
(1) Overview
Introduction
The POD Parser software was developed as part of the
JISC-funded AddressingHistory project[1] (Apr. – Sept.
2010) to develop a community engagement web tool
and Application Programming Interface (API) to enhance
and combine data from digitised historical Scottish Post
Office Directories(PODs) with contemporaneous histori-
cal maps.

TPODs emerged during the late seventeenth century to
meet the demand for accurate information about trade
and industry due to the expansion of commerce during
this period. They offer a wealth of detailed information
regarding residential names, occupations and addresses
and as such are a fitting resource for both genealogical
study and for understanding social, economic and demo-
graphic trends and changes within Scotland.

At the time of writing AddressingHistory focuses on
Edinburgh, Glasgow and Aberdeen mapping and 9 Post
Office Directories from late 18th to early 20th centuries.
Both the website[2] and API[3] are currently used by aca-
demic researchers looking at the economic and social his-
tory of Edinburgh, with the API also incorporated into the
Arts and Humanities Research Council’s Visualising Urban
Geographies project[4].

The website and API were developed by EDINA at the
University of Edinburgh, in partnership with the National
Library of Scotland (NLS), using materials digitised using
Optical Character Recognition (OCR) techniques, stored
as XML, and published as part of an on-going NLS and
Internet Archive programme.

The POD Parser aims to parse the XML records and deter-
mine forename, surname, occupation and address(es) of
each entry. Furthermore, each address location is geo-
coded using the Google Geocoding API [5].

The PODs contain both personal and professional
address listings. They, also include miscellanea such as
shipping information, professional body memberships,
listings by profession, and adverts. For the project only the
General Directory section of the directories – a listing of
individuals and their workplace addresses - were parsed.

Currently over 750 PODs have been digitised as part
of the NLS programme, all of which are available via the
Internet Archive in the public domain [6]. The wide range
of data collection practices, publishers, publication dates,
and locations covered give rise to highly heterogeneous
directories. The POD Parser is flexible and adaptable to
variants in the General Directory format however customi-
sation may be required when using the Parser with PODs
of contrasting format.

SOFTWARE METAPAPER

Historical Post Office Directory Parser (POD Parser)
Software From the AddressingHistory Project
Nicola Osborne1, George Hamilton2 and Stuart Macdonald3

1	Author	of	paper,	AddressingHistory	Project	Officer,	Social	Media	Officer,	EDINA,	UK
2	Co-author	of	paper,	Developer	of	the	POD	Parser	software,	Software	Engineer,	EDINA,	UK	
3	Co-author	of	paper,	AddressingHistory	Project	Manager,	Associate	Data	Librarian,	EDINA,	UK

Osborne	et	al	2014	Historical	Post	Office	Directory	Parser	(POD	Parser)	Software	From	the	
AddressingHistory Project. Journal	of	Open	Research	Software,	2:	e23,	DOI:	http://dx.doi.
org/10.5334/jors.aq	

Keywords: historical post office directories; text parsing; OCR; geocoding; Python; digital humanities;
parser; Scottish history; post office directories
Funding Statement: Initial development of the POD Parser was funded by JISC as part of the Developing
Community Content Programme [14]. Additional development of the current version of the POD Parser
was funded internally by EDINA.

Journal of
open research software

The POD Parser is Python software for parsing the OCR’d (optical character recognised) text of digitised
historical Scottish Post Office Directories (PODs) to produce a consistent structured format for the data
and for geocoding each address. The software was developed as part of the AddressingHistory project
which sought to combine digitised historic directories with digitised and georeferenced historic maps.
 The software has potential for reuse in multiple research contexts where historical post office directory
data is relevant, and is therefore particularly of use in historical research into social, economic or demo-
graphic trends. The POD Parser is currently designed for use with Scottish directories but is extensible,
perhaps with some adaptation, to use with other similarly formatted materials such as the English Trade
Directories.

OsborneArt. e23,	p. 	2	of	5	

The POD Parser code is open source allowing the Parser
to be adaptable for parsing different directories within the
PODs (e.g. Street Directory) or similar historical directories
from other localities such as the English Trade Directories.
This would, however, necessitate significant Parser re-con-
figuration and customisation for each new style of POD
or directory.

