
(1) Overview

Introduction
Mahotas is a computer vision library for the Python Pro-
gramming Language (versions 2.5 and up, including ver-
sion 3 and up). It operates on numpy arrays1. Therefore,
it uses all the infrastructure built by that project for stor-
ing information and performing basic manipulations and
computations. In particular, unlike libraries written in the
C Language or in Java2,3, Mahotas does not need to define a
new image data structure, but uses the numpy array struc-
ture. Many basic manipulation functionality that would
otherwise be part of a computer vision library are handled
by numpy. For example, computing averages and other
simple statistics, handling multi-channel images, convert-
ing between types (integer and floating point images are
supported by mahotas) can all be performed with numpy
builtin functionality. For the users, this has the additional
advantage that they do not need to learn new interfaces.

Mahotas contains over 100 functions with functionality
ranging from traditional image filtering and morphologi-
cal operations to more modern wavelet decompositions
and local feature computations. Additionally, by integrat-
ing into the Python numeric ecosystem, users can use

other packages in a seamless way. In particular, mahotas
does not implement any machine learning functionality,
but rather advises the user to use another, specialised
package, such as scikits-learn or milk.

Python is a natural “glue” language: it is easy to use
state-of-the-art libraries written in multiple languages4.
Mahotas itself is a mix of high-level Python and low-level
C++. This achieves a good balance between speed and
ease of implementation.

Version 1.0.2 of mahotas has been released recently
and this is now a mature, well-tested package (the first
versions were made available over 4 years ago, although
the package was not named mahotas then). Mahotas runs
and is used on different versions of Unix (including Linux,
SunOS, and FreeBSD), Mac OS X, and Windows.

Implementation/architecture

Interface
The interface is a procedural interface, with no global
state. All functions work independently of each other
(there is code sharing at the implementation level, but
this is hidden from the user). The main functionality is
grouped into the following categories:

SOFTWARE METAPAPER

Mahotas: Open source software for scriptable
computer vision
Luis Pedro Coelho1,2

1	Lane Center for Computational Biology, Carnegie Mellon University, Pittsburgh, United States of America
2	Instituto de Medicina Molecular, Lisboa, Portugal

Mahotas is a computer vision library for Python. It contains traditional image processing functional-
ity such as filtering and morphological operations as well as more modern computer vision functions
for feature computation, including interest point detection and local descriptors.

The interface is in Python, a dynamic programming language, which is appropriate for fast develop-
ment, but the algorithms are implemented in C++ and are tuned for speed. The library is designed
to fit in with the scientific software ecosystem in this language and can leverage the existing
infrastructure developed in that language.

Mahotas is released under a liberal open source license (MIT License) and is available from http://
github.com/luispedro/mahotas and from the Python Package Index (http://pypi.python.org/pypi/maho-
tas). Tutorials and full API documentation are available online at http://mahotas.readthedocs.org/.

Keywords: computer vision, image processing

Funding statement
The author was supported by the Fundação para a Ciência e Tecnologia (grant SFRH/BD/37535/2007 to the author
and grant PTDC/SAU-GMG/115652/2009 to Musa Mhlanga), by NIH grant GM078622 (to Robert F. Murphy), by a grant
from the Scaife Foundation, by the HHMI Interfaces Initiative, and by a grant from the Siebel Scholars Foundation.

Coelho, L P 2013 Mahotas: Open source software for scriptable computer vision. Journal
of Open Research Software 1:e3, DOI: http://dx.doi.org/10.5334/jors.ac

Journal of
open research software

CoelhoArt. e3, p.  2 of 7

•	 Surf: Speeded-up Robust Features5. This includes
both keypoint detection and descriptor computation.

•	 Features: Global feature descriptors. In particular,
Haralick texture features6, Zernike moments, local
binary patterns7, and threshold adjacency statistics
(both the original8 and the parameter-free versions5).

•	 Wavelet: Haar and Daubechies wavelets10. Forward
and inverse transforms are supported.

