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xarray is an open source project and Python package that provides a toolkit and data structures for 
N-dimensional labeled arrays. Our approach combines an application programing interface (API) inspired by 
pandas with the Common Data Model for self-described scientific data. Key features of the xarray pack-
age include label-based indexing and arithmetic, interoperability with the core scientific Python packages 
(e.g., pandas, NumPy, Matplotlib), out-of-core computation on datasets that don’t fit into memory, a wide 
range of serialization and input/output (I/O) options, and advanced multi-dimensional data manipulation 
tools such as group-by and resampling. xarray, as a data model and analytics toolkit, has been widely 
adopted in the geoscience community but is also used more broadly for multi-dimensional data analysis in 
physics, machine learning and finance.
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(1) Overview
Introduction
Python has emerged as a leading programing language 
for both the physical sciences and data sciences. At the 
core of modern scientific computing and analysis in 
Python are the NumPy [14] and SciPy [22] packages, 
which provide a robust N-dimensional array object and 
the fundamental operations required for science and 
engineering applications. Much of the success of Python 
in data science and business analytics is due to pandas 
[16], which introduced intuitive and fast tabular data 
analysis tools to Python, inspired by R’s data.frame 
[19]. The pandas DataFrame and Series objects pro-
vide unparalleled analysis tools for data alignment, resa-
mpling, grouping, pivoting, and aggregation in Python.

xarray implements data structures and an analytics 
toolkit for multi-dimensional labeled arrays strongly 
inspired by pandas. While pandas includes a data struc-
ture called the Panel for three dimensional data, its 
fixed rank design make it unsuitable for applications that 
require arbitrary rank arrays. Additionally, many of the 
features that make the pandas DataFrame and Series 
objects so useful, are not fully available on the Panel. 
Our approach with xarray adopts Unidata’s self-describing 
Common Data Model on which the network Common 
Data Form (netCDF) is built [20, 7]. NetCDF provides a 
well-defined data model for labeled N-dimensional array-
oriented scientific data analysis.

xarray builds on top of, and seamlessly interop-
erates with, the core scientific Python packages, 
such as NumPy, SciPy, Matplotlib [13], and pandas.  
xarray provides a range of backends for serialization and 
input/output (IO), including the Pickle, netCDF, OPeNDAP 
(read-only), GRIB1/2 (read-only), and HDF file formats. 
Leveraging the dask parallel computing library [21],  
xarray can optionally perform efficient parallel, out-
of-core analysis on datasets that are too large to fit 
into memory. Finally, xarray interfaces with existing 
domain-specific packages such as UV-CDAT [25], Iris 
[17], and Cartopy [18].

Purpose: Your data has labels; you should use them
Scientific data is inherently labeled. For example, time 
series data includes timestamps that label individual peri-
ods or points in time, spatial data has coordinates (e.g. 
longitude, latitude, elevation), and model or laboratory 
experiments are often identified by unique identifiers. 
Figure 1 provides an example of a labeled dataset. In this 
case the data is a map of global air temperature from a 
numeric weather model. The labels on this particular data-
set are time (e.g. “2016-05-01”), longitude (x-axis), and 
latitude (y-axis).

Unlabeled, N-dimensional arrays of numbers (e.g., 
NumPy’s ndarray) are the most widely used data struc-
ture in scientific computing. However, they lack a 
meaningful representation of the metadata associated 
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with their data. Implementing such functionality is left 
to individual users and domain-specific packages. As a 
result, programmers frequently encounter pitfalls in the 
form of questions like “is the time axis of my array in the 
first or third index position?” or “does my array of times-
tamps still align with my data after resampling?”.

The core motivation for developing xarray was to pro-
vide labeled data tools for N-dimensional arrays that ren-
der such questions moot. Every operation in xarray both 
relies on and maintains the consistency of labels.

NetCDF
The network Common Data Form is a collection of self-
describing, machine-independent binary data formats and 
software tools. These data formats and tools facilitate the 
creation, access, and sharing of scientific data stored in 
N-dimensional arrays, along with metadata describing the 
contents of each array [20]. NetCDF has become very popular 
in the geoscience community, and there are existing libraries 
for reading and writing netCDF in many programming lan-
guages, including C, Fortran, Python, Java, Matlab, and Julia.

The principal data structure in the netCDF data 
model is the dataset. Each netCDF dataset contains 
dimensions, variables, and attributes, each of which are 
identified by a hierarchy of unique names. The dataset 
and variable objects may contain attributes that describe 
the contents, units, history, or other metadata of the 
object. Standardized conventions, such as the Climate and 
Forecast (CF) Conventions [12], allow for the associations 
of coordinate variables with dimensions.

