
Nedelec, F 2017 preconfig: A Versatile Configuration File Generator for Varying Parameters.
Journal of Open Research Software, 5: 9, DOI: https://doi.org/10.5334/jors.156

Journal of
open research software

SOFTWARE METAPAPER

preconfig: A Versatile Configuration File Generator for
Varying Parameters
Francois Nedelec
Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, DE
nedelec@embl.de

Mathematical models in biology have many parameters, and sampling parameter values is necessary, for
instance to identify robustness or sensitivities in the model, or simply calculate a phase diagram. We
provide a universal program: Preconfig, that can be used within different computing pipelines to sample
parameters. From a template file, Preconfig will generate multiple configuration files, covering all the com-
binations of parameter values specified as inclusions in the template. Fixed ranges or random sampling can
be combined, and non-linear or interdependent variations are easily specified. Preconfig is open source and
available on GitHub at https://github.com/nedelec/preconfig.

Keywords: Systems Biology; Mathematical Modelling; Parameter Sampling
Funding Statement: This work has been supported by the European Molecular Biology Laboratory.

(1) Overview
Introduction
Varying parameters is a common task in bioinformatics,
particularly for someone performing computer modelling,
but also for other kinds of computer based processing.
Many applications are built in such a way that the param-
eters can be specified in a configuration file. Command
line tools often expect their parameters to be specified
directly as command-line arguments. It is however always
possible to write a shell script to run the program, and
this script where all the arguments are specified is then de
facto a configuration file. This approach has the advantage
that all the parameters of the calculation are safeguarded.
We will thus focus on the case where parameter values are
contained in a file. Several approaches are commonly used
to vary the values. The first one is to manually edit the file,
and save many copies as desired. This is of course simple
but error prone and does not scale well. For example, gen-
erating all the combinations corresponding to N = 0, 1, 2,
3, 4; D = 1, 10, 100, 1000 and v = −1, 0, 1 would require
editing 60 files.

A more powerful approach is to write a small program
or a script to automate the generation of multiple con-
figurations files. Following this approach, one would typi-
cally use loops to vary parameter values as desired, calling
repeatedly some function to generate the output files.
For a good programmer, this is a relatively easy task, espe-
cially using a language with powerful text manipulating
functions, such as Python or Ruby. However, in addition

to requiring programming skills, the disadvantage of this
method is that such a script will necessarily need to inter-
mingle two types of instructions, to vary the different
parameters and to generate output text files. As a conse-
quence, such scripts are hard to read, and it may not be
immediately visible what parameters were changed and in
what way, especially for someone other than the program-
mer. In our experience, this approach is hard to maintain
and unsuited for distribution. Moreover, the script has to
be edited every time the parameter variations have to be
changed. In addition, the script is typically tailored to the
particular tool that will read the configuration file, such
that a new script would be needed for every new tool, or
new version of the tool. In practice, this approach leads to
a lot of duplicated efforts across labs.

We describe here a generic approach to the task of
producing multiple files where parameter values are
changed. The method is based on creating a template file
made of static text containing inclusions, indicating how
parameters should be varied. The variations are defined in
snippets of Python code surrounded by double brackets.
For example [[[0, 1]]] specifies two values: 0 and
1. The actual generation of the variations, text manipula-
tion and file generation is then delegated to one Python
program: Preconfig (see Fig. 1). While this approach does
not limit the ways in which parameters can be varied, it
reduces the required programming skill to the bare mini-
mum. For example, the following template file can be
used to vary three parameters:

https://doi.org/10.5334/jors.156
mailto:nedelec@embl.de
https://github.com/nedelec/preconfig

Nedelec: preconfigArt. 9, p. 2 of 4

N = [[[0, 1, 2, 3, 4]]]
D = [[[1, 10, 100, 1000]]]
v = [[[-1, 0, 1]]]

Here each code snipped specifies a list of values, and
running Preconfig will then generate 60 files covering
all combinations. For instance, the first file will contain
N = 0, D = 1, v = -1 and the second one will have N = 0,
D = 1, v = 0, etc.

Implementation and architecture
The program Preconfig reads the template file from top to
bottom, identifying snippets of code surrounded by dou-
ble brackets. It then executes this code using the Python
interpreter, and will recurse whenever multiple values
are specified. Values are eventually converted to their
string representation, and substituted in place of the code
snippet. In this way, Preconfig generates all the possible
combinations following the order in which these combi-
nations were specified in the file (see Fig. 1). Importantly,
any accompanying text in the template file is copied ver-
batim to the output file, such that syntax present in the
configuration file is maintained during the process. This
allow the same approach to be used with virtually any
type of computational pipeline. The template file must be
changed to reflect the desired output, but Preconfig can
be used unmodified.

Comparison with other tools
Compared to other tools, the main advantage of Preconfig
is to automatically generate the appropriate number of
files such as to cover all the combinations. It also offers
access to the extensive Python mathematical library. The
standard UNIX macro processor m4 is for instance lim-
ited to integer arithmetic, and a for loop can be used

to generate multiple values, but all these values will be
placed in the same output file. With Embedded Ruby
(eRuby), it is possible to evaluate and substitute Ruby
code snippets present in a text file. Ruby has a random
number generator and supports floating-point arithmetic,
but like m4 and other templating systems, it is made to
generate a single output file.

