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(1) Overview
1 Introduction
Differential equations are fundamental components 
of many scientific models; they are used to describe 
 large-scale physical phenomena like planetary systems 
[10] and the Earth’s climate [12, 18], all the way to smaller 
scale biological phenomena like biochemical reactions 
[30] and developmental processes [27, 7]. Because of 
the ubiquity of these equations, standard sets of solvers 
have been developed, including Shampine’s ODE suite for 
MATLAB [25], Hairer’s Fortran codes [8], and the Sundials 
CVODE solvers [11].

However, these software packages contain many 
 limitations which stem from their implementation and 
the time when they were developed. Since the time of their 
inception, many other forms of differential equations have 
become commonplace tools not only for mathematicians, 
but throughout the sciences. Stochastic differential equa-
tions (SDEs), have become more commonplace not only 
in mathematical finance [23, 5], but also in biochemical 

[4, 13] and ecological models. Delay differential equations 
have become a ubiquitous tool for modeling phenomena 
with natural delays as seen in Neuroscience [3, 22] and 
control theory [24]. However, a user who is familiar with 
standard ODE tools has to “leave the box” to find a new 
specialized package to handle these kinds of differential 
equations, or write their own solver scripts [9]. Also, when 
many of these methods were implemented the standard 
computer was limited by the speed of the processor. These 
days, most processors are multi-core and many computers 
contain GPGPU [1] or Xeon Phi [17, 6] acceleration cards 
and thus taking advantage of the ever-present parallelism 
is key to achieving good performance.

Other design limitations stem from the program-
ming languages used in the implementation. Many of 
these algorithms, being developed in early C/Fortran, 
do not have abstractions for generalized array formats. 
In order to use these algorithms, one must provide the 
solver with a  vector. In cases where a matrix or a higher 
dimensional tensor are the natural representation of the 
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differential equation, the user is required to transform 
their  equation into a  vector equation for use in these 
 solvers. Also, these solvers are limited to using 64-bit 
floating point calculations. The numerical precision limits 
their use in  high-precision applications, requiring special-
ized codes when precision lower than 10–16 is required. 
Lastly, many times these programs are interfaced via a 
scripting  language where looping is not optimized and 
where “vectorized” codes provide the most efficient solu-
tion. However,  vectorized coding in the style of MATLAB 
or NumPy results in temporary allocations and can lack 
compiler optimizations which require type inference. This 
increases the computational burden of the user-defined 
functions which degrades the efficiency of the solver.

The goal of DifferentialEquations.jl is build off of the 
foundation created by these previous differential equa-
tion libraries and modernize them using Julia. Julia is a 
scripting language, used in-place of languages like R, 
Python, MATLAB, but offers the performance one would 
 associate with low-level compiled languages. This allows 
users to start prototypes in Julia, but also solve their 
large-scale models within the same language, instead of 
resorting to two language solutions when performance 
is needed. The language achieves this goal by extensive 
utilization of multiple dispatch and metaprogramming 
to design a  language that is both easy for a compiler 
to understand and easy for a programmer to use [2]. 
DifferentialEquations.jl builds off of these design princi-
ples to arrive at a fast, feature-rich, and highly extendable 
differential equations suite which is easy to use.

We start by describing the innovations in usability. In 
Section 1.1 we show how multiple dispatch is used to 
consolidate the functions the user needs to into sim-
ple descriptive commands like solve and plot. Since 
these commands are used for all forms of differential 
equations, the user interface is unified in a manner that 
makes it easy for a user to explore other types of models. 
Then in Section 1.2 we show how metaprogramming is 
used to further simplify the user API, allowing the user 
to define a function in a “mathematical format” which is 
automatically converted into the computationally-effi-
cient encoding. After that, we describe how the internals 
were designed in order to be both feature-filled and highly 
performant. In Section 1.3 we describe the package struc-
ture of DifferentialEquations.jl and how the Base libraries, 
component solvers, and add-on packages come together 
to provide the full functionality of DifferentialEquations.
jl. In Section 1.4 we describe how multiple dispatch is used 
to write a single generic method which compiles into spe-
cialized functions dependent on the number types given 
to the solver. We show how this allows for the solvers to 
both achieve high performance while being compatible 
with any Julia-defined number system which implements 
a few basic mathematical operations, including fast high 
and intermediate precision numbers and arithmetic with 
physical units. In Section 1.5 we describe the experimen-
tal within-method multi-threading which is being used 
to further enhance the performance of the  methods, 
and the multi-node parallelism which is included for 
performing Monte Carlo simulations of stochastic 

models. We then discuss some of the tools which allows 
DifferentialEquations.jl to be a good test suite for the fast 
development and deployment of new solver algorithms, 
and the tools provided for performing benchmarks. Lastly, 
we describe the current limitations and future develop-
ment plans.

