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The pycalphad software package is a free and open-source Python library for designing thermodynamic 
models, calculating phase diagrams and investigating phase equilibria using the CALPHAD method. It 
provides routines for reading thermodynamic databases and solving the multi-component, multi-phase 
Gibbs energy minimization problem. The pycalphad software project advances the state of thermodynamic 
modeling by providing a flexible yet powerful interface for manipulating CALPHAD data and models. The 
key feature of the software is that the thermodynamic models of individual phases and their associated 
databases can be programmatically manipulated and overridden at run-time without modifying any inter-
nal solver or calculation code. Because the models are internally decoupled from the equilibrium solver 
and the models themselves are represented symbolically, pycalphad is an ideal tool for CALPHAD database 
development and model prototyping.
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(1) Overview
Introduction
Thermodynamics is the core of every physical descrip-
tion of nature. In recognition of this fact, and 
coincident with the rise of ubiquitous modern com-
puting, the development of the CALculation of PHAse 
Diagrams (CALPHAD) method was proposed by Larry 
Kaufman and Himo Ansara in 1973 to rationalize and 
systematize alloy chemistry through the use of com-
puter calculations [1]. In the decades since, there has 
been a tremendous effort by the scientific community 
to collect data to build thermodynamic descriptions 
for both metallic and non-metallic systems, descrip-
tions of which have only increased in sophistication 
and accuracy as our understanding of the underlying 
physical phenomena have improved.

Better understanding of CALPHAD modeling and 
equilibrium calculation are necessary for advancing the 
modeling of phase stability in alloy systems and, for 
practical materials design problems, we need to have a 
high-quality software implementation flexible enough 
to admit these theoretical improvements. Such an imple-
mentation would serve as a testbed for new fundamental 
improvements to CALPHAD modeling. A natural place to 

start would be to contribute modifications to an existing 
CALPHAD software package. This unfortunately turns 
out not to be a feasible path. Because the source needs 
to be publicly available for modifications to be possible, 
we exclude the multitude of closed-source commercial 
packages available [2–4]. The availability of open-source 
CALPHAD packages is limited. The most notable open-
source CALPHAD package is OpenCalphad [5], which is 
architecturally very similar to the commercial Thermo-
Calc package. The quality of the implementation is high 
but the architecture of the system does not allow the 
kind of direct manipulation of phase models at run-time 
necessary for CALPHAD model prototyping and database 
development.

A more promising architecture using the Python 
programming language was developed in the Gibbs 
package [6]. In particular the symbolic construction 
(as opposed to “hard-coding”) of phase models makes 
manipulation vastly simpler. However their implemen-
tation is much more limited; Gibbs lacks support for 
the compound energy formalism (CEF) [7]. Moreover, 
Gibbs’ equilibrium calculation method is based on 
Quickhull [8], and Quickhull-based solvers will not 
perform well for multicomponent systems due to the 
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poor scaling of general convex hull algorithms in high 
dimensions. (For energy minimization it is only nec-
essary to compute the lower convex hull.) Because of 
these issues the majority of the core would have to be 
completely rewritten for our purposes. Development 
by the Gibbs team appears to have ceased after the 
original publication, so such a significant undertaking 
would have to be performed alone.

What is desired is something which takes the rigorous 
theoretical approach of Open-Calphad and combines it 
with the extensibility and modularity of the Python-based 
approach pioneered by the Gibbs package. This is the pur-
pose of the pycalphad project.

The pycalphad software package is roughly 3000 lines 
of Python code designed to solve the multi-component, 
multi-phase Gibbs energy minimization problem with 
full support for the CEF. The key feature of pycalphad 
is that the thermodynamic models of individual phases 
and their associated databases can be programmati-
cally manipulated and overridden at run-time, without 
modifying any internal solver or calculation code: the 
representation of the models is decoupled from the 
equilibrium solver, and the models themselves are repre-
sented symbolically. This makes pycalphad ideal for pro-
totyping CALPHAD models and developing CALPHAD 
databases.

Implementation and architecture
Figure 1 depicts the general architecture of pycalphad. 
Model parameters and associated inputs are represented 
as a Database object. Using parameters from the given 
Database, a Model object is constructed for each phase 
containing the symbolic representation of that phase’s 
energy function. These symbolic representations are then 
fed into the calculation engine to produce results for the 
user.

