clustering or classification 

methods. This is the result of an explicit design decision. 
Specialised machine learning packages for Python already 
exist21,22,23,24. A good classification system can benefit both 
computer vision users and others. As these projects all use 
Numpy arrays as their data types, it is easy to use function-
ality from the different project seamlessly (no copying of 
data is necessary).

Mahotas is implemented in C++, as the standard Python 
interpreter is too slow for a direct Python implementa-
tion. However, all of the Python interface code is hand-
written, as opposed to using automatic interface genera-
tors like Swig25. This is more work initially, but the end 
result is of much higher quality, especially when it comes 
to giving useful error messages. When a type mismatch 
occurs, an automatic system will often be forced to resort 
to a generic message as it does not have any knowledge of 
what the arguments mean to the user. It will only know 
their automatically inferred types. A hand written system 
can also automatically convert arguments when meaning-
ful and be more flexible without completely foregoing 
type checking.

Mahotas has been available in the Python Package Index 
since April 2010 and has been downloaded over fifty thou-
sand times. This does not include any downloads from 
other sources. Mahotas includes a full test suite. There are 
no known bugs.
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