1.1 A Unified API Through Multiple Dispatch
DifferentialEquations.jl uses multiple dispatch on 
 specialized types to arrive at a unified user-API for the dif-
ferent types of equations. To use the package, one follows 
the steps:

1. Define a problem.
2. Solve the problem.
3. Plot the solution.

This standardization of the API makes complicated  solvers 
accessible to less programming-inclined individuals, 
 giving a good framework for future development and 
allows for the latest research in numerical differential 
equations to be utilized without complications.

1.1.1 Solving ODEs
To define a problem, a user must call the constructor for 
the appropriate problem object. Since ordinary differential 
equations (ODEs) are represented in the general form as

0( , ), (0) ,
du

f t u u u
dt

= =  (1)

the ODEProblem is defined by specifying a function f 
and an initial condition u0. For example, we can define the 
 linear ODE using the commands:
using DifferentialEquations
f(t,y) = 0.5y
u0 = 1.5
timespan = (0.0,1.0) # Solve from time = 0 to 
time = 1
prob = ODEProblem(f,u0,timespan)

Many other examples are provided in the documentation1 
and the Jupyter notebook tutorials in DiffEqTutorials.jl2 
(for use with Julia, see IJulia.jl3). To solve the ODE, the user 
can simply call the solve command on the problem:
sol = solve(prob) # Solves the ODE

By using a dispatch architecture on AbstractArrays 
and using the array-defined indexing functional-
ity provided by Julia (such as eachindex(A)), 
DifferentialEquations.jl accepts problems defined on 
arrays of any size. For example, one can define and solve 
a system of equations where the dependent variable u is a 
matrix as follows:
A = [1. 0 0 –5
   4 –2 4 –3
  –4  0 0  1
   5 –2 2  3]
u0 = rand (4,2)
f(t,u) = A*u
prob = ODEProblem(f,u0,timespan)
sol = solve(prob)

For most other packages, one would normally have to 
define u as a vector and rewrite the system of equations in 
the vector form. However, by allowing arbitrary problem 
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sizes, DifferentialEquations.jl allows the user to specify 
problems in the natural format and solve directly on any 
array of numbers. This can be helpful for problems like 
discretizations of partial differential equations (PDEs) 
where the matrix format matches some underlying struc-
ture, and could result in a denser formulation.

The solver returns a solution object which holds all of 
the information about the solution. Dispatches to array 
functions are provided on the sol object, allowing for 
the solution object act like a timeseries array. In addition, 
high-order efficient interpolations are lazily constructed 
throughout the solution (by default, a feature which can 
be turned off) and the sol object’s call is overloaded with 
the interpolating function. Thus the solution object can 
both be used as an array of the solution values, and as a 
continuous approximation given by the numerical solu-
tion. The syntax is as follows:
sol[i] # ith solution value
sol.t[i] # ith timepoint
sol(t) # Interpolated solution at time t

The solution can be plotted using the provided plot 
recipes through Plots.jl4. The plot recipes use the solver 
object to build a default plot which is customizable using 
any of the commands from the Plots.jl package, and can 
be plotted to any plotting backend provided by Plots.jl. 
For example, we can by default plot to the PyPlot.jl5 back-
end (a Julia wrapper for matplotlib6) via the command:
plot(sol)

These defaults are deliberately made so that a standard user 
does not need to dig further into the manual and understand 
the differences between all of the algorithms. However, an 
extensive set of functionality is available if the user wishes. 
All of these functions can be modified via additional argu-
ments. For example, to change the solver algorithm to a 

highly efficient Order 7 method due to Verner [29], set the 
line width in the plot to 3 pixels, and add some labels to the 
plot, one could instead use the commands:
sol = solve(prob, Vern7()) # Unrolled Verner 7th 
Order Method
plot(sol,linewidth=3,xlabel=“t”,ylabel=“u(t)”)

The output of this command is shown in Figure 1. 
Note that the output is automatically smoothed using 
10*length(sol) equally spaced interpolated values 
through the timespan.

Lastly, these solvers tie into Julia integrated develop-
ment environments (IDEs) to further enhance the ease of 
use. Users of the Juno IDE [16] are equipped with a pro-
gressbar and time estimates to monitor the progress of 
the solver. Additionally, all of the DifferentialEquations.jl 
functions are thoroughly tested and documented with the 
Jupyter notebook system [19], allowing for reproducible 
exploration.