•	 Morphological functions: Erosion and dilation, as
well as some more complex operations built on these.
There are both binary and grayscale implementations
of these operators.

•	 Watershed: Seeded watershed and distance map
transforms11.

•	 Filtering: Gaussian filtering, edge finding, and gen-
eral convolutions.

•	 Polygon operations: Convex hull, polygon drawing.

Numpy arrays contain data of a specific type, such
unsigned 8 bit integer or floating point numbers. While
natural colour images are typically 8 bits, scientific data
is often larger (12 and 16 bit formats are common). Pro-
cessing can generate floating point images. For example,
a common normalization procedure is to subtract from
each pixel location the overall pixel value mean; the result
will be a floating point image even if the original image
was integral. Mahotas works on all datatypes. This is per-
formed without any extra memory copies. Mahotas is
heavily optimised for both speed and memory usage (it
can be used with very large arrays).

There are a few interface conventions which apply to
many functions. When meaningful, a structuring element
is used to define neighbourhoods or adjacency relation-
ships (morphological functions, in particular, use this
convention). Generally, the default is to use a cross as the
default if no structuring filter is given.

When a new image is to be returned, functions take an
argument named out where the output will be stored.
This argument is often much more restricted in type. In
particular, it must be a contiguous array. Since this is a
performance feature (its purpose is to avoid extra memory
allocation), it is natural that the interface is less flexible
(accessing a contiguous array is much more efficient than
a non-contiguous one).

Examples of Use
Code for this and other examples is present in the maho-
tas source distribution under the demos/ directory. In this
example, we load an image, find SURF interest points, and
compute descriptors.

We start by importing the necessary packages, including
numpy and mahotas. We also use scipy.cluster, to dem-
onstrate how the mahotas output can integrate with a
machine learning package.

import numpy as np
import mahotas as mh
from mahotas.features import surf
from scipy.cluster import vq

The first step is to load the image and convert to 8 bit
numbers. In this case, the conversion is done using stand-

ard numpy methods, namely astype. We use the function
mahotas.demos.image_path to access a demonstration
image.

import mahotas.demos
impath = mh.demos.image_path(‘luispedro.jpg’)
f = mh.imread(impath, as_grey=True)
f = f.astype(np.uint8)

We can now compute SURF interest points and descriptors.

spoints = surf.surf(f, 4, 6, 2)

The surf.surf function returns both the descriptors and
their meta data. We use numpy operations to retain only
the descriptors (the meta data is in the first five positions):

descrs = spoints[:,6:]

Using scipy.cluster.vq, we cluster the descriptors into five
groups. The function kmeans2 returns two values: the
centroids, which we ignore; and the cluster ids, which we
will use below to assign colours:

_,cids = vq.kmeans2(vq.whiten(descrs), 5)

Finally, we can show the points in different colours. In
order to avoid a very cluttered image, we will only plot the
first 64 regions.

colors = np.array([
	 [255, 25, 1],
	 [203, 77, 37],
	 [151, 129, 56],
	 [99, 181, 52],
	 [47, 233, 5]])
f2 = surf.show_surf(f, spoints[:64], cids,
colors)

The show_surf only builds the image as a multi-channel
(one for each colour) image. Using matplotlib [12], we
finally display the image as Fig. 1.

colors = np.array([
[255, 25, 1],
[203, 77, 37],
[151, 129, 56],
[99, 181, 52],
[47, 233, 5]])
f2 = surf.show_surf(f, spoints[:64], cids,
colors)

The easy interaction with matplotlib is another way in
which we benefit from the numpy-based ecosystem.
Mahotas does not need to support interacting with a
graphical system to display images.

