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(1) Overview
Introduction
Preparing data for statistical analysis is a very common 
task in experimental research fields. For example in 
Experimental Psychology, often the outcome of running 
each subject in an experiment is a file (e.g., a text file) con-
taining a raw data table in a long format with numerical 
description of the subject’s performance in the various 
experimental conditions. The columns in this raw data 
table describe the independent variables, dependent vari-
ables, and various characteristics of the subject and the 
experiment (e.g., age, gender, and a numerical description 
of the stimulus in the experiment). The rows in this raw 
data table describe the observations (i.e., trials) conducted 
during the experiment, such that each row in the table 
corresponds to one observation. An example for such a 
raw data table of a single subject in an experiment can 
be found in Appendix A Table 1. Usually, this raw data 
table has over a hundred lines, and the number of raw 
data files corresponds to the number of subjects in a given 
experiment. Next, the researcher is interested in conduct-
ing both descriptive and inferential statistical analysis. 
However first, in order to run this statistical analysis, the 
raw data needs to be merged and aggregated.

Merging individual raw data tables requires vertically 
concatenating the tables into one big table containing raw 
data from all subjects (i.e., the merged table). Next, aggre-
gating the merged table includes reducing the amounts 
of data to the desired level of information, resulting in 
a finalized table, usually in a wide format, in which each 

row in the table refers to a specific subject (which is the 
variable that identifies the unit upon which the measure-
ment took place; i.e., the id variable), and each cell in the 
table usually reflects the averaged performance of that 
subject according to the desired grouping variables (i.e., 
the independent and dependent variables). This finalized 
table often contains only selected variables relative to the 
merged table. An example for such finalized table can be 
found in Appendix A Table 2.

These two steps pose a major problem for students and 
researchers who many times find themselves doing these 
procedures in Excel by pasting one raw data table after the 
other to merge the data and then use Pivot tables to aggre-
gate it, which takes a lot of time and energy, and is prone 
to various mistakes. For example, a standard procedure 
in analyzing psychological data is to remove (i.e., trim) 
outliers before conducting descriptive and inferential 
statistical analysis, assuming these outliers do not reflect 
the investigated process in question. One procedure to 
trim outliers is by computing the arithmetic mean (i.e., 
mean) for each cell in the aggregated table after rejecting 
observations that fell outside the range of a predefined 
criterion, which is usually a number of standard devia-
tions (SDs) from the mean of that cell (e.g., computing 
the mean of a cell after rejecting observations that were 
more than 2.5 SDs from the mean of that cell; a proce-
dure also known as the restricted means procedure). This 
procedure requires a combination of a number of Excel 
functions that are implemented in a few steps because the 
user needs to iterate and compute the criterion for each 
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subject, reject observations that fell outside that criterion, 
and then aggregate the trimmed data. Note that each 
trimmed observation changes the mean, leaving a lot of 
room for ad-hoc decisions and changes by the user about 
deciding when to stop trimming and is prone to mistakes 
if the user does not use the same criteria for all subjects.
R [1], which is a free language and computing envi-

ronment for statistical analysis and graphics, has some 
functions for aggregating data such as the tapply() 
function form the base package [1], dcast() from 
the reshape2 package [2] and group_by() and 
summarise() from the dplyr package [3]. In prin-
ciple, the user can aggregate the data using these kinds 
of functions. However, this will require detailed and 
serious thinking about how to put together a code that 
will provide the desired result. In addition, these types 
of functions can handle only a few scenarios, and each 
function requires the input arguments in a somewhat 
different manner. Moreover, even after tailoring the 
code to produce the desired result for the analysis in 
hand, it will require changes in order to produce the 
desired results in future analysis. In addition, to the 
best of our knowledge, until now there was no particu-
lar function in R that enabled to import individual raw 
data tables from an external folder or folders and ver-
tically concatenate them into one big table. The user 
had to write its own function, or to use external tools 
to R such as Excel Automation [4], EXMERG [5], or 
PEBL Data File Combiner [6]. While these kind of tools 
are worthy to use, they do not enable to conduct the 
whole analysis from within the R platform and create 
a unified chain of analysis. Avoiding all these short-
comings, prepdat [7] – an R Package for Preparing 
Experimental Data for Statistical Analysis- provides 
a general framework to overcome these problems 
because it is specially designed to merge and aggregate 
data with any number of grouping variables, requiring 
minor changes from one analysis to the other, and pro-
vides various measures of the dependent variable while 
using identical criteria for all subjects.