1.1.2 Solving SDEs
By using multiple-dispatch, the same user API is offered 
for other types of equations. For example, if one wishes to 
solve a stochastic differential equation (SDE):

( , ) ( , ) ,t t t tdX f t X dt g t X dW= +  (2)

then one builds an SDEProblem object by specifying 
the initial condition and now the two functions, f and g. 
However, the rest of the usage is the same: simply use the 
solve and plot functions. To extend the previous example 
to have multiplicative noise, the code would be:

g(t,u) = 0.3u
prob = SDEProblem(f,g,u0,timespan)
sol = solve(prob)
plot(sol)

Figure 1: Example of the ODE plot recipe. This plot was created using the PyPlot backend through Plots.jl. Shown is the 
solution to the 4 × 2 ODE with f(t,u) = Au where A is given in the code. Each line corresponds to one component of 
the matrix over time.



Rackauckas and Nie: DifferentialEquations.jlArt. 15, p. 4 of 10 

While this user interface is simple, the default methods 
these algorithms can call are efficient high-order solvers 
with adaptive timestepping [21]. These methods tie into 
the plotting functionality and IDEs in the same manner as 
the ODE solvers, making it easy for users to explore stochas-
tic modeling without having to learn learn a new interface.

1.1.3 Solving (Stochastic) PDEs
Again, the same user API is offered for the available  stochastic 
PDE solvers. Instead, one builds a HeatProblem object 
which dispatches to algorithms for solving (Stochastic) 
PDEs. An example using the previously defined functions is:
T = 5
dx = 1/2^(1)
dt = 1/2^(7)
fem_mesh = parabolic_squaremesh([0 1 0 1],dx, 
dt,T,:neumann)
prob = HeatProblem(f,mesh,σ=σ)
sol = solve(prob)

Additional keyword arguments can be supplied to 
HeatProblem to specify boundary data and initial con-
dtions. Notice that the main difference is now we must 
specify a space-time mesh (and boundary conditions as 
optional keyword arguments). Again, the same plotting 
and analysis commands apply to the solution object sol 
(where now the plot dispatch is to a trisurf plot).

1.2 Enhanced Performance and Readability Through 
Macros
1.2.1 A Macro-Based Interface
Most differential equations packages require that the user 
understands some details about the  implementation of the 
library. However, the DifferentialEquations.jl  ecosystem 
implements various Domain-Specific Languages (DSLs) 
via macros in order to give more natural options for 
defining mathematical constructs. In this section we will 
demonstrate the DSL for defining ODEs. For demonstra-
tions related to other types of equations, please see the 
documentation.

The famous Lorenz system is mathematically defined as

  ( )dx
y x

dt
σ= −  (3)

  ( )dy
x z y

dt
ρ= − −  (4)

  
dz

xy z
dt

β= −  (5)

A user must re-write this function in a “computer friendly 
format”, defining u=[x;y;z] as a vector and writing the 
equation in terms of this vector. The format for ODE.jl, 
which is similar to other scripting languages like SciPy or 
MATLAB, is as follows:

f = (t,u,du) –> begin
du[1] = 10*(u[2]-u[1])
du[2] = u[1]*(28-u[3]) - u[2]
du[3] = u[1]*u[2] - 8/3*u[3]
end

While this format is accepted by DifferentialEquations.
jl, additional usability macros are provided which will 

automatically translate user input from a more math-
ematical format. For ODEs, @ode_def is provided which 
allows the user to define the same ODE as follows:

f = @ode_def Lorenz begin
dx = σ*(y-x)
dy = x*(ρ-z) - y
dz = x*y - β*z
end σ=>10. ρ=>28. β=(8/3)

Since Julia allows for the use of Unicode within code, 
this format matches the style one would expect to see in 
a TeX’d publication. The macro takes in this definition, 
finds the values for the left-hand side of the form “d__”, 
and uses a dictionary in order to find/replace these val-
ues to write a function which is in the format of the 
other scripting language libraries. Thus the translation 
to a vector  system can be done by DifferentialEquations.
jl, allowing the users to have more readable scripts while 
not sacrificing performance. In addition, the macro pro-
duces a function which updates an input du in-place as 
the output. This detail can be hard for non-programmers 
to understand but is required for achieving fast solutions 
since otherwise every function call requires an array 
allocation.

1.2.2 Explicit Parameters
A unique feature from this form of function defini-
tion is that the parameters are built into the function 
type itself. The actual implementation involves creating 
a type Lorenz with fields for the parameters (inlining 
parameters defined with = instead of => during compila-
tion). Then the type is set to have its call overloaded by 
the standard f(t,u,du) function signature, effectively 
acting like the appropriate function. However, the param-
eters are still accessible via the type fields, for example 
f.a or the overloaded f[:a]. This allows for sensitivity 
analysis, bifurcation diagrams, and parameter estimations 
to be computed using the same function, allowing for this 
infrastructure to extend far beyond the domain of differ-
ential equations solvers.

