
Allon, A S and Luria, R 2016 prepdat- An R Package for Preparing
Experimental Data for Statistical Analysis. Journal of Open Research
Software, 4: e43, DOI: http://dx.doi.org/10.5334/jors.134

Journal of
open research software

SOFTWARE METAPAPER

prepdat- An R Package for Preparing Experimental Data
for Statistical Analysis
Ayala S. Allon1 and Roy Luria1,2

1 School of Psychological Sciences, Tel-Aviv University, IL
2 Sagol School of Neuroscience, Tel-Aviv University, IL
Corresponding author: Ayala S. Allon (ayalaall@post.tau.ac.il)

In many research fields the outcome of running an experiment is a raw data file for each subject, contain-
ing a table in which each row describes one trial conducted during the experiment. The next step is to
merge all files into one big table, and then aggregate it into one finalized table in which each row cor-
responds (usually) to the averaged performance of each subject. prepdat- An R package- enables to eas-
ily perform these steps, including several possibilities for dependent measures and trimming procedures.
prepdat helps researchers to optimize and speedup their analysis, and to better understand the results.

Keywords: R; Data manipulation; Data aggregation; Data analysis; Trimming procedures; Experimental
designs
Funding statement: This work was supported by the Israel Science Foundation Grant number 1696–13
awarded to Roy Luria.

(1) Overview
Introduction
Preparing data for statistical analysis is a very common
task in experimental research fields. For example in
Experimental Psychology, often the outcome of running
each subject in an experiment is a file (e.g., a text file) con-
taining a raw data table in a long format with numerical
description of the subject’s performance in the various
experimental conditions. The columns in this raw data
table describe the independent variables, dependent vari-
ables, and various characteristics of the subject and the
experiment (e.g., age, gender, and a numerical description
of the stimulus in the experiment). The rows in this raw
data table describe the observations (i.e., trials) conducted
during the experiment, such that each row in the table
corresponds to one observation. An example for such a
raw data table of a single subject in an experiment can
be found in Appendix A Table 1. Usually, this raw data
table has over a hundred lines, and the number of raw
data files corresponds to the number of subjects in a given
experiment. Next, the researcher is interested in conduct-
ing both descriptive and inferential statistical analysis.
However first, in order to run this statistical analysis, the
raw data needs to be merged and aggregated.

Merging individual raw data tables requires vertically
concatenating the tables into one big table containing raw
data from all subjects (i.e., the merged table). Next, aggre-
gating the merged table includes reducing the amounts
of data to the desired level of information, resulting in
a finalized table, usually in a wide format, in which each

row in the table refers to a specific subject (which is the
variable that identifies the unit upon which the measure-
ment took place; i.e., the id variable), and each cell in the
table usually reflects the averaged performance of that
subject according to the desired grouping variables (i.e.,
the independent and dependent variables). This finalized
table often contains only selected variables relative to the
merged table. An example for such finalized table can be
found in Appendix A Table 2.

These two steps pose a major problem for students and
researchers who many times find themselves doing these
procedures in Excel by pasting one raw data table after the
other to merge the data and then use Pivot tables to aggre-
gate it, which takes a lot of time and energy, and is prone
to various mistakes. For example, a standard procedure
in analyzing psychological data is to remove (i.e., trim)
outliers before conducting descriptive and inferential
statistical analysis, assuming these outliers do not reflect
the investigated process in question. One procedure to
trim outliers is by computing the arithmetic mean (i.e.,
mean) for each cell in the aggregated table after rejecting
observations that fell outside the range of a predefined
criterion, which is usually a number of standard devia-
tions (SDs) from the mean of that cell (e.g., computing
the mean of a cell after rejecting observations that were
more than 2.5 SDs from the mean of that cell; a proce-
dure also known as the restricted means procedure). This
procedure requires a combination of a number of Excel
functions that are implemented in a few steps because the
user needs to iterate and compute the criterion for each

Allon and Luria: prepdat- An R Package for Preparing Experimental Data for Statistical AnalysisArt. e43, p.  2 of 9

subject, reject observations that fell outside that criterion,
and then aggregate the trimmed data. Note that each
trimmed observation changes the mean, leaving a lot of
room for ad-hoc decisions and changes by the user about
deciding when to stop trimming and is prone to mistakes
if the user does not use the same criteria for all subjects.
R [1], which is a free language and computing envi-