Figure 2 illustrates the benefit of this modular architec-
ture for creating custom phase models. Creating a custom 
model in pycalphad involves creating a subclass of the 
Model class. The key step is declaring the contribu-
tions class attribute.

The attribute is a list of tuples, and each tuple con-
tains a unique name and a class function name. The 
class function is called to construct the correspond-
ing energetic contribution, with several contributions 
already defined in Model. In this case, the custom 
energetic contribution is the system temperature mul-
tiplied by the squared deviation from the equimolar 
composition of the phase. The CustomModel sub-
class can then be passed as an argument to calcu-
late() and equilibrium().

Database
The Database object is the fundamental representa-
tion of CALPHAD data in pycalphad. It can be consid-
ered as the in-memory analogue to a thermodynamic 
database (TDB) file, and in fact pycalphad supports read-
ing and writing a large subset of the TDB file format 
through the from_file() and to_file() methods 
of the Database object. For convenience, calling the 
Database constructor, e.g., Database(’example.
tdb’), will automatically call the appropriate parsing 
function. Database files can also be passed as multi-line 
strings; this is convenient for embedding TDB files in 
short Python scripts. The current version of pycalphad 
(0.4.2) only supports TDB files, but new file formats 
could be easily implemented without modifying any 
other code dependent on a Database since the objects 
are not coupled to any particular file format. Using this 
scheme it is unnecessary for the rest of pycalphad to 
know anything about how CALPHAD data is represented 
on disk.

Figure 1: General architecture of the pycalphad software package. Using parameters from the given Database, a 
Model object is constructed for each phase and then fed into the calculation engine to produce results for the user.
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Database exposes a phases attribute contain-
ing a Python dictionary mapping the name of a phase 
to an object which contains information about the sub-
lattice model and phase constituents. It also exposes a 
search() function for finding model parameters satis-
fying certain criteria. These are the primary features used 
by the Model object to build the symbolic representation 
of a phase’s thermodynamic model.

Model
A Model is an abstract representation of the molar 
Gibbs energy function of a phase. This representation 
is built around the computer algebra library SymPy [9], 
allowing the variables and arithmetic functions required 
by the CEF to be represented as an abstract graph of 
Python objects. For example, the operation 2 + 3x might 
internally be represented as Add(2,Mul(3,x)), 
with larger structures for more complicated models. 
For convenience, the library Model class defines sev-
eral thermodynamic properties. By default, attributes 
are defined for the following, with Thermo-Calc-style 
abbreviations listed in parentheses (either are allowed): 
energy (GM), entropy (SM), enthalpy (SM), 
heat capacity (CPM), mixing energy (MIX 
GM), mixing entropy (MIX SM), mixing 
enthalpy (MIX HM), mixing heat capacity 
(MIX CPM), curie temperature (TC), and 
degree of ordering (DOO). It is also possible 
for users to define custom properties for particular pur-
poses. These SymPy-based abstract graphs, as well as 
their exact first and second derivatives, are compiled to 
machine code on demand for computational efficiency. 

SymPy’s automatic code generation feature is used to 
provide users maximum flexibility since it offers the 
ease-of-use of working in Python without having to 
make a significant performance tradeoff, compared to 
working only in C, Fortran, or another low-level pro-
gramming language.

By default the library Model class is used for all 
phases. It includes support for multi-component 
Redlich-Kister polynomials using the Muggianu ternary 
extension [10], the Inden-Hillert-Jarl magnetic model 
[11, 12], and the order-disorder model for atomic order-
ing [13, 14]

For parametric model contributions, users can use 
the param_search argument defined in the func-
tion signature of every energetic contribution to query 
a Database for parameters satisfying some criteria. 
The Model class defines a redlich_kister_sum() 
convenience function to allow users to easily build multi-
component Redlich-Kister polynomials using parameters 
defined in a Database. For example, to construct the 
symbolic form of the mean magnetic moment of a phase 
in Redlich-Kister form, inside custom_energy() one 
could write

from tinydb import where 
bm_param_query = (

(where(’phase_name’) == phase.name) & \
(where(’parameter_type’) == ’BMAGN’) & \
(where(’constituent_array’).
test(self._array_validity))

)
mean_magnetic_moment = \

self.redlich_kister_sum(phase, param_search,
bm_param_query)