Implementation
Mahotas is mostly written in C++, but this is completely
hidden from the user as there are hand-written Python
wrappers for all functions.The main reason that mahotas is
implemented in C++ (and not in C, which is the language
of the Python interpreter) is to use templates. Almost all
C++ functionality is split across 2 functions:

1.	 A py_function which uses the Python C API to get
arguments and check them.

2.	 A template function <dtype> which works for the
type dtype performing the actual operation.

Coelho Art. e3, p.  3 of 7

So, for example, this is how erode is implemented. py_
erode consists mostly of boiler-plate code:

PyObject* py_erode(PyObject* self, PyObject*
args) {
	 PyArrayObject* array;
	 PyArrayObject* Bc;
	 PyArrayObject* output;
	 if (!PyArg_ParseTuple(args,”OOO”,&array,&Bc,&
output) ||
	 !numpy::are_arrays(array, Bc, output) ||
	 !numpy::same_shape(array, output) ||
	 !numpy::equiv_typenums(array, Bc, output) ||
	 PyArray_NDIM(array) != PyArray_NDIM(Bc)
) {
	 PyErr_SetString(PyExc_RuntimeError,
TypeErrorMsg);
	 return NULL;
	 }
	 holdref r_o(output);

#define HANDLE(type) \
	 erode>type<(numpy::aligned_
array>type<(output), \
		 numpy::aligned_array>type<(array), \
		 numpy::aligned_array>type<(Bc));
	 SAFE_SWITCH_ON_INTEGER_TYPES_OF(array);
#undef HANDLE
...

This functions retrieves the arguments, performs some
sanity checks, performs a bit of initialization, and finally,
switches in the input type with the help of the SAFE_
SWITCH_ON_INTEGER_TYPES macro, which call the right
specialisation of the template that does the actual work.
In this example erode implements erosion:

template>typename T<
void erode(numpy::aligned_array>T< res
			 numpy::aligned_array>T< array,
			 numpy::aligned_array>T< Bc) {
		 gil_release nogil;
		 const int N = res.size();
		 typename numpy::aligned_array>T<:iterator
								 iter = array.begin();
		 filter_iterator>T< filter(array.raw_array(),

				 Bc.raw_array(),
			 ExtendNearest,
				 is_bool(T()));
		 const int N2 = filter.size();
		 T* rpos = res.data();

		 for (int i = 0;
			 i != N;
				 ++i, ++rpos, filter.iterate_
both(iter)) {
		 T value = std::numeric_limits>T<::max();
		 for (int j = 0; j != N2; ++j) {
			 T arr_val = T();
			 filter.retrieve(iter, j, arr_val);
			 value = std::min>T<(value,
								 erode_sub(arr_val,
filter[j]));
		 }
		 *rpos = value;
	 }
}

The template machinery makes the functions that use it
very simple and easy to read. The only downside is that
there is some expansion of code size when the compiler
instantiates the function for the several integer and float-
ing point types. Given the small size of these functions, the
total size of the compiled library is reasonable (circa 6MiB
on an Intel-based 64 bit system for the whole library).

In the snippet above, you can see some other C++
machinery:

•	gil_release: This is a “resource-acquisition is object ini-
tialisation” (raii)4 object that releases the Python global
interpreter lock (gil)5 in its constructor and gets it back
in its destructor. Normally, the template function will
release the gil after the Python-specific code is done.
This allows several mahotas functions to run concur-
rently.

•	array: This is a thin wrapper around PyArrayObject,
the raw numpy data type, which has iterators which
resemble the C++ standard library. It also handles

Fig. 1: Example of Usage. On the left, the original image is shown, while on the right SURF detections are represented
as rectangles of different colours.

CoelhoArt. e3, p.  4 of 7

type-casting internally, making the code type-safer.
This is also a raii object in terms of managing Python
reference counts. In mahotas debug builds, this object
additionally adds several checks to all the memory
acesses.

•	filter_iterator: This was adapted from code in the
scipy.ndimage packages and it is useful to iterate over
an image and use a centered filter around each pixel (it
keeps track of all of the boundary conditions).