ronment for statistical analysis and graphics, has some
functions for aggregating data such as the tapply()
function form the base package [1], dcast() from
the reshape2 package [2] and group_by() and
summarise() from the dplyr package [3]. In prin-
ciple, the user can aggregate the data using these kinds
of functions. However, this will require detailed and
serious thinking about how to put together a code that
will provide the desired result. In addition, these types
of functions can handle only a few scenarios, and each
function requires the input arguments in a somewhat
different manner. Moreover, even after tailoring the
code to produce the desired result for the analysis in
hand, it will require changes in order to produce the
desired results in future analysis. In addition, to the
best of our knowledge, until now there was no particu-
lar function in R that enabled to import individual raw
data tables from an external folder or folders and ver-
tically concatenate them into one big table. The user
had to write its own function, or to use external tools
to R such as Excel Automation [4], EXMERG [5], or
PEBL Data File Combiner [6]. While these kind of tools
are worthy to use, they do not enable to conduct the
whole analysis from within the R platform and create
a unified chain of analysis. Avoiding all these short-
comings, prepdat [7] – an R Package for Preparing
Experimental Data for Statistical Analysis- provides
a general framework to overcome these problems
because it is specially designed to merge and aggregate
data with any number of grouping variables, requiring
minor changes from one analysis to the other, and pro-
vides various measures of the dependent variable while
using identical criteria for all subjects.

The goal of the present paper is to introduce prep-
dat, an R package that enables the user to easily and
quickly merge (using the file_merge() function)
and aggregate raw data tables (using the prep()
function) while keeping track and summarizing every
step of the preparation. Except for means, which are
very common dependent measures, prep() includes
several other possibilities for the aggregated values
of the dependent variable such as medians, percen-
tiles, and means after rejecting observations above SD
criterion. In addition, prep() includes special trim-
ming procedures for measurements of reaction-times
(RTs) [8]. In this paper we provide a manual for using
prepdat. We first overview prepdat and then dem-
onstrate how to implement prepdat using exam-
ple data. prepdat is a free R package, which makes
it available for use to any user from his or her own
computer. We hope prepdat will help researchers to
optimize and speedup their analysis, and help to bet-
ter understand the results.

Implementation and architecture
The two functions the user needs for preparing the final-
ized table ready for further statistical analysis are the file_
merge() and the prep() functions. Except for these
functions, we also made the internal functions in prep avail-
able (such as the non_recursive_mc(), modified_
recursive_mc(), and the hybrid_recursive_mc()
functions), however the user does not need to call these func-
tions by because prep() will call them if needed.

The file_merge() vertically concatenates files con-
taining data tables in a long format into one big single
table (i.e., the merged table). Then, the prep() function
aggregates the merged table or any other table in a long
format according to any number of grouping variables,
which makes it suitable for various types of experimental
designs such as between-subjects designs, within-subjects
(i.e., repeated measures) designs, and mixed designs (i.e.,
designs that combine between-subjects and within-subjects
independent variables). prep() is very easy to use, and
only involves filling various arguments and when needed,
making changes to default procedures for removing outli-
ers. Moreover, because all calculations and procedures are
done at once for all subjects, prep() ensures that the
criteria for trimming procedures are identical for all sub-
jects. Furthermore, prep() creates a summary file that
helps to keep track of the finalized table it created, and
this finalized table can be further analyzed in R or it can
be exported to other statistical programs for further analy-
sis. As already mentioned, prep() includes several possi-
bilities for dependent measures including harmonic means
and SDs for each cell in the finalized table. Please note that
the SD for this procedure and for all trimming procedures
in prep() is calculated using denominator N and not
N – 1, which is the denominator in the sd() function in R.
Furthermore, prep() provides the 5th, 25th, 50th, 75th,
and 95th percentile of the dependent variable, and the user
can specify any other desirable percentile (e.g., the 66th per-
centile). Looking at different percentiles of the dependent
variable can provide information about the source of the
effect in question.

In addition, prep() enables to compute the depend-
ent measure for each cell after rejecting outliers accord-
ing to several trimming procedures. The user can specify
a window of acceptable observations for computing the
dependent measures according to any desirable logical
condition/s. For example, when measuring RTs, the user
can specify a window between 100 milliseconds (ms) and
2000 ms for valid observations, and prep() will do all
further computations only on observations that were
within this window. Additional trimming procedures
include means when the analyzed window is determined
by a range of number of SDs below and above the mean
of each cell (e.g., ±2 SD). The default criteria for this pro-
cedure are 1 SD, 1.5 SDs, and 2 SDs. Namely, prep()
provides the means according to each of these criteria.
However, the user can specify any desirable number cri-
teria of SDs (e.g., 2.5 SDs). Moreover, prep() provides
for each criterion the number of observations rejected
for each cell, number of observations for each cell before
rejection, and proportions of rejected observations for

Allon and Luria: prepdat- An R Package for Preparing Experimental Data for Statistical Analysis Art. e43, p.  3 of 9

each cell. This additional information can help track sub-
jects with high rejection rates.