The goal of the present paper is to introduce prep-
dat, an R package that enables the user to easily and 
quickly merge (using the file_merge() function) 
and aggregate raw data tables (using the prep() 
function) while keeping track and summarizing every 
step of the preparation. Except for means, which are 
very common dependent measures, prep() includes 
several other possibilities for the aggregated values 
of the dependent variable such as medians, percen-
tiles, and means after rejecting observations above SD 
criterion. In addition, prep() includes special trim-
ming procedures for measurements of reaction-times 
(RTs) [8]. In this paper we provide a manual for using 
prepdat. We first overview prepdat and then dem-
onstrate how to implement prepdat using exam-
ple data. prepdat is a free R package, which makes 
it available for use to any user from his or her own 
computer. We hope prepdat will help researchers to 
optimize and speedup their analysis, and help to bet-
ter understand the results.

Implementation and architecture
The two functions the user needs for preparing the final-
ized table ready for further statistical analysis are the file_
merge() and the prep() functions. Except for these 
functions, we also made the internal functions in prep avail-
able (such as the non_recursive_mc(), modified_
recursive_mc(), and the hybrid_recursive_mc() 
functions), however the user does not need to call these func-
tions by because prep() will call them if needed.

The file_merge() vertically concatenates files con-
taining data tables in a long format into one big single 
table (i.e., the merged table). Then, the prep() function 
aggregates the merged table or any other table in a long 
format according to any number of grouping variables, 
which makes it suitable for various types of experimental 
designs such as between-subjects designs, within-subjects 
(i.e., repeated measures) designs, and mixed designs (i.e., 
designs that combine between-subjects and within-subjects 
independent variables). prep() is very easy to use, and 
only involves filling various arguments and when needed, 
making changes to default procedures for removing outli-
ers. Moreover, because all calculations and procedures are 
done at once for all subjects, prep() ensures that the 
criteria for trimming procedures are identical for all sub-
jects. Furthermore, prep() creates a summary file that 
helps to keep track of the finalized table it created, and 
this finalized table can be further analyzed in R or it can 
be exported to other statistical programs for further analy-
sis. As already mentioned, prep() includes several possi-
bilities for dependent measures including harmonic means 
and SDs for each cell in the finalized table. Please note that 
the SD for this procedure and for all trimming procedures 
in prep() is calculated using denominator N and not 
N – 1, which is the denominator in the sd() function in R. 
Furthermore, prep() provides the 5th, 25th, 50th, 75th, 
and 95th percentile of the dependent variable, and the user 
can specify any other desirable percentile (e.g., the 66th per-
centile). Looking at different percentiles of the dependent 
variable can provide information about the source of the 
effect in question.

In addition, prep() enables to compute the depend-
ent measure for each cell after rejecting outliers accord-
ing to several trimming procedures. The user can specify 
a window of acceptable observations for computing the 
dependent measures according to any desirable logical 
condition/s. For example, when measuring RTs, the user 
can specify a window between 100 milliseconds (ms) and 
2000 ms for valid observations, and prep() will do all 
further computations only on observations that were 
within this window. Additional trimming procedures 
include means when the analyzed window is determined 
by a range of number of SDs below and above the mean 
of each cell (e.g., ±2 SD). The default criteria for this pro-
cedure are 1 SD, 1.5 SDs, and 2 SDs. Namely, prep() 
provides the means according to each of these criteria. 
However, the user can specify any desirable number cri-
teria of SDs (e.g., 2.5 SDs). Moreover, prep() provides 
for each criterion the number of observations rejected 
for each cell, number of observations for each cell before 
rejection, and proportions of rejected observations for 
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each cell. This additional information can help track sub-
jects with high rejection rates.

Moreover, prep() includes three unique trimming 
procedures for RTs [8]. These procedures were created 
to overcome the effect of the number of observations 
for each experimental cell on outlier removal. As Miller 
[9] demonstrated, RTs distributions are characterized by 
a positive skew. When calculating means after rejecting 
outliers according to SD criterion, these means are sensi-
tive to the amount of skewness in the distribution and to 
the number of observations on which they are calculated. 
Using Monte Carlo simulations, Van-Selst and Jolicoeur 
[8] developed new outlier eliminations procedures by 
applying recursive procedures and SD criteria that take 
into account the number of observations in each cell, 
which enabled them to decrease the effect of sample size 
on the means.

