
Otis, R and Liu, Z-K 2017 pycalphad: CALPHAD-based Computational Thermodynamics in
Python. Journal of Open Research Software, 5: 1, DOI: http://dx.doi.org/10.5334/jors.140

Journal of
open research software

SOFTWARE METAPAPER

pycalphad: CALPHAD-based Computational
Thermodynamics in Python
Richard Otis and Zi-Kui Liu
Department of Materials Science and Engineering, Pennsylvania State University, University Park,
PA 16802, US
Corresponding author: Richard Otis
(richard.otis@outlook.com)

The pycalphad software package is a free and open-source Python library for designing thermodynamic
models, calculating phase diagrams and investigating phase equilibria using the CALPHAD method. It
provides routines for reading thermodynamic databases and solving the multi-component, multi-phase
Gibbs energy minimization problem. The pycalphad software project advances the state of thermodynamic
modeling by providing a flexible yet powerful interface for manipulating CALPHAD data and models. The
key feature of the software is that the thermodynamic models of individual phases and their associated
databases can be programmatically manipulated and overridden at run-time without modifying any inter-
nal solver or calculation code. Because the models are internally decoupled from the equilibrium solver
and the models themselves are represented symbolically, pycalphad is an ideal tool for CALPHAD database
development and model prototyping.

Keywords: CALPHAD; computational thermodynamics; alloys; Python
Funding Statement: This work was supported by a NASA Space Technology Research Fellowship under
grant number NNX14AL43H.

(1) Overview
Introduction
Thermodynamics is the core of every physical descrip-
tion of nature. In recognition of this fact, and
coincident with the rise of ubiquitous modern com-
puting, the development of the CALculation of PHAse
Diagrams (CALPHAD) method was proposed by Larry
Kaufman and Himo Ansara in 1973 to rationalize and
systematize alloy chemistry through the use of com-
puter calculations [1]. In the decades since, there has
been a tremendous effort by the scientific community
to collect data to build thermodynamic descriptions
for both metallic and non-metallic systems, descrip-
tions of which have only increased in sophistication
and accuracy as our understanding of the underlying
physical phenomena have improved.

Better understanding of CALPHAD modeling and
equilibrium calculation are necessary for advancing the
modeling of phase stability in alloy systems and, for
practical materials design problems, we need to have a
high-quality software implementation flexible enough
to admit these theoretical improvements. Such an imple-
mentation would serve as a testbed for new fundamental
improvements to CALPHAD modeling. A natural place to

start would be to contribute modifications to an existing
CALPHAD software package. This unfortunately turns
out not to be a feasible path. Because the source needs
to be publicly available for modifications to be possible,
we exclude the multitude of closed-source commercial
packages available [2–4]. The availability of open-source
CALPHAD packages is limited. The most notable open-
source CALPHAD package is OpenCalphad [5], which is
architecturally very similar to the commercial Thermo-
Calc package. The quality of the implementation is high
but the architecture of the system does not allow the
kind of direct manipulation of phase models at run-time
necessary for CALPHAD model prototyping and database
development.

A more promising architecture using the Python
programming language was developed in the Gibbs
package [6]. In particular the symbolic construction
(as opposed to “hard-coding”) of phase models makes
manipulation vastly simpler. However their implemen-
tation is much more limited; Gibbs lacks support for
the compound energy formalism (CEF) [7]. Moreover,
Gibbs’ equilibrium calculation method is based on
Quickhull [8], and Quickhull-based solvers will not
perform well for multicomponent systems due to the

http://dx.doi.org/10.5334/jors.140
mailto:richard.otis@outlook.com

Otis and Liu : pycalphadArt. 1, p. 2 of 11

poor scaling of general convex hull algorithms in high
dimensions. (For energy minimization it is only nec-
essary to compute the lower convex hull.) Because of
these issues the majority of the core would have to be
completely rewritten for our purposes. Development
by the Gibbs team appears to have ceased after the
original publication, so such a significant undertaking
would have to be performed alone.

What is desired is something which takes the rigorous
theoretical approach of Open-Calphad and combines it
with the extensibility and modularity of the Python-based
approach pioneered by the Gibbs package. This is the pur-
pose of the pycalphad project.