Non-uniform Sampling
Within the code snippets, variables can be defined and used
later, in arbitrary arithmetic formula, greatly expanding
the versatility of the approach. One can for example scan
2 parameters using 10 values each, one according to a lin-
ear scale, and the other with a geometric scale. For this, the
easiest is to define intermediates variables x and y:

[[x = range(10)]]
[[y = range(10)]]
reaction_rate = [[2 + 0.5 * x]]
diffusion_rate = [[1 / 2**y]]

The snippets where x and y are defined are replaced by
empty strings.

Random Sampling
The Python Random module can be used to implement
random sampling, and in this case the number of files
can be specified as an argument. For example precon-
fig 100 config.cym.tpl will generate 100 files, in
which the values specified using the random module will
be different. It is straightforward to scan multiple values
independently:

D = [[random.uniform(0, 1)]]
R = [[random.choice([1, 10, 100])]]
N = [[random.randint(0, 1000)]]

Figure 1: Running preconfig config.cym.tpl will generate files corresponding to all possible combinations, of
parameter variations specified in the template file. The name of the files to be generated is derived from the name of
the template file, by splitting the name and extension (blue and red parts).

Nedelec: preconfig Art. 9, p. 3 of 4

Here D is a floating-point value between 0 and 1, while R
and N are integers. We use random sampling extensively,
because it incurs less arbitrary choices than a regularly
spaced set of values. Moreover, with this approach addi-
tional parameter sets can easily be added at any time to
explore the system in more depth.

Correlated Random Sampling
By first defining a variable using the Random module,
one can easily randomize two parameters while keep-
ing their ratio constant. Random values have many
digits of precisions, and one may wish to discard some
of them. The value below is rounded off to 3 digits of
precision:

[[x = round(random.uniform(0,1), 3)]]
binding_rate = [[100 * x]]
unbinding_rate = [[5 * x]]

To generate less-than-perfectly correlated variables one
could use:

[[x = random.uniform(0, 1)]]
binding_rate = [[100 * x + random.uniform(0, 10)]]
unbinding_rate = [[5 * x + random.uniform(0, 10)]]

Boolean Variables
Boolean variables can be used to introduce qualitative
differences:

[[enabled = random.choice([0, 1])]]
feeback = [[random.uniform(0, 1) if (enabled)
else 0]]

The values of parameters are not restricted to be
numerical, and strings can also be used as values, as in
color=[[random.choice([’red’, ’green’,
’blue’])]]. Parameters variations can also be speci-
fied on the command line in addition to the one found in
the template file. If desired, Preconfig provides intuitive
output in its most verbose mode, and can also generate
a CSV log file of its activity containing the substitutions
operated for each file. It will derive its naming scheme for
the output files from the name of the template file auto-
matically (Fig. 1). Detailed instructions are provided by
‘preconfig --help’.

Preconfig is not by itself a black box optimization tool
such as OPAL, ParOpt or Spearmint, because it lacks an
optimization algorithm, and does not include any a feed-
back mechanism on the basis of which it could optimize
parameters. We have however ourselves used Preconfig
as a component of a genetic algorithm with a selection-
mutation optimization scheme in the past [1]. For this
work, a Python program was in charge of managing gen-
erations of ‘individuals’ that were simply sets of param-
eter values. Cytosim [2] was in charge of calculating
fitness values and the task of writing the configuration
files for Cytosim was delegated to Preconfig. For this pur-
pose, Preconfig can be loaded as a module into Python,
and then called with a Python dictionary containing key-
value pairs, which in this case represented the ‘genome’
of each individual:

import preconfig
file_name = preconfig.parse(’config.cym.tpl’, genome)

In conclusion, Preconfig makes it is easy to generate mul-
tiple configurations files in which parameters are varied.
It is straightforward to implement exhaustive enumera-
tions or random sampling within a certain range of values.
These approaches can easily be combined, using code that
remains brief and intuitive. With another script, one can
invoke one’s favorite simulation tools with all these files,
either sequentially or in parallel, depending on the system
used to conduct the calculations. Several tests and exam-
ple template files are distributed along with the Python
code. Importantly, the template approach is truly generic,
and it has the advantage that all the information defining
the variations is contained in a single file, which stream-
lines maintenance, archiving and distribution.

Quality control
We have used Preconfig extensively during modeling
courses and daily research over the past 5 years. We pro-
vide three type of template files to test Preconfig:

• Cytosim [2] configuration files: configX.cym.tpl
• Smoldyn [3] input file: smoldyn.txt.tpl
• BioModel [4] XML file: BioModel.xml.tpl

To test them, adjust the current directory to match the file
locations, and enter the following commands, one by one:

preconfig configA.cym.tpl (4)
preconfig configB.cym.tpl 16 (16)
preconfig configC.cym.tpl (4)
preconfig smoldyn.txt.tpl (3)
preconfig BioModel.xml.tpl (3)

The number of files generated by each command is indi-
cated in the right column.