The first procedure is the Non-Recursive Procedure with 
Moving Criterion, which computes the mean for each cell 
after rejecting observations that were more than a crite-
rion number of SDs from the overall mean of that cell. The 
notable aspect of this procedure is that the criterion for 
each cell is determined according to the number of obser-
vations in that cell. These criteria were originally deter-
mined by calculations done on theoretical distributions 
of RTs that were examined by Van-Selst and Jolicoeur [8] 
(for more information, see Table 4 in [8]). The second pro-
cedure is the Modified-Recursive Procedure with Moving 
Criterion, in which the mean and SD of each cell and for 
each round are computed based on observations of the 
cell after temporarily removing the highest observation. 
Then, for each round if the highest or lowest observations 
are more than a criterion number of SDs from the over-
all mean of the cell, they are removed from the sample. 
This procedure is continued until the stopping rule is met. 
The SD criterion is determined in the same way as in the 
Non-Recursive Procedure with Moving Criterion. Lastly, 
prep() can implement the Hybrid-Recursive Procedure 
with Moving Criterion (this procedure was suggested by 
Van-Selst and Jolicoeur [8]), which takes the average for 
each cell of the means produced in the Non-Recursive and 
Modified-Recursive procedures with moving criterion. For 
each of these three procedures prep() also provides the 
number of observations rejected for each cell, the number 
of observations for each cell before rejection, and the per-
cent of rejected observations for each cell.

Installing prepdat
This section is intended for non-professionals R users, 
such that even users that are unfamiliar with the R soft-
ware could use prepdat. To install prepdat, start R 
and then type in the console1:
> install.packages(“prepdat”)

This will install prepdat and its dependencies on your 
system. After installing prepdat, type the following in 
the console to load prepdat into R for use in the current 
session (note that each time the user starts a new R ses-
sion prepdat needs to be loaded for that session):
> library(“prepdat”)

Example Data
The example data, which can be downloaded from the 
Example Data repository on GitHub, contains individual 
raw data files collected from 21 subjects in our lab. These 
subjects performed a visual search task similar to the one 
used in Lavie and Cox [11], in which they had to indicate 
on each trial which one of two possible letters was pre-
sent in a circular array of letters (e.g., deciding whether 
an X or N appeared in the array). On some trials, a periph-
eral distractor letter (flanker) appeared outside the circu-
lar array and either matched the target for that trial (the 
Compatible condition), matched the other possible target 
(the Incompatible condition), or was not presented (the 
No-flanker condition). On half of the blocks, the flanker 
was presented at the same peripheral location marked by 
a placeholder throughout the whole task (Cue condition), 
and in the remaining blocks it was presented at random 
peripheral locations and was not marked by a placeholder 
(No-cue condition). The order of the Cue and No-cue 
blocks was counterbalanced between subjects. An exam-
ple for part of a raw data file collected from one subject 
in the experiment can be found in Appendix A Table 1. 
An index for each of the columns in the raw data can be 
found in Appendix A Table 3.

Merging Raw Data Files Using file merge()
The file_merge() merges the individuals raw data 
files in which each row corresponds to a single trial (i.e., 
observation; see Appendix A Table 1) into one big raw data 
table containing a ‘chain’ of raw data from all subjects, one 
after the other (i.e., the merged table). For the function 
to work, the raw data files should be in the same format 
that is either txt or csv format. This function accepts the 
following arguments:

file_merge(
folder_path = NULL
, has_header = TRUE 
, new_header = c() 
, raw_file_name = NULL 
, raw_file_extension = NULL 
, file_name = “dataset.txt” 
, save_table = TRUE 
, dir_save_table = folder_path 
, notification = TRUE 
)

In the folder_path argument, the user should enter the 
path of the folder in which the files to be merged will be 
searched. The search is recursive, which means files can be 
located in different subdirectories and the search will con-
tinue until relevant files are found. In the has_header 
argument, the user should enter using logicals whether 
the files to be merged have headers or not. The default for 
this argument is TRUE. The new_header argument is 
suitable to a situation in which the files to be merged do 
not have headers, or in case the user wants to replace the 
current header. Specifying the new header can be done 
using a string vector in this argument. Next are the raw_
file_name and raw_file_extension arguments. 
In the raw_file_name the user should enter the shared 
name of the files to be searched and merged, not includ-
ing the file extension. The file extension (i.e., csv or txt) 
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should be entered using the raw_file_extension 
argument. The next three arguments concern the merged 
table. In the file_name argument, the user should enter 
a string with the name of the file file_merge() creates 
that will contain the merged table (default for this argu-
ment is “dataset.txt”). The file_merge() function 
will save the merged table into a txt or csv file only in case 
the save_table argument is set to TRUE, which is also 
the default for this argument. We recommend saving the 
merged table into a file because this will save the user from 
merging the raw data files again if in case aggregation of 
the merged table is needed in different R sessions. In the 
dir_save_table argument the user can enter a path 
in which the merged table will be saved. In case no such 
path is provided, file_merge() will save the merged 
table in the path provided in folder_path. Lastly, in 
case the notification argument is set to TRUE (which is also 
the default for this argument), file_merge() will print 
messages to the console about the progress of the function. 
We recommend keeping the default value for this argu-
ment as well. To merge the individual raw data files of the 
example data (note that you might need to set a different 
folder_path):