Figure 2: Creating a custom model in pycalphad involves creating a subclass of the Model class. The key step is de-
claring the contributions class attribute. The CustomModel subclass can then be passed as an argument to 
calculate() and equilibrium().
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This code snippet will pull all the relevant magnetic 
parameters from the database, filtered by self._
array_validity to include only the declared compo-
nents in our model.

calculate()
The calculate() function is the core property calcula-
tion routine of pycalphad. It does not concern itself with 
equilibrium at all – that is the responsibility of equi-
librium() – but instead performs calculations for the 
case when all independent degrees of freedom, i.e., tem-
perature, pressure, sublattice site fractions, are specified. 
The most important arguments of calculate() are

def calculate(dbf, comps, phases, output=’GM’,
model=None, points=None, 
T=None, P=None, **kwargs)

dbf is the Database containing the relevant param-
eters, comps is a list of desired components for the cal-
culation, and phases is a list of desired phases. (Users 
can get a list of all phases using list(dbf.phases.
keys()).) By default calculate() will compute the 
GM property of all phases, but users can specify any prop-
erty defined by the phase model, including properties 
defined in custom models. By default the library Model 
class is used for all phases.

Custom models can be specified via the model key-
word argument. For example, calculate(dbf, 
comps, phases, model=CustomModel) over-
rides the default model for all phases in that energy 
calculation. To override only a specific phase’s model, 
we write model={’FCC_A1’: CustomModel} 
to override the model for the FCC_A1 phase. More 
sophisticated formulations are also possible. We 
can use model=[{’FCC_A1’: CustomModel, 
’LIQUID’: Model}, YetAnotherModel] for 
the FCC_A1 phase to use CustomModel, the liquid 
phase to use the library Model, and all other phases 
in the calculation to use YetAnotherModel (not 
defined here). The output keyword argument speci-
fies the property to calculate; this is a string corre-
sponding to an attribute of the library Model or a 
user-defined subclass of Model, as discussed above. 
For example, we write output=’CPM’ to indicate the 
molar heat capacity should be computed. If output is 
not specified, by default only the molar Gibbs energy 
is calculated.

The points keyword argument accepts a multi-
dimensional array of shape (P, T, y), where P and T are 
pressures and temperatures at which to perform the 
calculation, and y is the number of sublattice site frac-
tions. Site fractions are ordered by sublattice num-
ber, then alphabetically within a sublattice, e.g., . 

0 0 0 0 1 1,  ,  ,  ,  ,  Al Ni Cr Mo Ni Nby y y y y y . If the same site fractions 
are meant to be used for all temperatures and pressures 
in the calculation, the P and T dimensions can be omit-
ted from the array. For multi-phase calculations, users can 
pass a Python dictionary mapping the name of a phase to 
an array of site fractions.

The T and P keyword arguments are the temperatures 
and pressures in Kelvin and pascals, respectively, for the 
calculation. (Specifically the units are whatever T and P 
mean in the phase model but, in the default Model, SI 
units are used.) Valid arguments are either a scalar or a 
one-dimensional array. **kwargs is a placeholder for 
other, less commonly used or experimental options; these 
are discussed in the pycalphad documentation linked 
from the GitHub repository. The return value of calcu-
late() is a multi-dimensional labeled array.

equilibrium()
The equilibrium() function is responsible for 
equilibrium property calculation in pycalphad. Its key 
arguments are

def equilibrium(dbf, comps, phases, conditions,
output=None, model=None, **kwargs)

dbf, comps, phases, output, model, and 
**kwargs all have the same meaning as in the cal-
culate() function, with the additional feature that 
output can be either a string or a list of strings. condi-
tions is a Python dictionary mapping state variables to 
values. Valid arguments for a condition are a scalar, one-
dimensional array, or tuple with the form (start, stop, step). 
For example, an isothermal step calculation might have 
a conditions argument of the form {v.X(’AL’): 
(0,1, 0.01), v.T: 600}, where v is defined as a 
shortcut to pycalphad.variables, a library module 
where all standard symbols are defined.

The return value of equilibrium() is a multi-dimen-
sional labeled array. Regardless of the value of output, 
the result array will always include the equilibrium values 
of the molar Gibbs energy and chemical potentials since 
they are necessary to compute the solution.