The inner loop is as direct an implementation of erosion
as one would wish for: for each pixel in the image, look at
its neighbours, subtract the filter value, and compute the
minimum of this operation.

Efficiency
Operation mahotas pymorph scikits-

image
OpenCV

erode 1.6 15.1 7.4 0.4

dilate 1.5 9.1 7.3 0.4

open 3.2 24.3 14.8 NA

median
filter (2)

226.9 NA 2034.0 NA

median
filter (10)

2810.9 NA 1877.1 NA

center mass 5.0 NA 3611.2 NA

sobel 34.1 NA 62.5 6.2

cwatershed 174.8 58440.3 287.3 44.9

daubechies 18.8 NA NA NA

haralick 233.1 NA 7760.7 NA

Table 1: Efficiency Results for mahotas, pymorph,
scikits-image, and openCV (through Python wrappers).
Shown are values as multiples of the time that numpy.
max(image) takes to compute the maximum pixel value
in the image (all operations are over the same image).
For scikits-image, features on the grey-scale cooccur-
rence matrix were used instead of Haralick features,
which it does not support. In the case of median filter,
the radius of the structuring element is shown in paren-
theses. NA stands for “Not Available.”

Table 1 shows timings for different operations. These
were normalized to multiples of the time it takes to go
over the image and find its maximum pixel value (using
the expression numpy.max(image)). The measurements
shown were obtained on an Intel 64 bit system, running
Ubuntu Linux. Due to the normalization, measurements
obtained on another system (Intel 32 bits running Mac
OS) were qualitatively similar.

The comparison is against Pymorph13, which is a pure
Python implementation of some of the same functions;
scikits-image, which is a similar project to mahotas, but
with a heavier emphasis on the use of Cython14; and
OpenCV, which is a C++ library with automatically gener-
ated Python wrappers.

OpenCV is the fastest library, but this comes at the cost
of some flexibility. Arguments to its functions must be of
the exact expected type and it is possible to crash the inter-
preter if types do match the expected type (in the other
libraries, including mahotas, all types are checked and an
exception is generated which can be caught by user code).
This is particularly relevant for interactive use as the user
is often exploring and is willing to pay the speed cost of a
few extra type checks to avoid a hard-crash.

Distribution and Installation
In keeping with the philosophy of blending in with the
ecosystem, Mahotas uses the standard Python build
machinery and distribution channels. Building and install-
ing from source code is done using python setup.py install
Alternatively, Python based package managers (such as
easy_install or pip) can be used (mahotas works well with
these systems).

For compiling from source, a C++ compiler is needed, as
well as the development headers for Python and numpy.

There are binary packages available for Windows, main-
tained by Christoph Gohlke, and for FreeBSD and Linux
Frugalware through their respective package systems.

Quality Control
Mahotas includes a complete automated suite of unit
tests, which tests all functionality and include several
regression tests. There are no known bugs in version 1.0.2.
Occasional bugs discovered in previous released versions
have been corrected before the next release.

The development is completely open-source and devel-
opment versions are available. Many users have submitted
bug reports and fixes.

(2) Availability

Operating system
Mahotas runs and is used on different versions of Unix
(including Linux, SunOS, and FreeBSD), Mac OS X, and
Windows.

Programming Language
Mahotas works in Python (minimal version is 2.5, but
mahotas works with all more recent versions, including
version in the Python 3 series).

Additional system requirements
None at runtime. Compilation from source requires a C++
compiler and the Python development headers.

Dependencies
At runtime, mahotas requires numpy to be present and
installed.

List of contriubutors
Luis Pedro Coelho (Carnegie Mellon University and Insti-
tuto de Medicina Molecular), Zachary Pincus (Stanford
University), Peter J. Verveer (European Molecular Biology
Laboratory), Davis King (Northrop Grumman ES), Robert
Webb (Carnegie Mellon University), Matthew Goodman
(University of Texas at Austin), K.-Michael Aye (University
of Bern), Rita Simões (University of Twente), Joe Kington

Coelho Art. e3, p.  5 of 7

(University of Wisconsin), Christoph Gohlke (University of
California, Irvine), Lukas Bossard (ETH Zurich), and Sandro
Knauss (University of Bremen).