The pycalphad software package is roughly 3000 lines
of Python code designed to solve the multi-component,
multi-phase Gibbs energy minimization problem with
full support for the CEF. The key feature of pycalphad
is that the thermodynamic models of individual phases
and their associated databases can be programmati-
cally manipulated and overridden at run-time, without
modifying any internal solver or calculation code: the
representation of the models is decoupled from the
equilibrium solver, and the models themselves are repre-
sented symbolically. This makes pycalphad ideal for pro-
totyping CALPHAD models and developing CALPHAD
databases.

Implementation and architecture
Figure 1 depicts the general architecture of pycalphad.
Model parameters and associated inputs are represented
as a Database object. Using parameters from the given
Database, a Model object is constructed for each phase
containing the symbolic representation of that phase’s
energy function. These symbolic representations are then
fed into the calculation engine to produce results for the
user.

Figure 2 illustrates the benefit of this modular architec-
ture for creating custom phase models. Creating a custom
model in pycalphad involves creating a subclass of the
Model class. The key step is declaring the contribu-
tions class attribute.

The attribute is a list of tuples, and each tuple con-
tains a unique name and a class function name. The
class function is called to construct the correspond-
ing energetic contribution, with several contributions
already defined in Model. In this case, the custom
energetic contribution is the system temperature mul-
tiplied by the squared deviation from the equimolar
composition of the phase. The CustomModel sub-
class can then be passed as an argument to calcu-
late() and equilibrium().

Database
The Database object is the fundamental representa-
tion of CALPHAD data in pycalphad. It can be consid-
ered as the in-memory analogue to a thermodynamic
database (TDB) file, and in fact pycalphad supports read-
ing and writing a large subset of the TDB file format
through the from_file() and to_file() methods
of the Database object. For convenience, calling the
Database constructor, e.g., Database(’example.
tdb’), will automatically call the appropriate parsing
function. Database files can also be passed as multi-line
strings; this is convenient for embedding TDB files in
short Python scripts. The current version of pycalphad
(0.4.2) only supports TDB files, but new file formats
could be easily implemented without modifying any
other code dependent on a Database since the objects
are not coupled to any particular file format. Using this
scheme it is unnecessary for the rest of pycalphad to
know anything about how CALPHAD data is represented
on disk.

Figure 1: General architecture of the pycalphad software package. Using parameters from the given Database, a
Model object is constructed for each phase and then fed into the calculation engine to produce results for the user.

Otis and Liu: pycalphad Art. 1, p. 3 of 11

Database exposes a phases attribute contain-
ing a Python dictionary mapping the name of a phase
to an object which contains information about the sub-
lattice model and phase constituents. It also exposes a
search() function for finding model parameters satis-
fying certain criteria. These are the primary features used
by the Model object to build the symbolic representation
of a phase’s thermodynamic model.

Model
A Model is an abstract representation of the molar
Gibbs energy function of a phase. This representation
is built around the computer algebra library SymPy [9],
allowing the variables and arithmetic functions required
by the CEF to be represented as an abstract graph of
Python objects. For example, the operation 2 + 3x might
internally be represented as Add(2,Mul(3,x)),
with larger structures for more complicated models.
For convenience, the library Model class defines sev-
eral thermodynamic properties. By default, attributes
are defined for the following, with Thermo-Calc-style
abbreviations listed in parentheses (either are allowed):
energy (GM), entropy (SM), enthalpy (SM),
heat capacity (CPM), mixing energy (MIX
GM), mixing entropy (MIX SM), mixing
enthalpy (MIX HM), mixing heat capacity
(MIX CPM), curie temperature (TC), and
degree of ordering (DOO). It is also possible
for users to define custom properties for particular pur-
poses. These SymPy-based abstract graphs, as well as
their exact first and second derivatives, are compiled to
machine code on demand for computational efficiency.

SymPy’s automatic code generation feature is used to
provide users maximum flexibility since it offers the
ease-of-use of working in Python without having to
make a significant performance tradeoff, compared to
working only in C, Fortran, or another low-level pro-
gramming language.