Implementation/architecture
The POD Parser is a platform independent command-line
tool and library for parsing Scottish Post Office directo-
ries. The python application parses the directories from
XML, and through a variety of string replaces, stop-words,
address lookups and line return fixes attempts to repair
OCR errors to create valid POD entries.

The podparser is made up of a number of classes for
executing a parse run, modelling the structure of the POD,
cleaning POD entries, geo-encoding entry addresses and
storing results in the database.

The entry point of a run of the parser is the Parser class,
an instance of which creates a Directory object that stores
POD metadata and a list of pages (Page) to be parsed, each
of which contains a list of entries (Entry) to be parsed. An
instance of EntryChecker checks the structure of an Entry
to identify the name, profession and addresses of the
entry, making on the fly corrections to OCR problems. For
each address that is identified, an instance of Google or
GooglePremium will fetch the co-ordinates of the address.
The google encoder can be executed independently of the
parser, see [7].

If database details are specified, an instance of
PodConnection will store entries in the database.
Associated schema can be found in the code repository
[8].

Input
The parser is designed to accept input files in the format
and file structure of the Scottish Post Office directories
djvu XML files. The parent directory should contain a
metadata XML file ending in _meta.xml containing the
following values:

<metadata>
 <volume></volume>
 <publisher></publisher>
</metadata>

The POD pages are expected in a child directory whose
name ends in _djvu_xml.Each file contains a single POD
page whose page number is contained in the file name.

If the POD page files required by the parser are not avail-
able in a child directory, they can be generated using the
“podfetch” script [9]:
$ cd </path/to/pod>
$ podfetch -d <url>

If successful, this will fetch a metadata file and a djvu
file containing all pages in the pod. A new djvu XML file
is then generated for each page in the pod in a new direc-
tory. Please note that on slower internet connections this
process can take a long time.

Example input files are available in the code repository
[10] structured as shown in Figure 1. Further information

on Input can be found in the pod parser documentation
[11].

Parsing process and output
The parser can be used as a command-line application or
invoked as a library call within a python script. The com-
mand-line application parses the Post Offices directories
from XML and optionally commits the entries to a data-
base. Used in either way the parser processes each file on
a line-by-line basis.

Post Office directories can contain many pages, leading
to parse times of many hours. In cases where many pages
are being parsed it makes more sense to use a callback
to process the results after the parsing of each page. This
means if the process is killed before finishing, it can be
restarted from the point of failure.

Each cleaned entry is geo-encoded using Google’s geoc-
oding api[5] and the results are printed to “standard out”
as each entry is processed (see Figure 2).

Quality control
A variety of unit tests are provided to test database queries,
google geocoding API connectivity and responses, specific
OCR errors and general API code coverage. Integration
tests are provided to validate database connectivity and
SQL queries where appropriate.

The full range of available unit and integration tests are
detailed in the PODParser code repository on Github [12].

The proportion of parsed records with a low accuracy of
geo tag (as defined by receiving a Google geocoding “accu-
racy” score of less than 5), or the proportion of records
with no geo tags after parsing, can act as a representative
measure of Parser accuracy. These measures were used in
the development of the POD Parser when making changes
to accommodate new directories with variations in format
or quality of POD entries.

The POD Parser’s second round of development was also
informed by a small project in which two postgraduate
history students examined and documented the quality of
output data, providing analysis of common issues and the
accuracy of the POD Parser.

For instance the most accurately parsed POD currently
available via the AddressingHistory website, Aberdeen
1881, has a geotag accuracy of 99% (percentage of Google
geocoding with an accuracy of 5 or more). By contrast, the
least accurately parsed POD currently available, Aberdeen

Fig 1: Example input data.

Fig 2: Example output data.

Osborne Art. e23,	p. 	3	of	5	

1891, has a geotag accuracy of 87%. The majority of the
PODs parsed to date have an accuracy over 90% as a result
of iterative rounds of testing and improvement to the
POD Parser.

User contributions and feedback on the accuracy and
issues encountered in output data (surfaced within the
AddressingHistory website) also provide a form of ongo-
ing quality assurance to inform future development of the
Parser.

(2) Availability
Operating system
Platform independent.