> merged_t <- file_merge(
+    folder_path = getwd()
+    , has_header = TRUE
+    , new_header = c()
+    , raw_file_name = “sub”
+    , raw_file_extension = “txt”
+    , file_name = “merged_t.txt”
+    , save_table = TRUE
+    , dir_save_table = NULL
+    , notification = TRUE
+   )
Found 21 files
21 files were merged and saved into merged_t.txt
file_merge() finished!

After running this function, a new text file called 
merged_t.txt containing the merged table should 
appear in the appropriate folder. This file can also be 
downloaded from the Example Data repository on 
GitHub.

Aggregating the Merged Raw Data Table Using 
prep()
After merging raw data files using the file_merge() 
function, the user is ready to continue preparing the final-
ized table using prep(), which is the main function of 
prepdat. prep() expects that values in the merged 
table upon which it performs calculations will be numeric 
(except for names of the columns) and will give an error 
message if it finds other values. prep() contains the 
following arguments:
prep(
 dataset = NULL
 , file_name = NULL 
 , file_path = NULL 
 , id = NULL 
 , within_vars = c() 
 , between_vars = c() 
 , dvc = NULL 
 , dvd = NULL 
 , keep_trials = NULL 
 , drop_vars = c() 

 , keep_trials_dvc = NULL 
 , keep_trials_dvd = NULL 
 , id_properties = c() 
 , sd_criterion = c(1, 1.5, 2) 
 , percentiles = c(0.05, 0.25, 0.75, 0.95) 
 , outlier_removal = NULL 
 , keep_trials_outlier = NULL 
 , decimal_places = 4 
 , notification = TRUE 
 , dm = c() 
 , save_results = TRUE 
 , results_name = “results.txt” 
 , results_path = NULL 
 , save_summary = TRUE 
)

The user needs to notify prep() which table to aggre-
gate. This is done by the dataset or the file_name 
arguments, which one of them must be provided. The 
dataset argument specifies the name of the merged 
table created using file_merge() (i.e., dataset = 
merged_t in the example data). The file_name argu-
ment specifies the name of a txt or csv file containing 
the merged table after merging the files using file_
merge() (i.e., file_name = “merged_t.txt” in 
the example data) or other external function to R. In case 
the file_name argument was used, then the file_
path argument, which specifies a string with the path 
of the folder in which the file entered in file_name is 
located, must be provided.

The next steps are to let prep() know what are the 
grouping variables for aggregating the merged table, or 
in other words to specify the independent and depend-
ent variables in the experiment. This is done using the id, 
within_vars, between_vars, dvc, and dvd argu-
ments. The id argument specifies the name of the column 
in the merged table that contains the variable indicating 
the case identifier (i.e., subject number; id = “sub-
ject” in the example data). The values for id should be 
unique for each subject in the experiment, and this argu-
ment must be provided. The within_vars argument 
is a string vector specifying the name/s of column/s con-
taining independent variables manipulated or observed 
within-ids (i.e., repeated measurements, also known as 
within-subjects). In the example data this will be:
within_vars = c(“cue_nocue”, “compatibility”)