1.2.3 Enhanced Performance Through Symbolic Calculations
Also, since the code is analyzed by the program at the 
expression level, silent optimizations are able to be 
 performed. For example, during the construction of the 
function, the code is transformed into a symbolic form 
for use in the high-performance CAS SymEngine.jl7 [28], 
where the Jacobian is calculated and an in-place function 
for its computation is created. In addition, the symbolic 
expression is inverted, allowing for stiff solvers which 
require inverting Jacobians to be written as directly com-
puted matrices and matrix multiplications.

1.3 The Distributed Structure of 
DifferentialEquations.jl
The full functionality of DifferentialEquations.jl is 
defined in the more than 40 packages in the JuliaDiffEq 
Github organization8. It splits the main packages into 
three parts: the Base libraries, the component solv-
ers, and the add-on packages. DifferentialEquations.
jl is a metapackage which utilizes all of these packages 
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together and adds default behavior to give a cohesive 
ecosystem.

1.3.1 Building the solve function from DiffEqBase.jl and 
Component Solvers
DifferentialEquations.jl is designed to use multiple-
dispatch in order to allow for the different solver meth-
ods to be defined in separate packages. In Julia, the 
command:

solve(prob,Algorithm())

calls a different “method” depending on the type of 
Algorithm. This function is called the “common solve inter-
face”. The actual method that it calls does not need to be in the 
same package where the original function is defined. Using 
this design, the central package to the DifferentialEquations.
jl ecosystem is DiffEqBase.jl9. DiffEqBase.jl defines the 
abstract type hierarchy, along with the problem and solution 
types, and the shared components. All of the component 
solver packages have a dependency on DiffEqBase.jl and add 
a method to this solve function. For example, for ODEs, the 
current list of component solvers is:

•	  OrdinaryDiffEq.jl10

•	  Sundials.jl11

•	  ODE.jl12

•	  ODEInterface.jl13

•	  LSODA.jl14

Some of the packages, like OrdinaryDiffEq.jl and ODE.jl, 
are native Julia libraries, whereas Sundials.jl, ODEInterface.
jl, and LSODA.jl are all interfaces to popular C and Fortran 
codes. Through this interface, users can switch between 
libraries by switching only the algorithm choice, and new 
packages can extend what’s available as needed. Note 
that the information in this structure is unidirectional: 
anyone can add a new package of solvers to the solve 
function by adding a dependency on DiffEqBase.jl without 
DiffEqBase.jl needing to be changed. This means that pri-
vate projects, such as those which contain private research 
or proprietary methods, can extend this  interface without 
being forced to edit the public DiffEqBase.jl repository. 
This same setup is then applied to each of the other types 
of equations. For full details on the current list of solv-
ers methods that are available, along with the available 
methods for the other types of equations, please see the 
documentation. Note that from this modular structure, 
developers of other packages can use the functional-
ity of DifferentialEquations.jl without having to depend 
on the entirety of the differential equations suite. For 
example, one can build an add-on package which uses 
the native ODE solvers and only include DiffEqBase.jl and 
OrdinaryDiffEq.jl as dependencies. This reduces the com-
plexity associated with using the functionality, and helps 
developers keep dependencies as lean as possible.

1.3.2 The Add-on Packages
The add-on packages are a set of functionality which use the 
common solve interface. For example, parameter estimation 
functionality is provided by defining algorithms which only 

use the abstraction of the solve function, and allows the 
user to pass in the algorithm. Therefore these algorithms 
are generic, supporting many different equation types and 
internally able to use many different solver  packages. Other 
such add-on functionality includes parameter sensitivity 
analysis, Monte Carlo parallelism functions, and uncer-
tainty quantification. For more information on the current 
add-on packages, please consult the documentation.