By default the library Model class is used for all
phases. It includes support for multi-component
Redlich-Kister polynomials using the Muggianu ternary
extension [10], the Inden-Hillert-Jarl magnetic model
[11, 12], and the order-disorder model for atomic order-
ing [13, 14]

For parametric model contributions, users can use
the param_search argument defined in the func-
tion signature of every energetic contribution to query
a Database for parameters satisfying some criteria.
The Model class defines a redlich_kister_sum()
convenience function to allow users to easily build multi-
component Redlich-Kister polynomials using parameters
defined in a Database. For example, to construct the
symbolic form of the mean magnetic moment of a phase
in Redlich-Kister form, inside custom_energy() one
could write

from tinydb import where
bm_param_query = (

(where(’phase_name’) == phase.name) & \
(where(’parameter_type’) == ’BMAGN’) & \
(where(’constituent_array’).
test(self._array_validity))

)
mean_magnetic_moment = \

self.redlich_kister_sum(phase, param_search,
bm_param_query)

Figure 2: Creating a custom model in pycalphad involves creating a subclass of the Model class. The key step is de-
claring the contributions class attribute. The CustomModel subclass can then be passed as an argument to
calculate() and equilibrium().

Otis and Liu : pycalphadArt. 1, p. 4 of 11

This code snippet will pull all the relevant magnetic
parameters from the database, filtered by self._
array_validity to include only the declared compo-
nents in our model.

calculate()
The calculate() function is the core property calcula-
tion routine of pycalphad. It does not concern itself with
equilibrium at all – that is the responsibility of equi-
librium() – but instead performs calculations for the
case when all independent degrees of freedom, i.e., tem-
perature, pressure, sublattice site fractions, are specified.
The most important arguments of calculate() are

def calculate(dbf, comps, phases, output=’GM’,
model=None, points=None,
T=None, P=None, **kwargs)

dbf is the Database containing the relevant param-
eters, comps is a list of desired components for the cal-
culation, and phases is a list of desired phases. (Users
can get a list of all phases using list(dbf.phases.
keys()).) By default calculate() will compute the
GM property of all phases, but users can specify any prop-
erty defined by the phase model, including properties
defined in custom models. By default the library Model
class is used for all phases.

Custom models can be specified via the model key-
word argument. For example, calculate(dbf,
comps, phases, model=CustomModel) over-
rides the default model for all phases in that energy
calculation. To override only a specific phase’s model,
we write model={’FCC_A1’: CustomModel}
to override the model for the FCC_A1 phase. More
sophisticated formulations are also possible. We
can use model=[{’FCC_A1’: CustomModel,
’LIQUID’: Model}, YetAnotherModel] for
the FCC_A1 phase to use CustomModel, the liquid
phase to use the library Model, and all other phases
in the calculation to use YetAnotherModel (not
defined here). The output keyword argument speci-
fies the property to calculate; this is a string corre-
sponding to an attribute of the library Model or a
user-defined subclass of Model, as discussed above.
For example, we write output=’CPM’ to indicate the
molar heat capacity should be computed. If output is
not specified, by default only the molar Gibbs energy
is calculated.

The points keyword argument accepts a multi-
dimensional array of shape (P, T, y), where P and T are
pressures and temperatures at which to perform the
calculation, and y is the number of sublattice site frac-
tions. Site fractions are ordered by sublattice num-
ber, then alphabetically within a sublattice, e.g., .

0 0 0 0 1 1, , , , , Al Ni Cr Mo Ni Nby y y y y y . If the same site fractions
are meant to be used for all temperatures and pressures
in the calculation, the P and T dimensions can be omit-
ted from the array. For multi-phase calculations, users can
pass a Python dictionary mapping the name of a phase to
an array of site fractions.