Code Repository

Name
Github

Persistent identifier
https://github.com/luispedro/mahotas

License
MIT

Publisher
Konstantin Nikolic

Date published
Since 2010 as mahotas. Some of the code had been previ-
ously made available under other names.

Archive

Name
PyPI

Persistent identifier
https://pypi.python.org/packages/source/m/mahotas/
mahotas-1.0.2.tar.gz#md5=bc3e478a5deb0f2f05e9eb38
5bbb07ff
MD5: bc3e478a5deb0f2f05e9eb385bbb07ff

License
MIT

Date published
2013-05-04 (Mahotas v1.0.2)

(3) Reuse potential

Originally, this code was developed in the context of cellu-
lar image analysis. However, the code was designed so that
mahotas would contain functionality that is not specific
to cell image analysis and many computer vision pipelines
can make use of it.

This package (or earlier versions of it) have been used
by myself 15,16 and close collaborators in several publica-
tions17. Other groups have used it in published work in cell
image analysis18 and in other areas19. Ploshnik et al.20used
mahotas to detect nanoparticles in electron microscopy
images.

Mahotas provides many basic tools which can be com-
bined to process images. It can be used in any problem
which requires the processing of images to extract quan-
titative information.

Discussion

Python is an excellent language for scientific program-
ming because of the inherent properties of the language
and because of the infrastructure that has been built
around the numpy project. Mahotas works in this envi-
ronment to provide the user with image analysis and com-
puter vision functionality.

Mahotas does not include machine learning related
functionality, such as k-means clustering or classification

methods. This is the result of an explicit design decision.
Specialised machine learning packages for Python already
exist21,22,23,24. A good classification system can benefit both
computer vision users and others. As these projects all use
Numpy arrays as their data types, it is easy to use function-
ality from the different project seamlessly (no copying of
data is necessary).

Mahotas is implemented in C++, as the standard Python
interpreter is too slow for a direct Python implementa-
tion. However, all of the Python interface code is hand-
written, as opposed to using automatic interface genera-
tors like Swig25. This is more work initially, but the end
result is of much higher quality, especially when it comes
to giving useful error messages. When a type mismatch
occurs, an automatic system will often be forced to resort
to a generic message as it does not have any knowledge of
what the arguments mean to the user. It will only know
their automatically inferred types. A hand written system
can also automatically convert arguments when meaning-
ful and be more flexible without completely foregoing
type checking.

Mahotas has been available in the Python Package Index
since April 2010 and has been downloaded over fifty thou-
sand times. This does not include any downloads from
other sources. Mahotas includes a full test suite. There are
no known bugs.

Acknowledgements
Mahotas includes code ported and incorporated from
other projects. Initially, it was used in reproducing the
functionality in the Subcellular Location Image Classifier
(SLIC) tool from Robert F. Murphy’s Lab26 and the initial
versions of mahotas were designed explicitly to support
that functionality. The surf implementation is a port from
the code from dlib,7 an excellent C++ library by Davis
King. I also gleaned some insight into the implementa-
tion of these features from Christopher Evan’s OpenSURF
library and its documentation27. The code which interfaces
with the FreeImage library, was written by Zachary Pin-
cus and some of the support code was written by Peter
J. Verveer for the scipy.ndimage project. All of these con-
tributions were integrated while respecting the software
licenses under which the original code had been released.
Robert Webb, a summer student at Carnegie Mellon Uni-
versity, worked with me on the initial local binary patterns
implementation. Finally, I thank the several users who
have reported bugs, submitted fixes, and participated on
the project mailing list.

Stéfan van der Walt and Andreas Müller offered helpful
comments on a draft version of this manuscript.