1.4 Multiple Dispatch as a tool for Arbitrary 
Numerics
Julia’s base library defines its standard numeric types, 
Float64, Int64, etc., as concrete subtypes of the 
abstract type Number. The implementation is contained 
within Julia: using a concrete primative type as a 
way to store  numbers, and defining the operations such 
as +,–, etc. for each pair of numbers using dispatch on 
subtypes of Number. The result is that each number 
type receives its own compiled function for each opera-
tion, resulting in performance which can be 1x with 
C (as can be investigated via the @code_llvm and @
code_native macros). This design allows for users to 
develop pure Julia packages which implement new num-
ber systems. DifferentialEquations.jl utilizes Julia’s mul-
tiple dispatch architecture to allow for fast performance 
over these arbitrary numerical types. The design of the 
integration schemes includes a wrapper over the integra-
tion loops which matches types (to ensure type-stability), 
choosing the types for the problem by the user defined u0 
(the initial condition) and timespan (i.e. separate types are 
allowed for the dependent and independent variables). It 
then calls a type-dependent integration function which 
is optimized via JIT compilation for the numeric types 
given to the function. Different dispatches are given for 
subtypes of Number and AbstractArray since arrays are 
mutable and heap allocated, meaning that when numbers 
are treated directly instead of as arrays of size 1 a large 
speedup can occur. This allows for the internal  integration 
algorithms to achieve C/Fortran speeds, while allowing 
for the generic numerical types and the readability of 
being in Julia itself. The following subsections highlight 
two important examples.

1.4.1 Case 1: Arbitrary Precision Numerics
One advantage of this design beyond speed is that it 
allows the user of DifferentialEquations.jl to use any type 
which is a subclass of Number as the number type for 
the equations. This includes not only the basic types like 
Float64 and Int64, but also Rational and arbitrary pre-
cision BigFloats (based off of GNU MPFR). However, 
even numeric types defined in packages (which imple-
ment +,–,/, and for optionally for adaptive timestepping, 
sqrt) can be used within DifferentialEquations.jl. Some 
examples which have been shown to work are ArbFloats.
jl15 (a library for faster high-precision numbers than MPFR 
floats between 64 and 512 bits based on the Arb library of 
Fredrik Johansson [14]) and DecFP.jl16 (an implementation 
of IEEE 754–2008 Decimal Floating-Point Arithmetic).

The combination of high-performance number systems 
with high order Runge-Kutta methods such as the Order 



Rackauckas and Nie: DifferentialEquations.jlArt. 15, p. 6 of 10 

14 methods due to Feagin allows for fast solving with high 
accuracy. For an example showing this combination, see 
the “Feagin’s Order 10, 12, and 14 methods” notebook in 
the examples folder17.

1.4.2 Case 2: Unitful Numbers
This design also allows DifferentialEquations.jl to be 
 compatible with number systems which have  physical 
units. SIUnits.jl18 and Unitful.jl19 are packages which 
have developed number implementations which have 
units. Numbers defined by these packages automatically 
 constrain the equations to satisfy dimensional constraints. 
For example, if one tries to add a quantity with units of 
seconds with a quantity with units of Newtons, it will 
throw an error. This is useful in fields like physics where 
these dimensional analysis tools are used to check for cor-
rectness in equations. DifferentialEquations.jl was devel-
oped such that the internal solvers satisfy dimensional 
constraints. Thus one can use unitful numbers like other 
arbitrary number  systems. The “Unit Checked Arithmetic 
via Unitful” notebook in the examples folder20 describes 
the usage of this feature. For example, we can solve an 
ODE where the dependent variable is in terms of seconds 
and the independent variable is in terms of Newtons via 
the following equation:

using DifferentialEquations, Unitful
f = (t,y) -> 0.5*y
u = 1.5u“N”
prob = ODEProblem(f,u,(0.0u“s”,1.0u“s”))
sol = solve(prob,dt=(1/2^4)u“s”)

The attentive reader should realize that this will correctly 
throw an error: the output of the function in an ODE must 
be a rate, and therefore must have units of N/s in this exam-
ple. Unitful.jl will thus return an error notifying the user 
that the dimensions are off by a unit of seconds. Instead, 
the pleased physicists would modify the previous code by a 
rate constant and use the following code instead:

f = (t,y) -> 0.5*y/3.0u“s”
u = 1.5u“N”
prob = ODEProblem(f,u,(0.0u“s”,1.0u“s”))
sol = solve(prob,dt=(1/2^4)u“s”)

This will produce an output whose units are in terms of 
Newtons, and with time in terms of seconds.

1.5 Integrated Parallelism
1.5.1 Within-Method Multithreading
DifferentialEquations.jl also includes parallelism 
 whenever possible. One area where parallelism is cur-
rently being employed is via “within-method” parallel-
ism for Runge-Kutta methods. Using Julia’s experimental 
multithreading, DifferentialEquations.jl provides a multi-
threaded version of the DP5 solver. Benchmarks using the 
tools from Section 1.6 show that this can give a 30% non-
multithreaded algorithm for problem sizes ranging from  
75 × 75 matrices to 200 × 200 matrices. For larger prob-
lems this trails off as more time is spent within the func-
tion evaluations, thus reducing the difference between the 
methods. See the “Multithreaded Runge-Kutta Methods”  
notebook21 in DiffEqBenchmarks.jl for the most up-to-
date results as this may change rapidly along with Julia’s 
threading implementation.