The T and P keyword arguments are the temperatures
and pressures in Kelvin and pascals, respectively, for the
calculation. (Specifically the units are whatever T and P
mean in the phase model but, in the default Model, SI
units are used.) Valid arguments are either a scalar or a
one-dimensional array. **kwargs is a placeholder for
other, less commonly used or experimental options; these
are discussed in the pycalphad documentation linked
from the GitHub repository. The return value of calcu-
late() is a multi-dimensional labeled array.

equilibrium()
The equilibrium() function is responsible for
equilibrium property calculation in pycalphad. Its key
arguments are

def equilibrium(dbf, comps, phases, conditions,
output=None, model=None, **kwargs)

dbf, comps, phases, output, model, and
**kwargs all have the same meaning as in the cal-
culate() function, with the additional feature that
output can be either a string or a list of strings. condi-
tions is a Python dictionary mapping state variables to
values. Valid arguments for a condition are a scalar, one-
dimensional array, or tuple with the form (start, stop, step).
For example, an isothermal step calculation might have
a conditions argument of the form {v.X(’AL’):
(0,1, 0.01), v.T: 600}, where v is defined as a
shortcut to pycalphad.variables, a library module
where all standard symbols are defined.

The return value of equilibrium() is a multi-dimen-
sional labeled array. Regardless of the value of output,
the result array will always include the equilibrium values
of the molar Gibbs energy and chemical potentials since
they are necessary to compute the solution.

Representation of results
The result of calls to calculate() and equilib-
rium() are xarray Dataset objects [15]. The xarray
Dataset object makes handling labeled multi-dimensional
arrays substantially simpler. Figure 3 shows the xarray
summary of the result of a 2-D mapping calculation. The
“Dimensions” line indicates the shape of the array, with
each dimension having a label and corresponding size. In
this case, equilibria at 170 temperatures and 100 compo-
sitions are computed for a two component system.

The “internal dof ” dimension corresponds to the sublat-
tice site fractions of a phase. For phases with fewer than
the maximum number of internal degrees of freedom,
the extra elements are filled with NaN (Not A Number).
The “vertex” dimension corresponds to the vertices of a
tie simplex (tie-line in binary systems). For single- phase
regions, only the first vertex is valid and the others are
filled with NaN.

The “Data Variables” section contains the actual
result of the calculation, with the corresponding
dimensions of each property array listed in paren-
theses, followed by the first few values. The “Phase”
and “NP” arrays contain the names and fractions of

Otis and Liu: pycalphad Art. 1, p. 5 of 11

phases, respectively, present under the corresponding
conditions. All the properties we specify in the out-
put keyword argument are included here. The xarray
library makes selecting and slicing the data very easy;
for example, to get all the Al chemical potentials at
600 K, we write eq.MU.sel(component=’AL’,
T=600), where eq is the result array. Note that a cur-
rent limitation is that the selection must correspond
directly to a calculated value; automatic interpolation
of the pressure, temperature, or composition is not
currently implemented.

The “Attributes” section contains some metadata about
the calculation such as the version of pycalphad used, the
calculation date, and the solver iterations.

Datasets have functions for reading from and writing
to disk, making storage of the results of long-running
calculations easier. Interested users are encouraged to
review the xarray documentation [15].

Quality control
Even as a relatively small project, pycalphad is sufficiently
complex that it is necessary to implement strategies to
avoid the regression, or accidental breakage, of features.

The key concepts to understand when managing and
developing a complex software project are source code
control (SCC) and continuous integration (CI). SCC is
critical to verify the integrity of the project over time
when admitting changes from multiple, scattered con-
tributors, but it is useful even in single-contributor pro-
jects because SCC systems serve as a semi-automated
project journal and backup system. This project uses
the popular Git SCC system [16] to manage its source
code. This allows the complete history of changes to be
recorded for all released and unreleased versions of the
software. Git also allows different versions of the soft-
ware to be stored in separate “branches,” allowing con-
current work on, e.g., new major features and bug fixes
to existing versions. The Git repository is publicly avail-
able online at GitHub (see section 2). Git also extends
into pycalphad’s versioning system: major.minor.
rev+N.gHASH, where HASH is the Git commit identi-
fier of the latest commit in the master branch of the
repository, and N is the number of commits ahead of
the last public release. For public releases, everything
after the + is omitted. For modifications which have
not yet been committed, i.e., in a developer’s local Git