Implementation and architecture
NetCDF forms the basis of the xarray data model and pro-
vides a natural and portable serialization format. Building 
on netCDF, xarray features two main data structures: the 
DataArray and the Dataset. The API for these data 
structures is summarized in the following sections and in 
Figure 2.

DataArray
The DataArray is xarray’s implementation of a labeled, 
multi-dimensional array. It has several key properties:

Figure 1: An example of a multidimensional labeled array. This figure (map) is showing the global surface air tempera-
ture for May 1, 2016 from ERA-Interim Reanalyis [11]. The map is labeled with the array's coordinates: longitude and 
latitude.

Figure 2: An overview of xarray’s main data structures. Types are annotated using Python 3 style type hints [23]. 
“Mapping of” denotes an ordered mapping with values of the given type.
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•	 	data: N-dimensional array (NumPy or dask) holding 
the array's values,

•	 	coords: dict-like container of arrays (coordinates) 
that label each point (e.g., 1-dimensional arrays of 
numbers, datetime objects or strings),

•	 	dims: dimension names for each axis [e.g., (‘time’,  
‘latitude’, ‘longitude’)],

•	 	attrs: OrderedDict holding arbitrary metadata 
(e.g. units or descriptions), and

•	 	name: an arbitrary name for the array.

xarray uses dims and coords to enable its core meta-
data-aware operations. Dimensions provide names that 
xarray uses instead of the axis argument found in many 
NumPy functions. Coordinates are ancillary variables 
used to enable fast label based indexing and alignment, 
building on the functionality of the pandas Index. 
DataArray objects also can have a name and can hold 
arbitrary metadata in the form of their attrs prop-
erty, which can be used to further describe data (e.g. by 
providing units). Names and attributes are strictly for 
users and user-written code; in general xarray makes no 
attempt to interpret them, and propagates them only in 
unambiguous cases. In contrast, xarray does interpret 
and persist coordinates in operations that transform  
xarray objects.

Dataset
The Dataset is xarray’s multi-dimensional equivalent 
of a DataFrame. It is a dict-like container of labeled 
arrays (DataArrays) with aligned dimensions. It is 
designed as an in-memory representation of a netCDF 
dataset. In addition to the dict-like interface of the data-
set itself, which can be used to access any DataArray 
in a Dataset, datasets have four key properties:

•	 	data_vars: OrderedDict of DataArray 
objects corresponding to data variables,

•	 	coords: OrderedDict of DataArray objects 
intended to label points used in data_vars (e.g., 
1-dimensional arrays of numbers, datetime 
objects or strings),

•	 	dims: dictionary mapping from dimension names 
to the fixed length of each dimension (e.g., {‘x’: 
6, ‘y’: 6, ‘time’: 8}), and

•	 	attrs: OrderedDict to hold arbitrary metadata 
pertaining to the dataset.

DataArray objects inside a Dataset may have any 
number of dimensions but are presumed to share a com-
mon coordinate system. Coordinates can also have any 
number of dimensions but denote constant/independent 
quantities, unlike the varying/dependent quantities that 
belong in data. Figure 3 illustrates these concepts for an 
example Dataset containing meteorological data.

Core xarray Features
xarray includes a powerful and growing feature set. The 
following list highlights some of the key features available 
in xarray. The xarray documentation [2] includes a com-
plete description of available features and their usage.

•	 Label-based indexing: Similarly to pandas objects, 
xarray objects support both integer- and label-
based lookups along each dimension. However,  
xarray objects also have named dimensions, so 
you can optionally use dimension names instead 
of relying on the positional ordering of dimen-
sions.

•	 Arithmetic: arithmetic between xarray objects vector-
izes based on dimension names, automatically loop-
ing (broadcasting) over each distinct dimension. This 
eliminates the need to insert dummy dimensions of 
size one to facilitate broadcasting, a common pat-
tern with NumPy.

•	 Aggregation: calculation of statistics (e.g. sum) along 
a dimension of an xarray object can be done by 
dimension name instead of an integer axis number.

•	 Alignment: xarray supports database-like join opera-
tions for combining xarray objects along common 
coordinates.

•	 Split-apply-combine: xarray includes N-dimensional 
grouped operations implementing the split-apply-
combine strategy [24].