Moreover, prep() includes three unique trimming
procedures for RTs [8]. These procedures were created
to overcome the effect of the number of observations
for each experimental cell on outlier removal. As Miller
[9] demonstrated, RTs distributions are characterized by
a positive skew. When calculating means after rejecting
outliers according to SD criterion, these means are sensi-
tive to the amount of skewness in the distribution and to
the number of observations on which they are calculated.
Using Monte Carlo simulations, Van-Selst and Jolicoeur
[8] developed new outlier eliminations procedures by
applying recursive procedures and SD criteria that take
into account the number of observations in each cell,
which enabled them to decrease the effect of sample size
on the means.

The first procedure is the Non-Recursive Procedure with
Moving Criterion, which computes the mean for each cell
after rejecting observations that were more than a crite-
rion number of SDs from the overall mean of that cell. The
notable aspect of this procedure is that the criterion for
each cell is determined according to the number of obser-
vations in that cell. These criteria were originally deter-
mined by calculations done on theoretical distributions
of RTs that were examined by Van-Selst and Jolicoeur [8]
(for more information, see Table 4 in [8]). The second pro-
cedure is the Modified-Recursive Procedure with Moving
Criterion, in which the mean and SD of each cell and for
each round are computed based on observations of the
cell after temporarily removing the highest observation.
Then, for each round if the highest or lowest observations
are more than a criterion number of SDs from the over-
all mean of the cell, they are removed from the sample.
This procedure is continued until the stopping rule is met.
The SD criterion is determined in the same way as in the
Non-Recursive Procedure with Moving Criterion. Lastly,
prep() can implement the Hybrid-Recursive Procedure
with Moving Criterion (this procedure was suggested by
Van-Selst and Jolicoeur [8]), which takes the average for
each cell of the means produced in the Non-Recursive and
Modified-Recursive procedures with moving criterion. For
each of these three procedures prep() also provides the
number of observations rejected for each cell, the number
of observations for each cell before rejection, and the per-
cent of rejected observations for each cell.

Installing prepdat
This section is intended for non-professionals R users,
such that even users that are unfamiliar with the R soft-
ware could use prepdat. To install prepdat, start R
and then type in the console1:
> install.packages(“prepdat”)

This will install prepdat and its dependencies on your
system. After installing prepdat, type the following in
the console to load prepdat into R for use in the current
session (note that each time the user starts a new R ses-
sion prepdat needs to be loaded for that session):
> library(“prepdat”)

Example Data
The example data, which can be downloaded from the
Example Data repository on GitHub, contains individual
raw data files collected from 21 subjects in our lab. These
subjects performed a visual search task similar to the one
used in Lavie and Cox [11], in which they had to indicate
on each trial which one of two possible letters was pre-
sent in a circular array of letters (e.g., deciding whether
an X or N appeared in the array). On some trials, a periph-
eral distractor letter (flanker) appeared outside the circu-
lar array and either matched the target for that trial (the
Compatible condition), matched the other possible target
(the Incompatible condition), or was not presented (the
No-flanker condition). On half of the blocks, the flanker
was presented at the same peripheral location marked by
a placeholder throughout the whole task (Cue condition),
and in the remaining blocks it was presented at random
peripheral locations and was not marked by a placeholder
(No-cue condition). The order of the Cue and No-cue
blocks was counterbalanced between subjects. An exam-
ple for part of a raw data file collected from one subject
in the experiment can be found in Appendix A Table 1.
An index for each of the columns in the raw data can be
found in Appendix A Table 3.

Merging Raw Data Files Using file merge()
The file_merge() merges the individuals raw data
files in which each row corresponds to a single trial (i.e.,
observation; see Appendix A Table 1) into one big raw data
table containing a ‘chain’ of raw data from all subjects, one
after the other (i.e., the merged table). For the function
to work, the raw data files should be in the same format
that is either txt or csv format. This function accepts the
following arguments:

file_merge(
folder_path = NULL
, has_header = TRUE
, new_header = c()
, raw_file_name = NULL
, raw_file_extension = NULL
, file_name = “dataset.txt”
, save_table = TRUE
, dir_save_table = folder_path
, notification = TRUE
)

In the folder_path argument, the user should enter the
path of the folder in which the files to be merged will be
searched. The search is recursive, which means files can be
located in different subdirectories and the search will con-
tinue until relevant files are found. In the has_header
argument, the user should enter using logicals whether
the files to be merged have headers or not. The default for
this argument is TRUE. The new_header argument is
suitable to a situation in which the files to be merged do
not have headers, or in case the user wants to replace the
current header. Specifying the new header can be done
using a string vector in this argument. Next are the raw_
file_name and raw_file_extension arguments.
In the raw_file_name the user should enter the shared
name of the files to be searched and merged, not includ-
ing the file extension. The file extension (i.e., csv or txt)

