
Hoyer, S and Hamman, J J 2017 xarray: N-D labeled Arrays and Datasets in Python.
Journal of Open Research Software, 5: 10, DOI: https://doi.org/10.5334/jors.148Journal of

open research software

SOFTWARE METAPAPER

xarray: N-D labeled Arrays and Datasets in Python
Stephan Hoyer1,2 and Joseph J. Hamman3

1	The Climate Corporation, San Francisco, CA, US
2	Google Research, Mountain View, CA, US
3	Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, US
Corresponding author: Stephan Hoyer
(shoyer@google.com)

xarray is an open source project and Python package that provides a toolkit and data structures for
N-dimensional labeled arrays. Our approach combines an application programing interface (API) inspired by
pandas with the Common Data Model for self-described scientific data. Key features of the xarray pack-
age include label-based indexing and arithmetic, interoperability with the core scientific Python packages
(e.g., pandas, NumPy, Matplotlib), out-of-core computation on datasets that don’t fit into memory, a wide
range of serialization and input/output (I/O) options, and advanced multi-dimensional data manipulation
tools such as group-by and resampling. xarray, as a data model and analytics toolkit, has been widely
adopted in the geoscience community but is also used more broadly for multi-dimensional data analysis in
physics, machine learning and finance.

Keywords: Python; pandas; netCDF; multidimensional; data, data handling; data analysis

(1) Overview
Introduction
Python has emerged as a leading programing language
for both the physical sciences and data sciences. At the
core of modern scientific computing and analysis in
Python are the NumPy [14] and SciPy [22] packages,
which provide a robust N-dimensional array object and
the fundamental operations required for science and
engineering applications. Much of the success of Python
in data science and business analytics is due to pandas
[16], which introduced intuitive and fast tabular data
analysis tools to Python, inspired by R’s data.frame
[19]. The pandas DataFrame and Series objects pro-
vide unparalleled analysis tools for data alignment, resa-
mpling, grouping, pivoting, and aggregation in Python.

xarray implements data structures and an analytics
toolkit for multi-dimensional labeled arrays strongly
inspired by pandas. While pandas includes a data struc-
ture called the Panel for three dimensional data, its
fixed rank design make it unsuitable for applications that
require arbitrary rank arrays. Additionally, many of the
features that make the pandas DataFrame and Series
objects so useful, are not fully available on the Panel.
Our approach with xarray adopts Unidata’s self-describing
Common Data Model on which the network Common
Data Form (netCDF) is built [20, 7]. NetCDF provides a
well-defined data model for labeled N-dimensional array-
oriented scientific data analysis.

xarray builds on top of, and seamlessly interop-
erates with, the core scientific Python packages,
such as NumPy, SciPy, Matplotlib [13], and pandas.
xarray provides a range of backends for serialization and
input/output (IO), including the Pickle, netCDF, OPeNDAP
(read-only), GRIB1/2 (read-only), and HDF file formats.
Leveraging the dask parallel computing library [21],
xarray can optionally perform efficient parallel, out-
of-core analysis on datasets that are too large to fit
into memory. Finally, xarray interfaces with existing
domain-specific packages such as UV-CDAT [25], Iris
[17], and Cartopy [18].

Purpose: Your data has labels; you should use them
Scientific data is inherently labeled. For example, time
series data includes timestamps that label individual peri-
ods or points in time, spatial data has coordinates (e.g.
longitude, latitude, elevation), and model or laboratory
experiments are often identified by unique identifiers.
Figure 1 provides an example of a labeled dataset. In this
case the data is a map of global air temperature from a
numeric weather model. The labels on this particular data-
set are time (e.g. “2016-05-01”), longitude (x-axis), and
latitude (y-axis).

Unlabeled, N-dimensional arrays of numbers (e.g.,
NumPy’s ndarray) are the most widely used data struc-
ture in scientific computing. However, they lack a
meaningful representation of the metadata associated

https://doi.org/10.5334/jors.148
mailto:shoyer@google.com

Hoyer and Hamman: xarray: N-D labeled Arrays and Datasets in PythonArt. 10, p. 2 of 6

with their data. Implementing such functionality is left
to individual users and domain-specific packages. As a
result, programmers frequently encounter pitfalls in the
form of questions like “is the time axis of my array in the
first or third index position?” or “does my array of times-
tamps still align with my data after resampling?”.