Figure 3: An example of how a dataset (netCDF or xarray) for a weather forecast might be structured. This dataset has 
three dimensions, time, y, and x, each of which is also a one-dimensional coordinate. Temperature and precipitation 
are three-dimensional data variables. Also included in the dataset are two-dimensional coordinates latitude and 
longitude, having dimensions y and x, and reference time, a zero-dimensional (scalar) coordinate.
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•	 Resampling and rolling window operations: Utiliz-
ing the efficient resampling methods from pandas 
and rolling window operations from Bottleneck [15],  
xarray offers a robust set of resampling and rolling 
window operations along a single dimension.

•	 Plotting: xarray plotting functionality is a thin wrap-
per around the popular Matplotlib library. xarray 
uses the syntax and function names from Matplotlib 
whenever possible, resulting in a seamless transition 
between the two.

•	 Missing Data: xarray smoothly handles missing data 
in all operations, including arithmetic, alignment 
and aggregation.

•	 Interactivity with pandas: xarray objects seamlessly 
to convert to and from pandas objects to interact 
with the rest of the PyData ecosystem.

•	 Serialization and I/O: xarray supports direct serializa-
tion and I/O to several file formats including pickle, 
netCDF, OPeNDAP (read-only), GRIB1/2 (read-only), 
and HDF by integrating with third-party libraries. 
Additional serialization formats for 1-dimensional 
data are available through pandas.

•	 Out-of-core computation: xarray’s data structures can 
be backed by dask [21] instead of NumPy to support 
parallel and streaming computation on data that 
does not fit into memory, up to 100s of GB or TBs in 
size. Such large datasets (“big data”) are increasingly 
prevalent in science.

Quality control
xarray is provided with a large test suite comprised 
of over 1,500 unit tests. These tests cover the core 
xarray functionality as well as features facilitated by 
optional dependencies. The unit tests are executed 
automatically on the TravisCI (Linux) [5] and Appveyor 
(Windows) [1] continuous integration systems. A selec-
tion of sample data is also distributed with the source 
code, allowing users to reproduce any examples in the 
xarray documentation.

(2) Availability
Operating system
Linux, Windows and Mac OS X.

Programming language
Python, versions 2.7, 3.4 and later.

Additional system requirements
None.

Dependencies
xarray is implemented in pure Python and relies on com-
piled dependencies for speed.

•	 NumPy: 1.7 or later
•	 pandas: 0.15.0 or later
•	 netcdf4-python: (optional) used for reading and 

writing netCDF files
•	 SciPy: (optional) used as a fallback for  

reading/writing netCDF3

•	 Pydap: (optional) used as a fallback for accessing 
OPeNDAP

•	 h5netcdf: (optional) an alternative library for 
reading and writing netCDF4 files that does not use 
the netCDF-C libraries

•	 PyNIO: (optional) for reading GRIB1/2 and other 
geoscience specific file formats

•	 Bottleneck: (optional) speeds up NaN-skipping and 
rolling window aggregations by a large factor

•	 cyordereddict: (optional) speeds up most internal 
operations with xarray data structures

•	 Dask: (optional) required for out-of-core parallel 
computation

•	 Matplotlib: (optional) required for plotting
•	 Cartopy: (optional) required for plotting maps
•	 seaborn: (optional) additional plotting functionality
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Software location
Archive

Name: Zenodo
Persistent identifier: https://doi.org/10.5281/

zenodo.264282
License: Apache, v2.0
Publisher: Zenodo
Version published: 0.9.1
Date published: January 30, 2017

Code repository
Name: GitHub
Identifier: http://github.com/pydata/xarray
License: Apache, v2.0
Date published: January 30, 2017

Language
English.

(3) Reuse potential
xarray was written in a modular, objected-oriented 
way, to build upon and extend the core scientific 
Python libraries in a domain-agnostic fashion. The  

xarray documentation is complete with a wide range of 
examples and a number of tutorials that use real-world 
datasets that are available in the xarray repository. We have 
intentionally avoided including domain-specific function-
ality in the library, leaving that to third party libraries. It 
has been widely adopted in the geoscience community 
[e.g. 6, 10, 9], but has also been used in physics [e.g. 3], 
time series analytics [8], and finance. The core xarray 
data structures (the DataArray and the Dataset) are 
extensible through subclassing or the preferred approach 
of composition. We also provide an extensible high-level 
accessor interface to allow users to implement domain 
specific methods on xarray data objects.

xarray is developed and supported by a team of volun-
teers. The primary avenue for user support is StackOverflow 
[4], with the “xarray-python” tag. Additionally, we 
use GitHub for a bug tracker (https://github.com/
pydata/xarray/issues) and maintain the “xarray” mail-
ing list on Google Groups (https://groups.google.com/
forum/#!forum/xarray).
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