Programming language
python2

Additional system requirements
An internet connection is required as part of the geo-
encoding process. There are no other specific require-
ments. The requirements do, however, depend on the
size of data set – the POD – being parsed. The database
used for output must, therefore, have sufficient capac-
ity to accommodate the parsed input data. There are two
alternative methods of running the POD Parser that place
different demands on the system with the page by page

method more suitable for the Parser on large data sets. For
more information see the “Usage” section in [11].

Dependencies
Python libraries; argparse and psycopg2 (latter only where
Parser results are to be stored in a database – currently
only Postgis is supported).

Google Geocoding API. The Parser requires use of a
geocoding tool and uses the Google Geocoding API at
present although it has been designed to be extensible to,
e.g. Yahoo! BOSS Geo Services.

List of contributors
George Hamilton, Software Engineer at EDINA developed
the current POD Parser (version 0.4) making significant
developments and adaptations to the Parser. This work
built upon the first version of the POD Parser (in 2010),
developed by Joe Vernon, then a Software Engineer at
EDINA.

Archive
Name
PyPI

Persistent identifier
http://pypi.python.org/pypi/podparser

Fig 3: Screen capture of the Internet Archive page for the 1940-41 Edinburgh and Leith Post Office Directory. The red
box on the left hand side of the screen indicates the location of the link to the All Files: HTTP area.

OsborneArt. e23,	p. 	4	of	5	

License
GPL (General Public License) Version 3

Publisher
George Hamilton

Date published
07/01/2014 (v. 0.4)

Code Repository
Name
GitHub

Identifier
https://github.com/edina/podparser

License
GPL (General Public License) Version 3

Date published
27/05/2011 (v. 0.1)

Language
Git (repository); Python (Parser); SQL, Postgres/
PostGIS (database); XML (configuration files); html, text
(documentation).

(3) Reuse potential
The software has potential for reuse in extending the tem-
poral and geospatial range of data available for existing
research contexts (e.g. economic and social history).

The current collection of over 750 Scottish PODs are
publicly available via the Internet Archive [6]. The XML
files which the POD Parser uses as input are provided in
the “All Files: HTTPS” area (see Figure 3) with the nam-
ing convention: postofficeann<YearName>_scandata.xml.
Where Year is the year of the POD (e.g. 1888), and Name
is an abbreviated form of the name of the POD which may
reflect the author, or the area, covered by the POD (e.g.
“peac” for “Peace’s Orkney almanac and county directory”).

The POD Parser also has the potential for use across
multiple research contexts where historical post office
directory data may be relevant either on it’s own, or when
combined with additional sources of data. For instance,
the POD data may be used in research into historical
health and epidemiology, town planning and architecture,
and - as the PODs represents an unusual representation of
women’s lives and occupations - into the lives and roles of
women.

The POD Parser is currently designed for use with
Scottish directories, and for processing a particular for-
mat of file used for the PODS, but is extensible, with
some adaptation, to use with other similarly formatted
materials such as the English Trade Directories. The
existing POD Parser could also be adapted to not only
parse POD data but also combine each entry with com-
plimentary data sources. The Parser could also be made
more flexible, allowing the user to define the order,

or enabling the Parser to accept alternative structured
data.

Support for the Pod Parser software is available
through the GitHut issue tracker (available within the
code repository) or through contacting the authors of
this paper. Additionally support for the Pod Parser, the
AddressingHistory website and API is available via a form
on the AddressingHistory website [13], or via the EDINA
helpdesk (edina@ed.ac.uk).

Acknowledgements
In addition to the authors of this paper we would like
to acknowledge the work of Ian Fieldhouse, Software
Engineer at EDINA, who has worked on development of
the AddressingHistory web tool which the POD Parser sup-
ports. We would also like to acknowledge the advice and
support provided by members of the AddressingHistory
Steering Committee particularly those from our partner
organisations: Professor Richard Rodger of Edinburgh
University, Chris Fleet of the National Library of Scotland
Maps Library and Ines Byrne, Digital Project Officer at the
National Library of Scotland.