1.5.2 Multi-Node Monte Carlo Simulations
Also, DifferentialEquations.jl provides methods for per-
forming parallel Monte Carlo simulations. Using Julia’s 
pmap construct, one is able to specify for a problem to be 
solved N times, and DifferentialEquations.jl will distribute 
this automatically across multiple nodes of a cluster. A 
vector of results along with summary statistics is returned 
for the solution. This functionality has been tested on the 
local UC Irvine cluster (using SGE) and the XSEDE Comet 
cluster (using Slurm).

1.6 Development, Testing, and Benchmarking
DifferentialEquations.jl includes a suite specifically 
designed for researchers interested in developing new 
methods for differential equations (like the authors them-
selves). This includes functionality for easy integration of 
new methods, extensive testing, and a benchmarking suite.

1.6.1 Development
The design of DifferentialEquations.jl allows for users 
to add new integration methods by adding new dis-
patches. One way to add new methods is to simply cre-
ate a new package which extends the solve function of 
DiffEqBase.jl as described in 1.3. Another way is to extend 
the current open-source native Julia solvers on the com-
mon interface. Let’s take as an example the ODE solver 
suite OrdinaryDiffEq.jl22, which contains the native Julia 
methods developed in tandem with DifferentialEquations.
jl. The ODE solver works by setting up options and fix-
ing types, and then builds the integrator type and 
enters the internal loop. All dispatchs on loop functions 
are done by the algorithm/cache type. Thus to define a 
new algorithm, one defines a new algorithm type which 
subtypes the OrdinaryDiffEqAlgorithm type. This 
will make solve plug into OrdinaryDiffEq.jl’s version of 
solve. From there, a new dispatch for perform_step 
needs to be added which performs the algorithm’s update 
from un to un+1. For example, the Midpoint Method steps 
as follows:
@inline function perform_step!(integrator,
      cache::MidpointConstantCache,
      f=integrator.f)
 @unpack t,dt,uprev,u,k = integrator
 halfdt = dt/2
 k = integrator.fsalfirst
 k = f(t+halfdt,uprev+halfdt*k)
 u = uprev + dt*k
 integrator.fsallast = f(t+dt,u) # For
      interpolation, then FSAL’d
 integrator.k[1] = integrator.fsalfirst
 integrator.k[2] = integrator.fsallast
 @pack integrator = t,dt,u
end

Additionally a new cache type must be developed for 
holding the cache variables. By doing this, all of the func-
tionality of OrdinaryDiffEq.jl will be automatically applied 
to the algorithm. Thus interpolated (dense) output, FSAL 
optimizations (first-same-as-last, skipping an extra func-
tion evaluation), progress monitoring, event handling, 
and integrator interfaces will be available. Additionally, 
if an error estimator is given, the PI-contolled adaptive 
timestepping will be enabled for the algorithm. For more 
details, see the Developer Documentation23.
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1.6.2 Testing
The DifferentialEquations.jl suite includes a large  number 
of testing functions to ensure correctness of all of the algo-
rithms. Many premade problems with analytical  solutions 
are provided and convergence testing functionality is 
included to be able to test the order of accuracy and plot 
the results. All of the DifferentialEquations.jl algorithms 
are tested using the Travis and AppVoyer Continuous 
Integration (CI) testing services to ensure correctness.

1.6.3 Benchmarking
Lastly, a benchmarking suite is included to test the 
 efficiency of different algorithms. Two forms of 
 benchmarking are included: the Shootout and the 
WorkPrecision. A Shootout solves using all of 
the algorithms in a given setup and  calculates an aver-
age time (over a user-chosen number of runs) and 
error for each algorithm. The WorkPrecision and 
WorkPrecisionSet additionally take in vectors of 
tolerances and draw work-precision diagrams to compare 
algorithms. Up to date benchmarks can be found in the 
repository’s benchmarks folder24. These notebooks can be 
opened to be run locally via the commands
using IJulia
notebook(dir=Pkg.dir(“DiffEqBenchmarks”)*“/
benchmarks”)

As of this publication, the benchmarks show that native 
methods from OrdinaryDiffEq.jl (which were developed in 
tandem with DifferentialEquations.jl) achieve an order of 
magnitude speedup on nonstiff problems when achieving 
the same error over the classic Hairer Runge-Kutta imple-
mentations and the ODE.jl implementations.