The core motivation for developing xarray was to pro-
vide labeled data tools for N-dimensional arrays that ren-
der such questions moot. Every operation in xarray both
relies on and maintains the consistency of labels.

NetCDF
The network Common Data Form is a collection of self-
describing, machine-independent binary data formats and
software tools. These data formats and tools facilitate the
creation, access, and sharing of scientific data stored in
N-dimensional arrays, along with metadata describing the
contents of each array [20]. NetCDF has become very popular
in the geoscience community, and there are existing libraries
for reading and writing netCDF in many programming lan-
guages, including C, Fortran, Python, Java, Matlab, and Julia.

The principal data structure in the netCDF data
model is the dataset. Each netCDF dataset contains
dimensions, variables, and attributes, each of which are
identified by a hierarchy of unique names. The dataset
and variable objects may contain attributes that describe
the contents, units, history, or other metadata of the
object. Standardized conventions, such as the Climate and
Forecast (CF) Conventions [12], allow for the associations
of coordinate variables with dimensions.

Implementation and architecture
NetCDF forms the basis of the xarray data model and pro-
vides a natural and portable serialization format. Building
on netCDF, xarray features two main data structures: the
DataArray and the Dataset. The API for these data
structures is summarized in the following sections and in
Figure 2.

DataArray
The DataArray is xarray’s implementation of a labeled,
multi-dimensional array. It has several key properties:

Figure 1: An example of a multidimensional labeled array. This figure (map) is showing the global surface air tempera-
ture for May 1, 2016 from ERA-Interim Reanalyis [11]. The map is labeled with the array's coordinates: longitude and
latitude.

Figure 2: An overview of xarray’s main data structures. Types are annotated using Python 3 style type hints [23].
“Mapping of” denotes an ordered mapping with values of the given type.

Hoyer and Hamman: xarray: N-D labeled Arrays and Datasets in Python Art. 10, p. 3 of 6

•	 	data: N-dimensional array (NumPy or dask) holding
the array's values,

•	 	coords: dict-like container of arrays (coordinates)
that label each point (e.g., 1-dimensional arrays of
numbers, datetime objects or strings),

•	 	dims: dimension names for each axis [e.g., (‘time’,
‘latitude’, ‘longitude’)],

•	 	attrs: OrderedDict holding arbitrary metadata
(e.g. units or descriptions), and

•	 	name: an arbitrary name for the array.

xarray uses dims and coords to enable its core meta-
data-aware operations. Dimensions provide names that
xarray uses instead of the axis argument found in many
NumPy functions. Coordinates are ancillary variables
used to enable fast label based indexing and alignment,
building on the functionality of the pandas Index.
DataArray objects also can have a name and can hold
arbitrary metadata in the form of their attrs prop-
erty, which can be used to further describe data (e.g. by
providing units). Names and attributes are strictly for
users and user-written code; in general xarray makes no
attempt to interpret them, and propagates them only in
unambiguous cases. In contrast, xarray does interpret
and persist coordinates in operations that transform
xarray objects.

Dataset
The Dataset is xarray’s multi-dimensional equivalent
of a DataFrame. It is a dict-like container of labeled
arrays (DataArrays) with aligned dimensions. It is
designed as an in-memory representation of a netCDF
dataset. In addition to the dict-like interface of the data-
set itself, which can be used to access any DataArray
in a Dataset, datasets have four key properties:

•	 	data_vars: OrderedDict of DataArray
objects corresponding to data variables,

•	 	coords: OrderedDict of DataArray objects
intended to label points used in data_vars (e.g.,
1-dimensional arrays of numbers, datetime
objects or strings),

•	 	dims: dictionary mapping from dimension names
to the fixed length of each dimension (e.g., {‘x’:
6, ‘y’: 6, ‘time’: 8}), and

•	 	attrs: OrderedDict to hold arbitrary metadata
pertaining to the dataset.

DataArray objects inside a Dataset may have any
number of dimensions but are presumed to share a com-
mon coordinate system. Coordinates can also have any
number of dimensions but denote constant/independent
quantities, unlike the varying/dependent quantities that
belong in data. Figure 3 illustrates these concepts for an
example Dataset containing meteorological data.