Special thanks are extended both to Ines and to Lee
Hibberd, Digital Preservation Officer at the National
Library of Scotland, for making available the NLS stylesheet
for the PODS, which has enabled us to add a new script to
the PodParser improving its capacity for reuse with other
digitised PODs. This improvement was influenced by the
feedback of the JORS reviewers who we would like to
thank for their comments and suggestions.

We would also like to thank professional genealogist
Chris Paton, and AddressingHistory users and volunteer
testers all of whom have provided feedback on the pro-
ject website that have helped us to improve the usefulness
and accuracy of the POD Parser.

References
1. EDINA 2013 AddressingHistory Phase 2. Available at

http://edina.ac.uk/projects/addressinghistory2_sum-
mary.html [last accessed 20 February 2013].

2. EDINA 2013 AddressingHistory. Available at http://ad-
dressinghistory.edina.ac.uk/ [last accessed 20 Febru-
ary 2013].

3. EDINA 2013 AddressingHistory: Using the API. Avail-
able at http://addressinghistory.edina.ac.uk/api [last
accessed 20 February 2013].

4. National Library of Scotland 2009 Visualising Urban
Geographies. Available at http://geo.nls.uk/urbhist/
[last accessed 20 February 2013].

5. Google 2013 The Google Geocoding API In Google
Maps API Web Services. Available at https://develop-
ers.google.com/maps/documentation/geocoding/
[last accessed 20 February 2013].

6. National Libraries of Scotland and the Internet
Archive 2013 Internet Archive Scottish Directories
(collection). Available at http://archive.org/de-
tails/scottishdirectories [last accessed 20 February
2013].

Osborne Art. e23,	p. 	5	of	5	

How to cite this article: Osborne,	N,	Hamilton,	G	and	Macdonald,	S	2014	Historical	Post	Office	Directory	Parser	(POD	
Parser)	Software	From	the	AddressingHistory	Project.	Journal	of	Open	Research	Software,	2:e23,	DOI:	http://dx.doi.
org/10.5334/jors.aq	

Published: 21	July	2014

Copyright:	©	2014	The	Author(s).	This	is	an	open-access	article	distributed	under	the	terms	of	the	Creative	Commons	
Attribution	3.0	Unported	License	(CC-BY	3.0),	which	permits	unrestricted	use,	distribution,	and	reproduction	in	any	medium,	
provided	the	original	author	and	source	are	credited.	See	http://creativecommons.org/licenses/by/3.0/.

Journal	of	Open	Research	Software	is	a	peer-reviewed	open	access	journal	published	by	
Ubiquity	Press OPEN ACCESS

7. Hamilton, G 2012 Encoder.py. In Github: podpaser/geo. Avail-
able at https://github.com/edina/podparser/blob/master/
podparser/geo/encoder.py [last accessed 9 June 2014].

8. Hamilton, G 2012 Schema.sql. In Github: podpaser/
schema. Available at https://github.com/edina/pod-
parser/blob/master/podparser/etc/schema.sql [last
accessed 9 June 2014].

9. Hamilton, G 2013 POD set up. In Post Office Directory
Parser (podParser). PyPI podParser v0.3 package docu-
mentation. Available at https://pythonhosted.org/
podparser/#pod-set-up [last accessed 19 February 2014].

10. Hamilton, G 2012 example In Github: podpaser/test.
Available at https://github.com/edina/podparser/
tree/master/test/example/example_djvu_xml [last
accessed 9 June 2014].

11. Hamilton, G 2011 Post Office Directory Parser (pod-
Parser) PyPI podParser v0.3 package documentation.
Available at http://pythonhosted.org/podparser/
[last accessed 20 February 2013].

12. Hamilton, G 2012 test.py. In Github: podparser/
test. Available at https://github.com/edina/podpar-
ser/blob/master/test/tests.py [last accessed 9 June
2014].

13. EDINA 2013 AddressingHistory: Contact Us. Available
at http://addressinghistory.edina.ac.uk/contactUs
[last accessed 1 November 2013].

14. JISC 2010 Developing Community Content. Available
at http://www.jisc.ac.uk/whatwedo/programmes/
digitisation/communitycontent.aspx [last accessed 20
February 2013].

http://dx.doi.org/10.5334/511ba2c94d661
http://dx.doi.org/10.5334/511ba2c94d661