Note that the order of the columns names in the 
within_vars argument is highly important, because 
it determines the order of the columns for each depend-
ent measure in the finalized table. Namely, prep() 
aggregates the columns for the dependent measures by 
first dividing them to the levels of the first independent 
variable in within_vars, and then within each level 
prep() divides the columns according to the next vari-
able in within_vars and so forth. Therefore, the order 
of the independent variables in within_vars should 
be according to the hierarchical order the user wishes. The 
between_vars argument is a string vector specifying 
the name/s of column/s containing independent vari-
ables manipulated or observed between-ids (i.e., between-
subjects), and the order of the columns names for this 
argument does not matter. In the example data this will 
be:
between_vars = c(“order”)
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Since the within_vars and the between_vars denote 
the independent variables in the experiment, which are the 
grouping variables for the aggregation, at least one of these 
arguments must be provided. Next, the dvc and the dvd 
arguments denote the names of the dependent variables 
in the merged table, and should be entered as strings. The 
dvc argument stands for continuous dependent variable, 
and therefore is the name of the column in the merged 
table that contains a dependent variable in an interval or 
ratio scale (e.g., RTs; dvc = “rt” in the example data). 
The dvd argument stands for discrete dependent variable, 
and therefore is the name of the column in the merged table 
that contains a dependent variable with discrete values (e.g., 
0 and 1 when measuring accuracy; dvd = “ac” in the 
example data). Moreover, it is very important to make sure 
to enter the name of the continuous dependent variable in 
the dvc argument and the discrete dependent variable in 
the dvd argument and not the other way around in order 
for prep() to work properly. Please note that at least one of 
these arguments must be provided.

The aforementioned arguments are the ones the user 
must provide in order for prep() to work properly, while 
the following arguments are the ones that enable the user 
to produce the dependent measure according to desirable 
specific needs. The keep_trials and the drop_vars 
arguments allow deleting unnecessary observations (i.e., 
rows) and variables (i.e., columns) in the merged table, 
before the aggregation takes place. In the keep_trials 
argument the user should specify with logical conditions 
provided as one string, which observations are desir-
able to keep for further calculations. For example, if the 
merged table contains practice trials for each subject, the 
user should remove these observations by specifying how 
these observations were coded in the merged table. In the 
example data the practice trials are the ones for which the 
“block” column equals to zero and therefore the keep_
trials argument will be:
keep_trials = “raw_data$block > 0”

raw_data is the internal object in prep() represent-
ing the merged table. All logical conditions should be put 
in the same string and be concatenated by & or |. For 
example, if the user wants to keep observations except for 
the ones in block 0 and block 3 this argument will be as 
follow:
keep_trials = “raw_data$block > 0 & raw_
data$block < 3”

In addition, note that the logical conditions for this argu-
ment can relate to different columns in the merged table. 
For example if the user for a specific analysis is interested 
in keeping observations except for the ones in block 0 and 
observations in each block after the 10th trial, this argu-
ment will be as follows:
keep_trials = “raw_data$block > 0 & raw_
data$trial_num > 10”

In the drop_vars argument the user should specify 
the names of the variables in the merged table that need 
to be deleted. Names should be entered as strings sepa-
rated by a comma. In the example data, for instance, this 
can be
drop_vars = c(“fix1_duration”, “distance”)

Note that all further arguments of prep() will relate 
to the remaining rows and columns in the merged table. 
Therefore, the user should carefully choose which (if any) 
rows and columns need to be removed from further cal-
culations using the keep_trials and drop_vars 
arguments. We recommend using these arguments in 
order to delete observations and variables that have no 
significance for further analysis (such as practice trials, as 
mentioned above).

The next arguments are the keep_trials_dvc and 
the keep_trials_dvd that enable the user to keep 
specific observations for calculations of the dependent 
measures specified in dvc and dvd (respectively; except 
for means according to the outlier removal procedures; 
to remove observations for these procedures see the 
keep_trials_outlier argument below). The user 
can specify a window of acceptable observations for com-
puting the dependent measures according to any logi-
cal conditions. These arguments should be specified as 
logical conditions provided as strings as in the keep_
trials argument. In the example data the dependent 
variable for dvc is RT and the dependent variable for 
dvd is accuracy. A reasonable window of observations 
for these dependent measures in these kinds of experi-
ments is to keep observations in which RT was above 
100 ms and below 2000 ms for both RT and accuracy, 
and in addition for RTs, to keep only observations in 
which the subject’s response was correct. Therefore, the 
keep_trials_dvc argument which relates to the 
continuous dependent variable (i.e., the variable entered 
in dvc) will be:
keep_trials_dvc = “raw_data$rt > 100 & raw_
data$rt < 2000 & raw_data$ac == 1”

and the keep_trials_dvd argument which relates to 
the discrete dependent variable (i.e., the variable entered 
in dvd) will be:
keep_trials_dvd = “raw_data$rt > 100 & raw_
data$rt < 2000”

The next argument is id_properties. This argu-
ment is suitable for a situation in which the user logged 
for each trial and for each subject in the experiment also 
other important details such as age and gender as in the 
example data. In this case, the user can specify the name 
of these variables as strings in the id_properties vec-
tor. For instance in the example data this will be:
id_properties = c(“age”, “gender”)

In return, the values for these variables for each subject 
will appear in the finalized table.