Figure 3: This is a summary of the result object returned by a call to equilibrium() when performing a 2-D
mapping calculation. The “Dimensions” line indicates the shape of the array, with each dimension having a
label and corresponding size. In this case, equilibria at 170 temperatures and 100 compositions are computed
for a two component system. The “internal dof” dimension corresponds to the site fractions of a phase. The
“vertex” dimension corresponds to the vertices of a tie simplex (tie-line in binary systems). The “Data Variables”
section contains the actual result of the calculation, with the corresponding dimensions of each property array
listed in parentheses, followed by the rst few values. The “Attributes” section contains some metadata about
the calculation.

Otis and Liu : pycalphadArt. 1, p. 6 of 11

repository, the version identifier will be appended with
dirty.

CI is the approach of a project to simplify the soft-
ware release process by testing code incrementally, i.e.,
every time a revision is made. This makes releasing new
versions easier because the release manager can have
some confidence that the quality of the code is above
some automatically verified baseline. The pycalphad
package has a suite of CI tests designed to verify that a
revision to the code does not cause unintended behav-
ior. These tests are run automatically every time a new
revision is pushed to the Git repository on GitHub. If
a test fails for any reason, a report is generated includ-
ing all the error information. For example, there are
tests to ensure that computed values of properties for
several known systems do not change. The equilibrium
solver, TDB reading and writing, and phase model con-
struction code are also tested for consistency and accu-
racy. When a bug is reported and fixed in pycalphad,
a minimal test case is added to the suite whenever
possible to prevent the problem from appearing again
in a future release. In total, about 80% of pycalphad,
measured by lines of code, is currently tested, with
the remainder involving unreachable or experimental

code, or code which is difficult to test in an automated
fashion, e.g., plotting code.

(2) Availability
Operating system
A version of Linux, OSX, or Windows capable of running a
supported version of Python is required.

Programming language
Python 2.7+ or Python 3.4+ is required.

Additional system requirements
At least 2 GB of RAM is recommended.

Dependencies
• gcc, MinGW or Microsoft Visual C++ compiler and

toolchain
• matplotlib [17]
• numpy ≥ 1.9 [18]
• scipy [18]
• sympy [19]
• xarray [15]
• pyparsing [20]
• tinydb

Figure 4: Equilibrium chemical potential of Fe as a function of Al composition in the Al-Fe system at 600 K,
computed using pycalphad. Each point is color-coded with the corresponding stable phase; coexistence re-
gions can be identied by the chemical potential remaining at across a range of composition. The end-points of
such an iso-potential region can be directly connected to the corresponding tie-line at the given temperature.

Otis and Liu: pycalphad Art. 1, p. 7 of 11

Figure 5: Phase diagram of the Al-Fe system according to the COST 507 database, computed using pycalphad. The solid
black lines in the B2 region correspond to lines of constant “degree of ordering” in the B2 phase. The grey dashed line
is the Curie temperature. The bcc ordering transition is second-order since the degree of ordering is continuously
changing with respect to composition and temperature. Some lines in the diagram are not smooth due to the coarse-
ness of the grid used in the calculation; mapping in pycalphad is still experimental.

• autograd
• tqdm
• dask
• dill

List of contributors
Richard Otis (Pennsylvania State University) – Development
and testing
Zi-Kui Liu (Pennsylvania State University) – Project
supervision

Software location
Archive

Name: Figshare
Persistent identifier: https://dx.doi.org/10.6084/

m9.figshare.4213689
Licence: MIT
Publisher: Richard Otis
Version published: 0.4.2
Date published: 07/11/16

Code repository
Name: GitHub
Persistent identifier: https://github.com/pycalphad/

pycalphad
Licence: MIT
Date published: 09/11/16

Language
English

(3) Reuse potential
Al-Fe is chosen as an example system because the COST
507 database [21] containing this subsystem is publicly
available, and it allows us to test several pycalphad fea-
tures simultaneously since the system contains single-
sublattice solution phases, multi-sublattice ordered
phases, phases with magnetic ordering and stoichio-
metric compounds. The pycalphad package can per-
form computations for any number of components; we
restrict our example to a binary system only for the
simplicity of visualization.