Core xarray Features
xarray includes a powerful and growing feature set. The
following list highlights some of the key features available
in xarray. The xarray documentation [2] includes a com-
plete description of available features and their usage.

•	 Label-based indexing: Similarly to pandas objects,
xarray objects support both integer- and label-
based lookups along each dimension. However,
xarray objects also have named dimensions, so
you can optionally use dimension names instead
of relying on the positional ordering of dimen-
sions.

•	 Arithmetic: arithmetic between xarray objects vector-
izes based on dimension names, automatically loop-
ing (broadcasting) over each distinct dimension. This
eliminates the need to insert dummy dimensions of
size one to facilitate broadcasting, a common pat-
tern with NumPy.

•	 Aggregation: calculation of statistics (e.g. sum) along
a dimension of an xarray object can be done by
dimension name instead of an integer axis number.

•	 Alignment: xarray supports database-like join opera-
tions for combining xarray objects along common
coordinates.

•	 Split-apply-combine: xarray includes N-dimensional
grouped operations implementing the split-apply-
combine strategy [24].

Figure 3: An example of how a dataset (netCDF or xarray) for a weather forecast might be structured. This dataset has
three dimensions, time, y, and x, each of which is also a one-dimensional coordinate. Temperature and precipitation
are three-dimensional data variables. Also included in the dataset are two-dimensional coordinates latitude and
longitude, having dimensions y and x, and reference time, a zero-dimensional (scalar) coordinate.

Hoyer and Hamman: xarray: N-D labeled Arrays and Datasets in PythonArt. 10, p. 4 of 6

•	 Resampling and rolling window operations: Utiliz-
ing the efficient resampling methods from pandas
and rolling window operations from Bottleneck [15],
xarray offers a robust set of resampling and rolling
window operations along a single dimension.

•	 Plotting: xarray plotting functionality is a thin wrap-
per around the popular Matplotlib library. xarray
uses the syntax and function names from Matplotlib
whenever possible, resulting in a seamless transition
between the two.

•	 Missing Data: xarray smoothly handles missing data
in all operations, including arithmetic, alignment
and aggregation.

•	 Interactivity with pandas: xarray objects seamlessly
to convert to and from pandas objects to interact
with the rest of the PyData ecosystem.

•	 Serialization and I/O: xarray supports direct serializa-
tion and I/O to several file formats including pickle,
netCDF, OPeNDAP (read-only), GRIB1/2 (read-only),
and HDF by integrating with third-party libraries.
Additional serialization formats for 1-dimensional
data are available through pandas.

•	 Out-of-core computation: xarray’s data structures can
be backed by dask [21] instead of NumPy to support
parallel and streaming computation on data that
does not fit into memory, up to 100s of GB or TBs in
size. Such large datasets (“big data”) are increasingly
prevalent in science.

Quality control
xarray is provided with a large test suite comprised
of over 1,500 unit tests. These tests cover the core
xarray functionality as well as features facilitated by
optional dependencies. The unit tests are executed
automatically on the TravisCI (Linux) [5] and Appveyor
(Windows) [1] continuous integration systems. A selec-
tion of sample data is also distributed with the source
code, allowing users to reproduce any examples in the
xarray documentation.

(2) Availability
Operating system
Linux, Windows and Mac OS X.

Programming language
Python, versions 2.7, 3.4 and later.

Additional system requirements
None.

Dependencies
xarray is implemented in pure Python and relies on com-
piled dependencies for speed.

•	 NumPy: 1.7 or later
•	 pandas: 0.15.0 or later
•	 netcdf4-python: (optional) used for reading and

writing netCDF files
•	 SciPy: (optional) used as a fallback for

reading/writing netCDF3

•	 Pydap: (optional) used as a fallback for accessing
OPeNDAP

•	 h5netcdf: (optional) an alternative library for
reading and writing netCDF4 files that does not use
the netCDF-C libraries

•	 PyNIO: (optional) for reading GRIB1/2 and other
geoscience specific file formats

•	 Bottleneck: (optional) speeds up NaN-skipping and
rolling window aggregations by a large factor