Representation of results
The result of calls to calculate() and equilib-
rium() are xarray Dataset objects [15]. The xarray 
Dataset object makes handling labeled multi-dimensional 
arrays substantially simpler. Figure 3 shows the xarray 
summary of the result of a 2-D mapping calculation. The 
“Dimensions” line indicates the shape of the array, with 
each dimension having a label and corresponding size. In 
this case, equilibria at 170 temperatures and 100 compo-
sitions are computed for a two component system.

The “internal dof ” dimension corresponds to the sublat-
tice site fractions of a phase. For phases with fewer than 
the maximum number of internal degrees of freedom, 
the extra elements are filled with NaN (Not A Number). 
The “vertex” dimension corresponds to the vertices of a 
tie simplex (tie-line in binary systems). For single- phase 
regions, only the first vertex is valid and the others are 
filled with NaN.

The “Data Variables” section contains the actual 
result of the calculation, with the corresponding 
dimensions of each property array listed in paren-
theses, followed by the first few values. The “Phase” 
and “NP” arrays contain the names and fractions of 
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phases, respectively, present under the corresponding 
conditions. All the properties we specify in the out-
put keyword argument are included here. The xarray 
library makes selecting and slicing the data very easy; 
for example, to get all the Al chemical potentials at 
600 K, we write eq.MU.sel(component=’AL’, 
T=600), where eq is the result array. Note that a cur-
rent limitation is that the selection must correspond 
directly to a calculated value; automatic interpolation 
of the pressure, temperature, or composition is not 
currently implemented.

The “Attributes” section contains some metadata about 
the calculation such as the version of pycalphad used, the 
calculation date, and the solver iterations.

Datasets have functions for reading from and writing 
to disk, making storage of the results of long-running 
calculations easier. Interested users are encouraged to 
review the xarray documentation [15].

Quality control
Even as a relatively small project, pycalphad is sufficiently 
complex that it is necessary to implement strategies to 
avoid the regression, or accidental breakage, of features. 

The key concepts to understand when managing and 
developing a complex software project are source code 
control (SCC) and continuous integration (CI). SCC is 
critical to verify the integrity of the project over time 
when admitting changes from multiple, scattered con-
tributors, but it is useful even in single-contributor pro-
jects because SCC systems serve as a semi-automated 
project journal and backup system. This project uses 
the popular Git SCC system [16] to manage its source 
code. This allows the complete history of changes to be 
recorded for all released and unreleased versions of the 
software. Git also allows different versions of the soft-
ware to be stored in separate “branches,” allowing con-
current work on, e.g., new major features and bug fixes 
to existing versions. The Git repository is publicly avail-
able online at GitHub (see section 2). Git also extends 
into pycalphad’s versioning system: major.minor.
rev+N.gHASH, where HASH is the Git commit identi-
fier of the latest commit in the master branch of the 
repository, and N is the number of commits ahead of 
the last public release. For public releases, everything 
after the + is omitted. For modifications which have 
not yet been committed, i.e., in a developer’s local Git 

Figure 3: This is a summary of the result object returned by a call to equilibrium() when performing a 2-D 
mapping calculation. The “Dimensions” line indicates the shape of the array, with each dimension having a 
label and corresponding size. In this case, equilibria at 170 temperatures and 100 compositions are computed 
for a two component system. The “internal dof” dimension corresponds to the site fractions of a phase. The 
“vertex” dimension corresponds to the vertices of a tie simplex (tie-line in binary systems). The “Data Variables” 
section contains the actual result of the calculation, with the corresponding dimensions of each property array 
listed in parentheses, followed by the rst few values. The “Attributes” section contains some metadata about 
the calculation.
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repository, the version identifier will be appended with 
dirty.

CI is the approach of a project to simplify the soft-
ware release process by testing code incrementally, i.e., 
every time a revision is made. This makes releasing new 
versions easier because the release manager can have 
some confidence that the quality of the code is above 
some automatically verified baseline. The pycalphad 
package has a suite of CI tests designed to verify that a 
revision to the code does not cause unintended behav-
ior. These tests are run automatically every time a new 
revision is pushed to the Git repository on GitHub. If 
a test fails for any reason, a report is generated includ-
ing all the error information. For example, there are 
tests to ensure that computed values of properties for 
several known systems do not change. The equilibrium 
solver, TDB reading and writing, and phase model con-
struction code are also tested for consistency and accu-
racy. When a bug is reported and fixed in pycalphad, 
a minimal test case is added to the suite whenever 
possible to prevent the problem from appearing again 
in a future release. In total, about 80% of pycalphad, 
measured by lines of code, is currently tested, with 
the remainder involving unreachable or experimental 

code, or code which is difficult to test in an automated 
fashion, e.g., plotting code.