Figure 4 shows the result of a one-dimensional (“step”)
equilibrium calculation at 600 K. The equilibrium chemi-
cal potential of Fe is shown as a function of Al compo-
sition. Each point is color-coded with the corresponding
stable phase; coexistence regions can be identified by the
chemical potential remaining flat across a range of compo-
sition. The end-points of such an iso-potential region can
be directly connected to the corresponding tie-line at the
given temperature. The source code for this calculation can
be found in Figure 6.

Figure 5 shows the phase diagram of the Al-Fe system
according to the COST 507 database. The solid black lines
in the B2 region correspond to lines of constant “degree

https://dx.doi.org/10.6084/m9.figshare.4213689
https://dx.doi.org/10.6084/m9.figshare.4213689
https://github.com/pycalphad/pycalphad
https://github.com/pycalphad/pycalphad

Otis and Liu : pycalphadArt. 1, p. 8 of 11

of ordering” in the B2 phase. The grey dashed line is the
Curie temperature. It is clear from the diagram that the
bcc ordering transition is second-order since the degree of
ordering is continuously changing with respect to compo-
sition and temperature. Some lines in the diagram are not
smooth due to the coarseness of the grid used in the cal-
culation; mapping in pycalphad is still experimental. The
source code for this calculation can be found in Figure 7.

Those interested in collaborating on pycalphad or
seeking support should contact the present authors

via e-mail or visit the official project website at
pycalphad.org, where additional documentation and
examples can be found.

Acknowledgements
Stimulating discussions with Bo Sundman and Neal Kelly
are highly appreciated.

Competing Interests
The authors have no competing interests to declare.

Figure 6: Source code for the Al-Fe chemical potential calculation in Figure 4.

http://www.pycalphad.org

Otis and Liu: pycalphad Art. 1, p. 9 of 11

Figure 7: Source code for the Al-Fe phase diagram in Figure 5.

Otis and Liu : pycalphadArt. 1, p. 10 of 11

References
1. Spencer, P 2008 A brief history of CALPHAD, Calphad

32(1): 1–8. URL http://www.sciencedirect.com/sci-
ence/article/pii/ S0364591607000764. DOI: https://
dx.doi.org/10.1016/j calphad.2007.10.001

2. Cao, W, Chen, S-L, Zhang, F, Wu, K, Yang, Y, Chang,
Y, Schmid-Fetzer, R and Oates, W 2009 Oates PAN-
DAT software with PanEngine, PanOptimizer and Pan-
Precipitation for multi-component phase diagram cal-
culation and materials property simulation, Calphad
33 (2): 328–342. URL http://www.sciencedirect.com/
science/article/pii/S0364591608000709. DOI: htt-
ps://dx.doi.org/10.1016/j.calphad.2008.08.004

3. Andersson, J-O, Helander, T, Höglund, L, Shi, P,
and Sundman, B 2002 Thermo-Calc & DICTRA, com-
putational tools for materials science, Calphad 26 (2):
273–312. DOI: https://dx.doi.org/10.1016/S0364-
5916(02)00037-8

4. Bale, C, Bélisle, E, Chartrand, P, Decterov,
S, Eriksson, G, Hack, K, Jung, I-H, Kang, Y-B,
Melançon, J, Pelton, A, Robelin, C, and Peters-
en, S 2009 FactSage thermochemical software and
databases recent developments, Calphad 33 (2):
295–311. DOI: http://dx.doi.org/10.1016/j.cal-
phad.2008.09.009

5. Sundman, B, Kattner, U R, Palumbo, M, and Fries,
S G 2015 OpenCalphad – a free thermodynamic soft-
ware, Integr. Mater. Manuf. Innov. 4 (1): 1. URL http://
www.immijournal.com/content/4/1/1. DOI: https://
dx.doi.org/10.1186/s40192-014-0029-1