References
1.	 van der Walt S, Colbert S and Varoquaux G 2011

The numpy array: A structure for efficient numerical
computation. Computing in Science Engineering 13(2):
22–30, DOI: http://dx.doi.org/10.1109/MCSE.2011.37

2.	 Pietzsch T, Preibisch S, Tomančák P and Saalfeld
S 2012 Imglib2–generic image processing in java. Bio-
informatics 28(22): 3009–3011. DOI: http://dx.doi.
org/10.1093/bioinformatics/bts543

CoelhoArt. e3, p.  6 of 7

3.	 Marcel S and Rodriguez Y 2010 Torchvision the
machine-vision package of torch. MM ‘10 Proceed-
ings of the international conference on Multime-
dia, New York, 1485–1488, DOI: http://dx.doi.
org/10.1145/1873951.1874254

4.	 Oliphant T E 2007 Python for scientific computing.
Computing in Science and Engineering 9(3): 10–20.
DOI: http://dx.doi.org/10.1109/MCSE.2007.58

5.	 Bay H, Ess A, Tuytelaars T and van Gool L 2008
Speeded-up robust features (surf). Computer Vision
and Image Understanding (CVIU) 110(3): 346–359,
DOI: http://dx.doi.org/10.1016/j.cviu.2007.09.014

6.	 Haralick R M, Dinstein I and Shanmugam K 1973
Textural features for image classification. IEEE Transac-
tions On Systems Man And Cybernetics 3(6): 610–621,
DOI: http://dx.doi.org/10.1109/TSMC.1973.4309314

7.	 Ojala T, Pietikinen M and Menp T 2002 Multireso-
lution gray-scale and rotation invariant texture clas-
sification with local binary patterns. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence
24(7): 971–987, DOI: http://dx.doi.org/10.1109/TPA-
MI.2002.1017623

8.	 Hamilton N A, Pantelic N A, Hanson K and Teas-
dale R D 2007 Fast automated cell phenotype image
classification. BMC bioinformatics 8(110) DOI: http://
dx.doi.org/10.1186/1471-2105-8-110

9.	 Coelho L P, Ahmed A, Arnold A, Kangas J, Sheikh
A-S, Xing E P, Cohen W W and Murphy R F 2010
Structured Literature Image Finder: Extracting Infor-
mation from Text and Images in Biomedical Literature.
Lecture notes in computer science 6004: 23–32, DOI:
http://dx.doi.org/10.1007/978-3-642-13131-8_4

10.	Daubechies I 1990 The wavelet transform, time-fre-
quency localization and signal analysis. Information
Theory, IEEE Transactions on 36(5): 961–1005, DOI:
http://dx.doi.org/10.1109/18.57199

11.	Felzenszwalb P and Huttenlocher D 2004 Distance
transforms of sampled functions. Technical report,
Cornell University.

12.	Hunter J D 2007 Matplotlib: A 2d graphics environ-
ment. Computing in Science and Engineering 9(3): 90–
95, DOI: http://dx.doi.org/10.1109/MCSE.2007.55

13.	Dougherty E R and Lotufo R A 2003 Hands-on Mor-
phological Image Processing. Bellingham, WA: SPIE Press.

14.	Behnel S, Bradshaw R, Citro C, Dalcin L, Seljebotn
D and Smith K 2011 Cython: The best of both worlds.
Computing in Science Engineering 13(2): 31–39. DOI:
http://dx.doi.org/10.1109/MCSE.2010.118

15.	Coelho L P, Shariff A and Murphy R F 2009 Nuclear
segmentation in microscope cell images: A hand-seg-
mented dataset and comparison of algorithms. 2009
IEEE International Symposium on Biomedical Imaging:
From Nano to Macro, 518–521, DOI: http://dx.doi.
org/10.1109/ISBI.2009.5193098

16.	Coelho L P, Peng T and Murphy R F 2010a Quanti-
fying the distribution of probes between subcellu-
lar locations using unsupervised pattern unmixing.
Bioinformatics 26(12): i7–i12. DOI: http://dx.doi.
org/10.1109/ISBI.2009.5193098