(2) Availability
Operating system
A version of Linux, OSX, or Windows capable of running a 
supported version of Python is required.

Programming language
Python 2.7+ or Python 3.4+ is required.

Additional system requirements
At least 2 GB of RAM is recommended.

Dependencies
• gcc, MinGW or Microsoft Visual C++ compiler and 

toolchain
• matplotlib [17]
• numpy ≥ 1.9 [18]
• scipy [18]
• sympy [19]
• xarray [15]
• pyparsing [20]
• tinydb

Figure 4: Equilibrium chemical potential of Fe as a function of Al composition in the Al-Fe system at 600 K, 
computed using pycalphad. Each point is color-coded with the corresponding stable phase; coexistence re-
gions can be identied by the chemical potential remaining at across a range of composition. The end-points of 
such an iso-potential region can be directly connected to the corresponding tie-line at the given temperature.
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Figure 5: Phase diagram of the Al-Fe system according to the COST 507 database, computed using pycalphad. The solid 
black lines in the B2 region correspond to lines of constant “degree of ordering” in the B2 phase. The grey dashed line 
is the Curie temperature. The bcc ordering transition is second-order since the degree of ordering is continuously 
changing with respect to composition and temperature. Some lines in the diagram are not smooth due to the coarse-
ness of the grid used in the calculation; mapping in pycalphad is still experimental.

• autograd
• tqdm
• dask
• dill

List of contributors
Richard Otis (Pennsylvania State University) – Development 
and testing 
Zi-Kui Liu (Pennsylvania State University) – Project 
supervision

Software location
Archive

Name: Figshare
Persistent identifier: https://dx.doi.org/10.6084/

m9.figshare.4213689
Licence: MIT
Publisher: Richard Otis
Version published: 0.4.2
Date published: 07/11/16

Code repository
Name: GitHub
Persistent identifier: https://github.com/pycalphad/

pycalphad
Licence: MIT
Date published: 09/11/16

Language
English

(3) Reuse potential
Al-Fe is chosen as an example system because the COST 
507 database [21] containing this subsystem is publicly 
available, and it allows us to test several pycalphad fea-
tures simultaneously since the system contains single-
sublattice solution phases, multi-sublattice ordered 
phases, phases with magnetic ordering and stoichio-
metric compounds. The pycalphad package can per-
form computations for any number of components; we 
restrict our example to a binary system only for the 
simplicity of visualization.

Figure 4 shows the result of a one-dimensional (“step”) 
equilibrium calculation at 600 K. The equilibrium chemi-
cal potential of Fe is shown as a function of Al compo-
sition. Each point is color-coded with the corresponding 
stable phase; coexistence regions can be identified by the 
chemical potential remaining flat across a range of compo-
sition. The end-points of such an iso-potential region can 
be directly connected to the corresponding tie-line at the 
given temperature. The source code for this calculation can 
be found in Figure 6.

Figure 5 shows the phase diagram of the Al-Fe system 
according to the COST 507 database. The solid black lines 
in the B2 region correspond to lines of constant “degree 

https://dx.doi.org/10.6084/m9.figshare.4213689
https://dx.doi.org/10.6084/m9.figshare.4213689
https://github.com/pycalphad/pycalphad
https://github.com/pycalphad/pycalphad
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of ordering” in the B2 phase. The grey dashed line is the 
Curie temperature. It is clear from the diagram that the 
bcc ordering transition is second-order since the degree of 
ordering is continuously changing with respect to compo-
sition and temperature. Some lines in the diagram are not 
smooth due to the coarseness of the grid used in the cal-
culation; mapping in pycalphad is still experimental. The 
source code for this calculation can be found in Figure 7.

Those interested in collaborating on pycalphad or 
seeking support should contact the present authors 

via e-mail or visit the official project website at  
pycalphad.org, where additional documentation and 
examples can be found.
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Figure 6: Source code for the Al-Fe chemical potential calculation in Figure 4.
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Figure 7: Source code for the Al-Fe phase diagram in Figure 5.
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