6. Cool, T, Bartol, A, Kasenga, M, Modi, K, and García,
R E 2010 Gibbs: Phase equilibria and symbolic com-
putation of thermodynamic properties, Calphad 34
(4): 393–404. URL http://www.sciencedirect.com/
science/article/pii/ S0364591610000507. DOI: htt-
ps://dx.doi.org/10.1016/j.calphad.2010.07.005

7. Hillert, M 2001 The compound energy formalism, J.
Alloys Compd. 320 (2): 161–176. DOI: https://dx.doi.
org/10.1016/S0925-8388(00)01481-X

8. Barber, C B, Dobkin, D P, and Huhdanpaa, H 1996
The quickhull algorithm for convex hulls, ACM Trans.
Math. Softw. 22 (4): 469–483. DOI: https://dx.doi.
org/10.1145/235815.235821

9. Joyner, D, Čertík, O, Meurer, A, and Granger, B E
2012 Open source computer algebra systems, ACM
Commun. Comput. Algebr. 45 (3/4): 225. DOI: https://
dx.doi.org/10.1145/2110170.2110185

10. Muggianu, Y M, Gambino, M, and Bros, J P 1975
Enthalpies of formation of liquid alloys bismuth-galli-

um-tin at 723k-choice of an analytical representation
of integral and partial thermodynamic functions of
mixing for this ternary-system, J. Chim. Phys. Physico-
Chimie Biol. 72 (1): 83–88.

11. Inden, G 1976 Approximate description of the configu-
rational specific heat during a magnetic order-disorder
transformation, in: Proc. CALPHAD V, Max Planck Insti-
tut fuer Eisenforschung, Dusseldorf, Germany, pp. 1–13.

12. Hillert, M, and Jarl, M 1978 A model for alloying in
ferromagnetic metals, Calphad 2(3): 227–238. DOI:
https://dx.doi.org/10.1016/0364-5916(78)90011-1

13. Ansara, I, Sundman, B, and Willemin, P 1988 Ther-
modynamic modeling of or- dered phases in the Ni-
Al system, Acta Metall. 36 (4): 977–982. DOI: https://
dx.doi.org/10.1016/0001-6160(88)90152-6

14. Ansara, I, Dupin, N, and Sundman, B 1997 Reply
to the paper: When is a compound energy not a com-
pound energy? A critique of the 2-sublattice order/dis-
order model, Calphad 21 (4): 535–542. DOI: https://
dx.doi.org/10.1016/S0364-5916(98)00010-8

15. Hoyer, S, Kleeman, A, and Brevdo, E 2016 N-D la-
beled arrays and datasets in Python xarray 0.7.2 docu-
mentation. URL http://xarray.pydata.org/en/stable/.

16. Chacon, S and Straub, B 2014 Pro Git, Apress. DOI:
https://dx.doi.org/10.1007/978-1-4842-0076-6

17. Hunter, J D 2007 Matplotlib: A 2D graphics environ-
ment, Comput. Sci. Eng. 9 (3): 90–95. DOI: https://
dx.doi.org/10.1109/MCSE.2007.55

18. van der Walt, S, Colbert, S C, and Varoquaux, G
2011 The NumPy Array: A Structure for Efficient Nu-
merical Computation. Comput. Sci. Eng. 13 (2): 22–30.
URL http://ieeexplore.ieee.org/lpdocs/epic03/wrap-
per.htm?arnumber=5725236. DOI: https://dx.doi.
org/10.1109/MCSE.2011.37

19. Meurer, A, Smith, C P, Paprocki, M, Čertík, O,
Kirpichev, S B, Rocklin, M, Kumar, A, Ivanov,
S, Moore, J K, Singh, S, Rathnayake, T, Vig, S,
Granger, B E, Muller, R P, Bonazzi, F, Gupta, H,
Vats, S, Johansson, F, Pedregosa, F, Curry, M J, Ter-
rel, A R, Roučka, Š, Saboo, A, Fernando, I, Kulal, S,
Cimrman, R, and Scopatz, A SymPy: Symbolic com-
puting in Python. DOI: https://dx.doi.org/10.7287/
PEERJ.PREPRINTS.2083V3