•	 cyordereddict: (optional) speeds up most internal
operations with xarray data structures

•	 Dask: (optional) required for out-of-core parallel
computation

•	 Matplotlib: (optional) required for plotting
•	 Cartopy: (optional) required for plotting maps
•	 seaborn: (optional) additional plotting functionality

 List of contributors
•	 Alex Kleeman, The Climate Corporation
•	 Alistair Miles, Wellcome Trust Centre for Human

Genetics, University of Oxford
•	 Andreas Hilboll, Institute of Environmental Physics,

University of Bremen
•	 Anna Kuznetsova, The Climate Corporation
•	 Antony Lee, Department of Physics, University of

California, Berkeley
•	 Bas Hoonhout, Deltares, The Netherlands
•	 Benjamin Root, Atmospheric and Environmental

Research, Inc.
•	 Benoit Bovy, Department of Astrophysics, Geophysics

and Oceanography, University of Lige
•	 Chun-Wei Yuan, Institute for Health Metrics and

Evaluation, University of Washington
•	 Christoph Deil, Max Planck Institute for Nuclear

Physics
•	 Clark Fitzgerald, Department of Statistics, University

of California, Davis
•	 Dean Pospisil, Institute for Learning and Brain

Sciences, University of Washington
•	 Edward Richards, Scripps Institution of

Oceanography, University of California, San Diego
•	 Erik Welch, Continuum Analytics
•	 Eugene Brevdo, Google Research
•	 Fabien Maussion, Institute of Atmospheric and

Cryospheric Sciences, University of Innsbruck
•	 Filipe Fernandes, Universidade de So Paulo
•	 Guido Imperiale, Legal & General
•	 Hauser Mathias, Institute for Atmospheric and

Climate Science, ETH Zurich
•	 Igor Babuschkin, School of Physics and Astronomy,

University of Manchester
•	 Jeffrey Gerard, The Climate Corporation
•	 Jeremy McGibbon, Department of Atmospheric

Sciences, University of Washington
•	 Jonathan Chambers, UCL Energy Institute, London UK
•	 Julia Signell, Department of Civil and Environmental

Engineering, Princeton University
•	 Joseph Hamman, National Center for Atmospheric

Research
•	 Johnnie Gray, University College London

Hoyer and Hamman: xarray: N-D labeled Arrays and Datasets in Python Art. 10, p. 5 of 6

•	 Jonathan Helmus, Environmental Science Division,
Argonne National Laboratory

•	 Kelsey Jordahl, Planet Labs
•	 Maciek Swat, University of Pennsylvania
•	 Marco Zhlke, Brockmann Consult GmbH
•	 Markel Garca-Dez, Catalan Institute of Climate Sciences
•	 Markus Gonser
•	 Maximilian Roos, Sixty Capital
•	 Mike Graham, Edgestream Partners
•	 Nikolay Koldunov, Climate Service Center Germany
•	 Peter Cable, Raytheon
•	 Phillip J. Wolfram, Fluid and Solid Mechanics (T-3),

Theoretical Division, Los Alamos National Laboratory
•	 Rafael Guedes, MetOcean Solutions Ltd
•	 Robin Wilson, Geography & Environment, University

of Southampton, UK
•	 Ryan Abernathey, Department of Earth and

Environmental Sciences, Columbia University
•	 Scott Sinclair, Satellite Applications and Hydrology

Group, Dept. Civil Engineering, University of
KwaZulu-Natal

•	 Sébastien Celles, Thermal Science and Energy
Department, Poitiers Institute of Technology (IUT)

•	 Spencer A. Hill, Program in Atmospheric and Oceanic
Sciences, Princeton University

•	 Stefan Pfenninger, Department of Environmental
Systems Science, ETH Zrich

•	 Stephan Hoyer, Google Research
•	 Steven E. Pav, Gilgamath Consulting
•	 Takeshi Kanmae, National Institute of Polar Research,

Japan
•	 Thomas Kluyver, Computational Modeling Group,

University of Southampton
•	 Todd Small, The Climate Corporation
•	 Valliappa Lakshmanan, Google
•	 Yves Delley, Department of Physics, ETH Zurich

Software location
Archive

Name: Zenodo
Persistent identifier: https://doi.org/10.5281/

zenodo.264282
License: Apache, v2.0
Publisher: Zenodo
Version published: 0.9.1
Date published: January 30, 2017

Code repository
Name: GitHub
Identifier: http://github.com/pydata/xarray
License: Apache, v2.0
Date published: January 30, 2017

Language
English.