(2) Availability
Programming language and Dependencies
Preconfig is written in Python, and without other depend-
encies, should run on any system with a Python interpreter.

Software location
Preconfig is free and open source, and distributed
under the GNU GPL license version 3.0. It is available on
https://github.com/nedelec/preconfig.

Language
All documentation is provided in English.

(3) Reuse potential
The software can be used to vary parameter values for
virtually any type of configuration file. The template
approach does not limit the type of parameter variations
that can be achieved, and is compatible with usual syn-
tax. If double brackets are reserved, an internal variable of
Preconfig can be changed to use other marks to identify
embedded code. It thus covers a very broad range of appli-
cations. It is tempting to think about how Preconfig could
be extended for direct parameter optimization. Support

https://github.com/PythonOptimizers/opal
https://github.com/sseemayer/ParOpt
https://github.com/HIPS/Spearmint
www.cytosim.org
www.smoldyn.org
www.biomodels.org
https://github.com/nedelec/preconfig

Nedelec: preconfigArt. 9, p. 4 of 4

is provided by contacting the author, and suggestions of
improvement are welcome.

Additional files
The additional files for this article can be found as follows:

• BioModel.xml. BioModel template file. DOI: https://
doi.org/10.5334/jors.156.s1

• configA.cym. GNU GPL License version 3 configA.
cym.tpl. DOI: https://doi.org/10.5334/jors.156.s2

• configB.cym. Cytosim template file 1 configB.cym.
tpl. DOI: https://doi.org/10.5334/jors.156.s3

• configC.cym. Cytosim template file 2 configC.cym.
tpl. DOI: https://doi.org/10.5334/jors.156.s4

• LICENSE. Documentation in HTMF format LICENSE.
DOI: https://doi.org/10.5334/jors.156.s5

• preconfig. Table of Content preconfig. DOI: https://
doi.org/10.5334/jors.156.s6

• README. Documentation in Markdown format
README.html. DOI: https://doi.org/10.5334/
jors.156.s7

• README. Python executable program ‘Preconfig’
README.md. DOI: https://doi.org/10.5334/jors.156.s8

• smoldyn.txt. Smoldyn template file BioModel.xml.
tpl. DOI: https://doi.org/10.5334/jors.156.s9

Acknowledgements
We wish to thank the members of the Nedelec group, and
all users of Cytosim for their feedback which has contrib-
uted greatly to this development.

Competing Interests
The author has no competing interests to declare.

References
1. Rupp, B and Nedelec, F 2012 Patterns of molecular

motors that guide and sort filaments. Lab on a chip, 12:
4903–10. DOI: https://doi.org/10.1039/c2lc40250e

2. Nedelec, F and Foethke, D 2007 Collective
Langevin dynamics of flexible cytoskeletal fibers.
New Journal of Physics, 9: 499510. DOI: https://doi.
org/10.1088/1367-2630/9/11/427

3. Andrews, S, Addy, N, Brent, R and Arkin, A 2010
Detailed simulations of cell biology with Smoldyn
2.1. PLoS Comput. Biol., 6: e1000705. DOI: https://
doi.org/10.1371/journal.pcbi.1000705

4. Le Novère, N et al. 2006 BioModels Database: a
free, centralized database of curated, published,
quantitative kinetic models of biochemical and
cellular systems. Nucleic Acids Research, 34: D689–
D691.

How to cite this article: Nedelec, F 2017 preconfig: A Versatile Configuration File Generator for Varying Parameters. Journal of
Open Research Software, 5: 9, DOI: https://doi.org/10.5334/jors.156

Submitted: 23 November 2016 Accepted: 15 February 2017 Published: 05 April 2017

Copyright: © 2017 The Author(s). This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

Journal of Open Research Software is a peer-reviewed open access journal published by
Ubiquity Press OPEN ACCESS

https://doi.org/10.5334/jors.156.s1
https://doi.org/10.5334/jors.156.s1
https://doi.org/10.5334/jors.156.s2
https://doi.org/10.5334/jors.156.s3
https://doi.org/10.5334/jors.156.s4
https://doi.org/10.5334/jors.156.s5
https://doi.org/10.5334/jors.156.s6
https://doi.org/10.5334/jors.156.s6
https://doi.org/10.5334/jors.156.s7
https://doi.org/10.5334/jors.156.s7
https://doi.org/10.5334/jors.156.s8
https://doi.org/10.5334/jors.156.s9
https://doi.org/10.1039/c2lc40250e
https://doi.org/10.1088/1367-2630/9/11/427
https://doi.org/10.1088/1367-2630/9/11/427
https://doi.org/10.1371/journal.pcbi.1000705
https://doi.org/10.1371/journal.pcbi.1000705
https://doi.org/10.5334/jors.156
http://creativecommons.org/licenses/by/4.0/