1.7 Limitations and Future Development Plans
While DifferentialEquations.jl already offers many new 
features and high performance, the package is still under 
heavy development and will be for the foreseeable future. 
Currently, most of the methods for stiff  equations are 
wrapped methods (only the Rosenbrock with/without 
local extrapolation, and the order 1/2 BDF  methods 
exist in native forms). While these methods, such as 
CVODE (provided by Sundials.jl25) and radau (provided by 
ODEInterface.jl26), are widely regarded standards for stiff 
ODEs, by not being native Julia functions these algorithms 
choices do not allow for the extra functionality such as 
arbitrary precision and arithmetic with physical units 
(these features require a pure-Julia implementation). 
Instead, since these are the standard algorithms wrapped 
in packages such as SciPy [15] and R’s deSolve [26], the 
limitations of these wrapped solvers match the limitations 
of other common libraries.

The native Julia methods have far less limitations 
because they work on the general abstract types 
AbstractArray and Number. For example, while 
other packages are limited to non-distributed arrays and 
thus must be able to fit the problem in the memory of one 
computer or node, any user can define the input equation 
using a DistrbutedArray from DistributedArrays.jl27, 
Julia will automatically compile a new dispatch for the 
solver commands to make use of the distributed structure. 
In addition, the native Julia solvers of OrdinaryDiffEq.

jl allow one to swap out the linear and nonlinear solver 
methods, allowing the users to parallel methods from 
PETSc.jl28 and and GPU methods from packages like 
CUSOLVER.jl29.

However, while the genericness of the implementation 
makes it very flexible, one limitation of the design is that 
the full extent of the compatibility is not able to be eas-
ily documented or known. The practice of “duck  typing” 
means that the generic functions are left open ended, 
and functionality will work on available types  depending 
on whether certain traits or operations are defined. For 
 example,  Julia-defined numbers systems are compatible 
with the if certain operations (+,–,*,/) are defined. However, 
different solver algorithms can have slightly  different 
compatibility requirements. Adaptive timestepping also 
requires that the number system has a well-defined sqrt 
function. Thus Rational numbers are compatible with 
explicit methods, but not when adaptive timestepping is 
enabled. Some of the stiff solvers require the ability to be 
used in autodifferentiation via ForwardDiff.jl30 if the user 
does not provide a function for calculating the Jocobian. 
However, ForwardDiff.jl currently does not include com-
patibility with complex numbers. Errors for these issues 
are only thrown at runtime. This leads to a combinatorial 
explosion in the amount of details required to describe 
the compatibility of each useful type with each method. 
Finding a way to better document the compatibilities and 
incompatibilities, as well as continuing to extend the com-
patibility, for this extended range of useful types is a long-
term goal.

Also, DifferentialEquations.jl is currently limited on 
the types of PDEs it natively supports, and the mesh 
 generation tools are still in their infancy. To address these 
issues and more, planned functionality includes (but is 
not limited to):

•	  Finite Difference Methods for common elliptic, 
 parabolic, and hyperbolic PDEs, including high order 
methods for SPDEs

•	  Highly parallel accelerated solvers using GPGPUs 
and Xeon Phi cards (prototypes have already been 
 developed [20])

•	  High order methods for stiff SDEs

Check the repository issues for the most up to date 
roadmap.

1.8 Quality Control
Continuous Integration testing with the latest versions of 
Julia on Mac, Linux, and Windows are provided via Travis 
and AppVoyer. These tests check most of the features of 
DifferentialEquations.jl, including the convergence of each 
algorithm, the ability to plot, the number types used in the 
computations, and more. Coveralls and Coverage badges 
are provided on the repository for test coverage analysis. As 
with other Julia packages, a user can check to see if these 
functionalities are working on their local machine via the 
command Pkg.test (“DifferentialEquations”). Benchmarks 
in Jupyter notebooks are provided to test the differences 
between the integrator implementations. Additionally, each 
Base library, component solver, and add-on package contains 
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its own set of tests for the functionality that it implements. 
All have the same continuous integration setup.

Another method for quality control is user feedback. 
DifferentialEquations.jl receives bug reports and feature 
requests through the Julialang Discourse31, the Github 
issues page32, and the JuliaDiffEq Gitter channel33. These 
are tracked and as releases occur, are broadcasted to the 
community using the JuliaDiffEq blog34.

(2) Availability
2.1 Operating system
DifferentialEquations.jl is CI tested on MacOSX and Linux 
via Travis CI, and Windows via AppVoyer.

2.2 Programming language
Julia v0.5+

2.3 Dependencies
Dependencies are split into two groups. The direct 
dependencies of DifferentialEquations.jl are the 
packages of JuliaDiffEq which are built around the 
common interface and developed in tandem with 
DifferentialEquations.jl. The indirect dependencies are 
the dependencies of the direct dependencies, which are 
packages which are not actively developed as part of 
JuliaDiffEq activity.