The sd_criterion and the percentiles argu-
ments allow the user to get the dependent measure 
specified in dvc according to different cross sections. 
In the sd_criterion argument the user can specify 
a number of SDs for which prep() will calculate the 
mean for each cell of dvc after rejecting observations 
that were below and above the SD from the mean of that 
cell. As already mentioned, default criteria for this pro-
cedure are sd_criterion = c(1, 1.5, 2), and 
the user can specify any desirable criterion number of 
SDs (e.g., 2.5 SDs). The following argument is percen-
tiles, which will give the percentile of dvc according 
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to any percentile in percentiles. The default for this 
argument is:
percentiles = c(0.05, 0.25, 0.75, 0.95)

Note that the median, which is the 50th percentile, will be 
calculated by default even if the user does not enter it to 
percentiles.

The outlier_removal argument is relevant when the 
dependent measure in dvc is reaction-time (i.e., RT). This 
argument enables the user to get the mean of the depend-
ent variable in dvc after rejecting outliers according to one 
of the three outlier removal procedures with moving crite-
ria [8]. By assigning 1, 2, or 3 to the outlier_removal 
argument, prep() will execute the Non-Recursive, the 
Modified-Recursive, or the Hybrid-Recursive procedures, 
respectively. By default, prep() will not execute any of 
these procedures. In addition, perp() can perform only 
one of these procedures at a time. In the example data, we 
decided to perform the Modified-Recursive procedure, and 
therefore this argument will be:
outlier_removal = 2

The keep_trials_outlier enables to keep specific 
observations for performing one of the outlier removal 
procedures. In the example data for instance, since dvc is 
RT, only correct observations (i.e., observations for which 
the “ac” column equals to 1) are analyzed and therefore 
this argument will be:
keep_trials_outlier = “raw_data$ac == 1”

This argument should be specified as logical conditions 
provided as a string as in the keep_trials argument.

The remaining arguments are decimal_places, 
notification, dm, save_results, results_
name, and save_summary, and are aimed to adjust 
the finalized table prep() returns. decimal_places, 
as its name suggests, allows determining the number of 
decimal places for the dependent measures of dvc, with 
the default being four places. We recommend using dec-
imal_places = 0 whenever measuring RTs in ms. 
For the dependent measures of dvd, prep() gives three 
decimal places. The notification argument, as in the 
file_merge() function, prints messages about the 
progress of prep(). The dm argument, which is a short-
cut for dependent measures, is a string vector that allows 
the user to specify the desirable dependent measures in 
case the user does not want all the dependent measures 
perp() outputs by default. For instance, if the user 
wants only the mean and median of dvc and the mean 
and error rate of dvd to be in the finalized tale, the dm 
argument will be as follows:
dm = c(“mdvc”, “meddvc”, “mdvd”, “merr”)

mdcv stands for mean dvc, meddvc stands for median 
dvc, and mdvd and merr stand for mean dvd and mean 
error, respectively. The complete list of the names of the 
dependent measures prep() outputs can be found in 
Appendix A Table 5. All dependent measures except for 
the outlier removal procedures can be specified in dm.
prep() will save the finalized table into a txt or csv 

file only in case the save_results argument is set 
to TRUE (i.e., save_results = TRUE, which is also 
the default for this argument). In case save_results 

is TRUE, the user can specify the name of the file with 
the finalized table as a string (including txt or csv exten-
sion) in results_name (the default for this argument is 
results_name = “results.txt”). In addition, in 
case the user wants the file with the finalized table to be 
saved in a different folder than the one specified in file_
path, then the path to this folder should be entered as a 
string in results_path. Finally, if the save_summary 
is set to TRUE, prep() will also create a summary txt or 
csv file (depending on the file extension of results_
name) that helps to keep track of the type and the num-
ber of observations that were deleted from the merged 
table (see below for more details). The complete function 
of prep() in order to aggregate the example data is as 
follows (the complete txt file, results_n21.txt, with 
the finalized table of the example data can be downloaded 
form the Example Data repository on GitHub):
> results_n21 <- prep(
+ dataset = merged_t 
+ , file_name = NULL 
+ , file_path = NULL 
+ , id = “subject” 
+ ,  within_vars = c(“cue_nocue”, 