(3) Reuse potential
xarray was written in a modular, objected-oriented
way, to build upon and extend the core scientific
Python libraries in a domain-agnostic fashion. The

xarray documentation is complete with a wide range of
examples and a number of tutorials that use real-world
datasets that are available in the xarray repository. We have
intentionally avoided including domain-specific function-
ality in the library, leaving that to third party libraries. It
has been widely adopted in the geoscience community
[e.g. 6, 10, 9], but has also been used in physics [e.g. 3],
time series analytics [8], and finance. The core xarray
data structures (the DataArray and the Dataset) are
extensible through subclassing or the preferred approach
of composition. We also provide an extensible high-level
accessor interface to allow users to implement domain
specific methods on xarray data objects.

xarray is developed and supported by a team of volun-
teers. The primary avenue for user support is StackOverflow
[4], with the “xarray-python” tag. Additionally, we
use GitHub for a bug tracker (https://github.com/
pydata/xarray/issues) and maintain the “xarray” mail-
ing list on Google Groups (https://groups.google.com/
forum/#!forum/xarray).

Acknowledgements
Initial development of xarray was supported by The
Climate Corporation. We thank Matthew Rocklin and Jim
Crist for their assistance integrating xarray with Dask, and
Todd Small, Francisco Alvarez and Fabien Maussion for
their feedback on early drafts of this manuscript.

Competing Interests
The authors have no competing interests to declare.

References
1.	 Appveyor. https://ci.appveyor.com. Accessed: 2015-06-12.
2.	 xarray documentation. http://xarray.pydata.org.

Accessed: 2017-01-30.
3.	 pycalphad: Computational thermodynamics. http://

pycalphad.readthedocs.io. Accessed: 2015-06-12.
4.	 Stack overflow. http://stackoverflow.com/questions/

tagged/python-xarray. Accessed: 2015-06-12.
5.	 Travis CI – test and deploy your code with confidence.

https://travis-ci.org. Accessed: 2015-06-12.
6.	 xgcm: General circulation model postprocessing

with xarray. http://xgcm.readthedocs.io. Accessed:
2015-06-12.

7.	 Brown, S A, Folk, M, Goucher, G, Rew, R and
Dubois, P F 1993 Software for Portable Scientific Data
Management. Computers in Physics, 7(3):304. DOI:
https://doi.org/10.1063/1.4823180

8.	 Cesium Development Team 2016 Cesium: Open-
Source Machine Learning for Time Series Analysis.

9.	 Dawson, A 2016 eofs: A library for eof analysis of
meteorological, oceanographic, and climate data.
Journal of Open Research Software, 4(1).

10.	Dawson, A, Irving, D, Filipe and Russo, A 2016
windspharm: Version 1.5.0.

11.	Dee, D P, Uppala, S M, Simmons, A J, Berrisford, P,
Poli, P, Kobayashi, S, Andrae, U, Balmaseda, M A,
Balsamo, G, Bauer, P, Bechtold, P, Beljaars, A C M, van
de Berg, L, Bidlot, J, Bormann, N, Delsol, C, Dragani, R,
Fuentes, M, Geer, A J, Haimberger, L, Healy, S B,

https://doi.org/10.5281/zenodo.264282
https://doi.org/10.5281/zenodo.264282
http://github.com/pydata/xarray
https://github.com/pydata/xarray/issues
https://github.com/pydata/xarray/issues
https://groups.google.com/forum/#!forum/xarray
https://groups.google.com/forum/#!forum/xarray
https://ci.appveyor.com
http://xarray.pydata.org
http://pycalphad.readthedocs.io
http://pycalphad.readthedocs.io
http://stackoverflow.com/questions/tagged/python-xarray
http://stackoverflow.com/questions/tagged/python-xarray
https://travis-ci.org
http://xgcm.readthedocs.io
https://doi.org/10.1063/1.4823180