The direct dependencies of DifferentialEquations.jl are 
the packages of JuliaDiffEq. These are:

•	 DiffEqBase.jl35

•	 StochasticDiffEq.jl36

•	 FiniteElementDiffEq.jl37

•	 DiffEqDevTools.jl38

•	 OrdinaryDiffEq.jl39

•	 AlgebraicDiffEq.jl40

•	 StokesDiffEq.jl41

•	 DiffEqParamEstim.jl42

•	 DiffEqSensitivity.jl43

•	 Sundials.jl44

•	 ODEInterfaceDiffEq.jl45

•	 ParameterizedFunctions.jl46

•	 DiffEqPDEBase.jl47

•	 DelayDiffEq.jl48

•	 DiffEqCallbacks.jl49

•	 DiffEqMonteCarlo.jl50

•	 DiffEqJump.jl51

•	 DiffEqFinancial.jl52

•	 DiffEqBiological.jl53

•	 MultiScaleArrays.jl54

Indirect dependencies include:

• RecipesBase.jl55

•	 Optim.jl56

•	 Parameters.jl57

•	 ForwardDiff.jl58

•	 IterativeSolvers.jl59

•	 GenericSVD.jl60

•	 Compat.jl61

•	 InplaceOps.jl62

•	  SymEngine.jl63

All of these dependencies will automatically install upon 
Pkg.add(“DifferentialEquations”). See the 
REQUIRE files for the Julia packages for more information 
on their  specific dependencies.

Optional dependencies of DifferentialEquations.jl 
include the additional solver packages:

•	 ODEInterface.jl64

•	 ODE.jl65

•	 LSODA.jl66

For information on how to install these libraries, see their 
respective repositories.

2.4 List of contributors
•	 Christopher Rackauckas, Lead Developer of JuliaDiffEq
•	 Mauro	Werder,	contributions	to	DiffEqBase.jl
•	 Scott	P.	Jones,	contributions	to	DiffEqBase.jl
•	 Virgile	Andreani,	contributed	the	enhanced	plotting	

functionality
•	 Ethan	 Levien,	 contributions	 to	 DiffEqMonteCarlo.jl	

and DiffEqJump.jl
•	 Michael	Fiano,	contributions	to	the	documentation
•	 David	 Barton,	 contributions	 to	 the	 dense	 output	 in	

OrdinaryDiffEq.jl

2.5 Software location
Archive: Zenodo

Name: JuliaDiffEq/DifferentialEquations.jl
Persistent identifier: DOI: 10.5281/zenodo.283869
Licence: MIT
Publisher: Christopher Rackauckas
Version published: v1.8.0
Date published: 2/9/2017

Code repository: Github
Name: JuliaDiffEq/DifferentialEquations.jl
Persistent identifier: github.com/JuliaDiffEq/

DifferentialEquations.jl
Licence: MIT
Date published: 09/21/2016

2.6 Language
English

(3) Reuse Potential
Differential equations form the bedrock of many  scientific 
fields. Therefore, there is no question as to whether 
numerical differential equation solvers will be used, rather 
the question is which ones will be used. Julia is a relatively 
young language which is seeing rapid adoption in the 
fields of data science and scientific computing due to the 
performance and productivity that it offers. Because of this, 
many scientists using Julia will need these tools either as 
a means to analyze models themselves, or as intermediate 
tools in more complex methods. With its applicability to 
many classes of differential equations, its included analysis 
tools for performing parameter estimation and sensitivity 
analysis, and the rapid pace at which this software is being 
developed, DifferentialEquations.jl looks to be a viable 
choice for many Julians looking for a differential equations 
library. Lastly, as an open-source software with a modular 

https://doi.org/10.5281/zenodo.283869
https://github.com/JuliaDiffEq/DifferentialEquations.jl
https://github.com/JuliaDiffEq/DifferentialEquations.jl
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structure, it is easily extendable. For information on how to 
extend the functionality of DifferentialEquations.jl please 
see the Contributor’s Guide at DiffEqDevDocs.jl.

Notes
 1 http://docs.juliadiffeq.org/latest/
 2 https://github.com/JuliaDiffEq/DiffEqTutorials.jl
 3 https://github.com/JuliaLang/IJulia.jl
 4 https://github.com/JuliaPlots/Plots.jl
 5 https://github.com/JuliaPy/PyPlot.jl
 6 http://matplotlib.org/
 7 https://github.com/symengine/SymEngine.jl
 8 https://github.com/JuliaDiffEq
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