“compatibility”) 
+ , between_vars = c(“order”) 
+ , dvc = “rt” 
+ , dvd = “ac” 
+ , keep_trials = “raw_data$block > 0” 
+ , drop_vars = c() 
+ ,  keep_trials_dvc = “raw_data$rt > 100 & raw_

data$rt < 2000 & raw_data$ac == 1” 
+ ,  keep_trials_dvd = “raw_data$rt > 100 & raw_

data$rt < 2000” 
+ , id_properties = c(“age”, “gender”) 
+ , sd_criterion = c(1, 1.5, 2) 
+ , percentiles = c(0.05, 0.25, 0.75, 0.95) 
+ , outlier_removal = 2 
+ , keep_trials_outlier = NULL 
+ , decimal_places = 0 
+ , notification = FALSE 
+ , dm = c() 
+ , save_results = TRUE 
+ , results_name = “results_n21.txt” 
+ , results_path = getwd() 
+ , save_summary = TRUE 
+ )
results_n21.txt has 21 observations and 148 
variables
prep() returned a data frame to console
Hip Hip Hooray! prep() finished
Have a great day and may all your results be 
significant!

Overview of the Finalized Table prep() Returns
In this section we will go over the finalized table prep() 
returns. The first six rows of the finalized table for the 
example data can be found in Appendix A Table 4. The first 
column in the finalized table will always be the id column 
(“subject” in the example data), and the next columns 
will be the ones entered in the id_properties argu-
ment (“age” and “gender” in the example data).

The next columns of the finalized table contain the 
dependent measures according to the order specified in 
Appendix A Table 5. The number of columns for each 
dependent measure in the finalized table is according to 
the experimental design. In the example data there was one 
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between-subjects variable (Order: Cue blocks first, No-cue 
blocks first), and therefore the next column in the final-
ized table will contain a column named “order” specify-
ing the level of that variable for each subject. Next, there 
were two within-subjects independent variables (Cue, 
with two levels: Cue, No-cue; Compatibility, with three 
levels: Compatible, Incompatible, No-flanker), and the 
hierarchical order in which these variables were entered 
into the within_vars argument was first the Cue con-
dition and then the Compatibility condition. Thus, for 
each dependent measure in the finalized table there will 
be six columns according to Cue × Compatibility. The first 
dependent measure is the mean for the dependent vari-
able specified in dvc. In the example data this was RT and 
therefore the first six columns are mean RTs. For example, 
the “mdvc1” is the mean RT for Cue Compatible trials, 
the “mdvc2” is the mean RT for Cue Incompatible tri-
als, and the “mdvc3” is the mean RT for Cue No-flanker 
trials. Columns “mdvc4” to “mdvc6” will be the mean 
RT for the Compatible, Incompatible, and No-flanker trials 
for the No-cue condition, respectively.

Overview of the Summary File prep() Creates
As already mentioned, if save_summary is set to TRUE, 
prep() will also create a summary txt or csv file that helps 
to keep track on the finalized table. The summary file for 
the Example Data can be found in Appendix A Figure 1 
(this file, results_n21_summary.txt, can also be 
downloaded from GitHub). The file contains the name 
of the merged table and the date in which prep() was 
run. The following lines specify how many observations 
the merged table had in each step of prep(). The first 
line gives the number of observations and variables of the 
merged table before any observations or columns were 
removed (7980 observations and 13 variables in the exam-
ple data). Then, you will find which logical conditions 
and columns were entered into the keep_trials and 
drop_vars arguments and how many observations and 
columns were left after removing observations according 
to these arguments (7560 observations and 13 variables in 
the example data). The next few lines specify which logical 
conditions were entered into the keep_trials_dvc, 
keep_trials_outlier, and keep_trials_dvd; 
how many observations and variables were left for each 
of the dependent variables entered in dvc, dvd, and how 
many observations and variables were left for the outlier 
removal procedure in case the outlier_removal() 
argument in prep() was used. The last part of the sum-
mary file describes which subjects were entered into the 
analysis (i.e., which ids where included in the finalized 
table), what were the independent between-subjects vari-
ables and their levels, what were the id properties (e.g., 
age and gender), and finally what were the within-subjects 
independent variables, their levels, and their hierarchi-
cal order (i.e., what were the grouping variables for the 
aggregation).