Hoyer and Hamman: xarray: N-D labeled Arrays and Datasets in PythonArt. 10, p. 6 of 6

Hersbach, H, Hlm, E V, Isaksen, L, Kllberg, P,
Khler, M, Matricardi, M, McNally, A P,
Monge-Sanz, B M, Morcrette, J J, Park, B K, Peubey,
C, de Rosnay, P, Tavolato, C, Thpaut, J N and Vitart, F
2011 The era-interim reanalysis: configuration and
performance of the data assimilation system. Quarterly
Journal of the Royal Meteorological Society, 137(656):553–
597. DOI: https://doi.org/10.1002/qj.828

12.	Eaton, B, Gregory, J, Drach, B, Taylor, K, Hankin, S,
Caron, J, Signell, R, Bentley, P, Rappa, G and Höck, H
et al 2003 NetCDF Climate and Forecast (CF) metadata
conventions.

13.	Hunter, J D 2007 Matplotlib: A 2D Graphics
Environment. Comput. Sci. Eng., 9(3):90–95. DOI:
https://doi.org/10.1109/MCSE.2007.55

14.	Jones, E, Oliphant, T, Peterson, P, et al. 2001 SciPy:
Open source scientific tools for Python. [Online;
accessed 2015-11-06].

15.	Goodman, K Bottleneck: Fast NumPy array functions
written in Cython, 2016.

16.	McKinney, W 2010 Data Structures for Statistical
Computing in Python. In van der Walt, S and Millman,
J (eds.), Proceedings of the 9th Python in Science
Conference, pages 51–56.

17.	Met Office. Iris: A Python library for analysing and
visualising meteorological and oceanographic data sets.
Exeter, Devon, v1.2 edition, 2010–2013.

18.	Met Office. Cartopy: a cartographic python library
with a matplotlib interface. Exeter, Devon, 2010–
2015.

19.	R Core Team 2013 R: A Language and Environment
for Statistical Computing. R Foundation for Statistical
Computing, Vienna, Austria.

20.	Rew, R and Davis, G 1990 NetCDF: an interface
for scientific data access. IEEE Comput. Grap.
Appl., 10(4):76–82, Jul. DOI: https://doi.
org/10.1109/38.56302

21.	Rocklin, M 2015 Dask: Parallel computation with
blocked algorithms and task scheduling. In Huff K
and Bergstra, J (eds), Proceedings of the 14th Python in
Science Conference, pages 130–136.

22.	van der Walt, S, Colbert, S C and Varoquaux, G
2011 The NumPy Array: A Structure for Efficient
Numerical Computation. Comput. Sci. Eng., 13(2):
22–30, Mar. DOI: https://doi.org/10.1109/MCSE.2011.37

23.	van Rossum, G, Lehtosalo, J and Langa, L 2016 PEP
484 – type hints. https: //www.python.org/dev/peps/
pep-0484/. Accessed: 01–24.

24.	Wickham, H 2011 The Split-Apply-Combine Strategy
for Data Analysis. Journal of Statistical Software, 40(1),
DOI: https://doi.org/10.18637/jss.v040.i01

25.	Williams, D N, Doutriaux, C, Fries, S, Lipsa, D,
Painter, J, McEnerney, J, Chaudhary, A, Jhaveri, S,
Maxwell, T, Durack, P J, et al. 2016 UV-CDAT 2.4.1.

How to cite this article: Hoyer, S and Hamman, J J 2017 xarray: N-D labeled Arrays and Datasets in Python. Journal of Open
Research Software, 5: 10, DOI: https://doi.org/10.5334/jors.148

Published: 07 September 2016 Accepted: 23 February 2017 Published: 05 April 2017

Copyright: © 2017 The Author(s). This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

Journal of Open Research Software is a peer-reviewed open access journal published by
Ubiquity Press OPEN ACCESS

https://doi.org/10.1002/qj.828
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/38.56302
https://doi.org/10.1109/38.56302
https://doi.org/10.1109/MCSE.2011.37
https: //www.python.org/dev/peps/pep-0484/
https: //www.python.org/dev/peps/pep-0484/
https://doi.org/10.18637/jss.v040.i01
https://doi.org/10.5334/jors.148
http://creativecommons.org/licenses/by/4.0/