17.	Cho B H, Cao-Berg I, Bakal J A and Murphy R F 2012
Omero.searcher: content-based image search for mi-
croscope images. Nature Methods 9: 633–634, DOI:
http://dx.doi.org/10.1038/nmeth.2086

18.	Mashburn D N, Lynch H E, Ma X and Huston M S
2012 Enabling user-guided segmentation and track-
ing of surface-labeled cells in time-lapse image sets of
living tissues. Cytometry Part A 81A(5): 409–418, DOI:
http://dx.doi.org/10.1002/cyto.a.22034

19.	Machlek T and Oleviov K 2013 Decentralized multi-
agent algorithm for translational 2d image alignment.
Advances in Intelligent Systems and Computing 183:
15–24, DOI: http://dx.doi.org/10.1007/978-3-642-
32335-5_2

20.	Ploshnik E, Langner K M, Halevi A, Ben-Lulu M,
Mller A H E, Fraaije J G E M, Agur Sevink G J and
Shenhar R 2013 Hierarchical structuring in block
copolymer nanocomposites through two phase-sep-
aration processes operating on different time scales.
Advanced Functional Materials, DOI: http://dx.doi.
org/10.1002/adfm.201300091

21.	Pedregosa F, Varoquaux G, Gramfort A, Michel
V, Thirion B, Grisel O, Blondel M, Prettenhofer P,
Weiss R, Dubourg V, Vanderplas J, Passos A, Cour-
napeau D, Brucher M and Duchesnay E 2011 Scikit-
learn: Machine learning in python. The Journal of Ma-
chine Learning Research 12: 2825–2830.

22.	Demar J, Zupan B, Leban G and Curk T 2004 Orange:
From experimental machine learning to interactive
data mining. Lecture Notes in Computer Science 3202:
537–539, DOI: http://dx.doi.org/10.1007/978-3-540-
30116-5_58

23.	Schaul T, Bayer J, Wierstra D, Sun Y, Felder M,
Sehnke F, Rückstieß T and Schmidhuber J 2010
Pybrain. The Journal of Machine Learning Research 11:
743–746.

24.	Sonnenburg S, Rätsch G, Henschel S, Widmer C,
Behr J, Zien A, Bona F, Binder A, Gehl C and Franc V
2010 The shogun machine learning toolbox. The Jour-
nal of Machine Learning Research 11: 1799–1802.

25.	Beazley D 2003 Automated scientific software script-
ing with swig. Future Generation Computer Systems
- Tools for Program Development and Analysis 19(5):
599–609. DOI: http://dx.doi.org/10.1016/S0167-
739X(02)00171-1.

26.	Zhao T and Murphy R F 2006 Automated interpreta-
tion of subcellular location patterns from three-dimen-
sional confocal microscopy. In: Handbook Of Biological
Confocal Microscopy. Springer US, pp. 818–828, DOI:
http://dx.doi.org/10.1007/978-0-387-45524-2_47

27.	Evans C 2009 Notes on the OpenSURF Library SURF:
Speeded Up Robust Features. Available at: https://nll.
googlecode.com/svn-history/r1367/trunk/referenc-
es/opensurf.pdf [accessed 24 July 2013].

Coelho Art. e3, p.  7 of 7

How to cite this article: Coelho, L P 2013 Mahotas: Open source software for scriptable computer vision. Journal of
Open Research Software 1:e3, DOI: http://dx.doi.org/10.5334/jors.ac

Published: 26 July 2013

Copyright: © 2013 The Author(s). This is an open-access article distributed under the terms of the Creative Commons
Attribution 3.0 Unported License (CC-BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited. See http://creativecommons.org/licenses/by/3.0/.

The Journal of Open Research Software is a peer-reviewed open access journal published by
Ubiquity Press OPEN ACCESS