This summary file can be later used in order to remem-
ber how the finalized table is organized when running 
both descriptive and inferential statistical analysis. In 

addition, this file can come in handy when writing the 
methods section of the manuscript. Often, it takes a while 
from the time the researcher finished analyzing the data 
until starting to write the manuscript. The researcher can 
easily extract from the summary file the percent of obser-
vations removed due to window procedures for each of 
the dependent variables reported in the manuscript, and 
also other important details for the methods section.

Concluding Remarks
The package- prepdat- introduced in the current paper 
enables the user to easily and quickly organize raw data 
while keeping the same procedures for all cells in the 
aggregated data, and avoiding mistakes often caused 
when manually organizing raw data. In addition, the 
package offers a look at dependent variables across dif-
ferent sections and measures. This offers researchers an 
easy way to locate the source of the effects in question. 
Furthermore, prepdat offers unique recursive trimming 
procedures for reaction-times. Moreover, it enables the 
user to keep track of every step in the organization of the 
data, which can be useful later when writing a manuscript. 
We hope prepdat will help beginning and advanced 
researchers and R users to better organize and understand 
their results.

Quality control
All the functions of prepdat were tested to see they 
produce the desired results by comparing outputs form 
the package and other statistical programs. In addition, 
prep() was also tested using a test unit form the test-
that [12] package. The full script for this test can be 
found at the tests folder on the prepdat repository on 
GitHub. The structure of the package was checked using 
devtools::check(document = FALSE) [10] that 
provides R CMD check for R packages. This check was 
performed both on Mac OS X and Windows operating sys-
tems. Most importantly, since the package is available on 
CRAN, it has also successfully passed the CRAN R CMD 
check. The results from this check can be found here.

(2) Availability
Operating system
The package can work with either Windows, Mac OS X or 
Linux.

Programming language
R version 3.0.3 or higher.

Additional system requirements
An Internet connection is required to install prepdat and 
download the individual raw data files from the Example 
Data repository on GitHub in case the user wants to run 
the example analysis as detailed in the manuscript. The 
individual raw data files come in a zip file and will take 
258 KB of memory after extraction.

Dependencies
R version 3.0.3 or higher.



Allon and Luria: prepdat- An R Package for Preparing Experimental Data for Statistical AnalysisArt. e43, p.  8 of 9 

List of contributors
This package was created by Ayala S. Allon and Roy Luria.

Software location:
Archive The Comprehensive R Archive Network

Name: CRAN
Persistent identifier: https://cran.r-project.org/web/

packages/prepdat/index.html
Licence: GPL-3 
Version published: 1.0.8
Date published: 09/23/2016

Code repository
Name: GitHub
Persistent identifier: https://github.com/ayalaallon/

prepdat
Licence: GPL-3.
Date published: 02/03/2016

Language
R

(3) Reuse potential
prepdat is relevant for any situation in which repetitive 
data is collected (both human and animal) and one wishes 
to aggregate it to get different measures of the depend-
ent variable. By calculating different measures of the 
dependent variable, prepdat enables to examine the 
data from multiple perspectives, locating the source of 
the effect in question. In addition, it is possible to use the 
finalized aggregated table for further statistical analysis 
in R such as Analysis of Variance (ANOVA) using aov(), 
T-Tests using t.test() or linear regression using lm(). 
Furthermore, the finalized table prep() outputs can be 
exported for further analysis in other statistical softwares 
such as SPSS and STATISTICA. Many research students do 
most of their analysis in Excel, which is prone to mistakes 
and ad-hoc decisions. However, prepdat ensures that 
all calculations are done at once using the same criteria 
for all subjects, does not require previous knowledge in 
programming, and thus can serve as a first step in the 
data analysis streamline for research students.

All functions and code of prepdat can be found at 
the prepdat repository2 on GitHub, enabling the user 
to further develop and inspect the code. Support mecha-
nisms for this package are the package maintainer’s email: 
ayalaallon@gmail.com. Bug reports should be done using 
http://github.com/ayalaallon/prepdat/issues.

Additional Files
The additional files for this article can be found as 
follows:

• Additional File 1: Appendix A. http://dx.doi.
org/10.5334/jors.134.s1
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Notes
 1 Advanced users can install the most current version 

of prepdat, sometimes even before its official re-
lease on CRAN. In order to do that, the user should 
first install devtools [10] (a package for develop-
ing packages in R and allows installation of packages 
directly hosted in GitHub repository) by typing in the 
console:

 > install.packages(“devtools”)

  Then, install prepdat directly from GitHub by typing 
in the console:

  > devtools::install_github(“ayalaallon/
prepdat”)

 2 https://github.com/ayalaallon/prepdat
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