20. McGuire, P 2007 Getting started with pyparsing,
O’Reilly.

21. Ansara, I, Dinsdale, A, and Rand, M 1998 COST 507
Thermochemical database for light metal alloys (jul).
URL https://materialsdata.nist.gov/dspace/xmlui/
handle/11256/618.

http://www.sciencedirect.com/science/article/pii/%20S0364591607000764
http://www.sciencedirect.com/science/article/pii/%20S0364591607000764
https://dx.doi.org/10.1016/j calphad.2007.10.001
https://dx.doi.org/10.1016/j calphad.2007.10.001
http://www.sciencedirect.com/science/article/pii/%20S0364591608000709
http://www.sciencedirect.com/science/article/pii/%20S0364591608000709
https://dx.doi.org/10.1016/j.calphad.2008.08.004
https://dx.doi.org/10.1016/j.calphad.2008.08.004
https://dx.doi.org/10.1016/S0364-5916(02)00037-8
https://dx.doi.org/10.1016/S0364-5916(02)00037-8
http://dx.doi.org/10.1016/j.calphad.2008.09.009
http://dx.doi.org/10.1016/j.calphad.2008.09.009
http://www.immijournal.com/content/4/1/1
http://www.immijournal.com/content/4/1/1
https://dx.doi.org/10.1186/s40192-014-0029-1
https://dx.doi.org/10.1186/s40192-014-0029-1
http://www.sciencedirect.com/science/article/pii/%20S0364591610000507
http://www.sciencedirect.com/science/article/pii/%20S0364591610000507
https://dx.doi.org/10.1016/j.calphad.2010.07.005
https://dx.doi.org/10.1016/j.calphad.2010.07.005
https://dx.doi.org/10.1016/S0925-8388(00)01481-X
https://dx.doi.org/10.1016/S0925-8388(00)01481-X
https://dx.doi.org/10.1145/235815.235821
https://dx.doi.org/10.1145/235815.235821
https://dx.doi.org/10.1145/2110170.2110185
https://dx.doi.org/10.1145/2110170.2110185
https://dx.doi.org/10.1016/0364-5916(78)90011-1
https://dx.doi.org/10.1016/0001-6160(88)90152-6
https://dx.doi.org/10.1016/0001-6160(88)90152-6
https://dx.doi.org/10.1016/S0364-5916(98)00010-8
https://dx.doi.org/10.1016/S0364-5916(98)00010-8
http://xarray.pydata.org/en/stable/
https://dx.doi.org/10.1007/978-1-4842-0076-6
https://dx.doi.org/10.1109/MCSE.2007.55
https://dx.doi.org/10.1109/MCSE.2007.55
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5725236
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5725236
https://dx.doi.org/10.1109/MCSE.2011.37
https://dx.doi.org/10.1109/MCSE.2011.37
https://dx.doi.org/10.7287/PEERJ.PREPRINTS.2083V3
https://dx.doi.org/10.7287/PEERJ.PREPRINTS.2083V3
https://materialsdata.nist.gov/dspace/xmlui/handle/11256/618
https://materialsdata.nist.gov/dspace/xmlui/handle/11256/618

Otis and Liu: pycalphad Art. 1, p. 11 of 11

How to cite this article: Otis, R and Liu, Z-K 2017 pycalphad: CALPHAD-based Computational Thermodynamics in Python.
Journal of Open Research Software, 5: 1, DOI: http://dx.doi.org/10.5334/jors.140

Submitted: 09 August 2016 Accepted: 10 November 2016 Published: 09 January 2017

Copyright: © 2017 The Author(s). This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

Journal of Open Research Software is a peer-reviewed open access journal published by
Ubiquity Press OPEN ACCESS

http://dx.doi.org/10.5334/jors.140
http://creativecommons.org/licenses/by/4.0/

	(1) Overview
	Introduction
	Implementation and architecture
	Database
	Model
	calculate()
	equilibrium()

	Representation of results
	Quality control

	(2) Availability
	Operating system
	Programming language
	Additional system requirements
	Dependencies
	List of contributors
	Software location
	Archive

	Code repository
	Language

	(3) Reuse potential
	Acknowledgments
	Competing Interests
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7