Allon and Luria: prepdat- An R Package for Preparing Experimental Data for Statistical AnalysisArt. e43, p.  4 of 9

should be entered using the raw_file_extension
argument. The next three arguments concern the merged
table. In the file_name argument, the user should enter
a string with the name of the file file_merge() creates
that will contain the merged table (default for this argu-
ment is “dataset.txt”). The file_merge() function
will save the merged table into a txt or csv file only in case
the save_table argument is set to TRUE, which is also
the default for this argument. We recommend saving the
merged table into a file because this will save the user from
merging the raw data files again if in case aggregation of
the merged table is needed in different R sessions. In the
dir_save_table argument the user can enter a path
in which the merged table will be saved. In case no such
path is provided, file_merge() will save the merged
table in the path provided in folder_path. Lastly, in
case the notification argument is set to TRUE (which is also
the default for this argument), file_merge() will print
messages to the console about the progress of the function.
We recommend keeping the default value for this argu-
ment as well. To merge the individual raw data files of the
example data (note that you might need to set a different
folder_path):

> merged_t <- file_merge(
+ folder_path = getwd()
+ , has_header = TRUE
+ , new_header = c()
+ , raw_file_name = “sub”
+ , raw_file_extension = “txt”
+ , file_name = “merged_t.txt”
+ , save_table = TRUE
+ , dir_save_table = NULL
+ , notification = TRUE
+)
Found 21 files
21 files were merged and saved into merged_t.txt
file_merge() finished!

After running this function, a new text file called
merged_t.txt containing the merged table should
appear in the appropriate folder. This file can also be
downloaded from the Example Data repository on
GitHub.

Aggregating the Merged Raw Data Table Using
prep()
After merging raw data files using the file_merge()
function, the user is ready to continue preparing the final-
ized table using prep(), which is the main function of
prepdat. prep() expects that values in the merged
table upon which it performs calculations will be numeric
(except for names of the columns) and will give an error
message if it finds other values. prep() contains the
following arguments:
prep(
 dataset = NULL
 , file_name = NULL
 , file_path = NULL
 , id = NULL
 , within_vars = c()
 , between_vars = c()
 , dvc = NULL
 , dvd = NULL
 , keep_trials = NULL
 , drop_vars = c()

 , keep_trials_dvc = NULL
 , keep_trials_dvd = NULL
 , id_properties = c()
 , sd_criterion = c(1, 1.5, 2)
 , percentiles = c(0.05, 0.25, 0.75, 0.95)
 , outlier_removal = NULL
 , keep_trials_outlier = NULL
 , decimal_places = 4
 , notification = TRUE
 , dm = c()
 , save_results = TRUE
 , results_name = “results.txt”
 , results_path = NULL
 , save_summary = TRUE
)

The user needs to notify prep() which table to aggre-
gate. This is done by the dataset or the file_name
arguments, which one of them must be provided. The
dataset argument specifies the name of the merged
table created using file_merge() (i.e., dataset =
merged_t in the example data). The file_name argu-
ment specifies the name of a txt or csv file containing
the merged table after merging the files using file_
merge() (i.e., file_name = “merged_t.txt” in
the example data) or other external function to R. In case
the file_name argument was used, then the file_
path argument, which specifies a string with the path
of the folder in which the file entered in file_name is
located, must be provided.

The next steps are to let prep() know what are the
grouping variables for aggregating the merged table, or
in other words to specify the independent and depend-
ent variables in the experiment. This is done using the id,
within_vars, between_vars, dvc, and dvd argu-
ments. The id argument specifies the name of the column
in the merged table that contains the variable indicating
the case identifier (i.e., subject number; id = “sub-
ject” in the example data). The values for id should be
unique for each subject in the experiment, and this argu-
ment must be provided. The within_vars argument
is a string vector specifying the name/s of column/s con-
taining independent variables manipulated or observed
within-ids (i.e., repeated measurements, also known as
within-subjects). In the example data this will be:
within_vars = c(“cue_nocue”, “compatibility”)

Note that the order of the columns names in the
within_vars argument is highly important, because
it determines the order of the columns for each depend-
ent measure in the finalized table. Namely, prep()
aggregates the columns for the dependent measures by
first dividing them to the levels of the first independent
variable in within_vars, and then within each level
prep() divides the columns according to the next vari-
able in within_vars and so forth. Therefore, the order
of the independent variables in within_vars should
be according to the hierarchical order the user wishes. The
between_vars argument is a string vector specifying
the name/s of column/s containing independent vari-
ables manipulated or observed between-ids (i.e., between-
subjects), and the order of the columns names for this
argument does not matter. In the example data this will
be:
between_vars = c(“order”)

Allon and Luria: prepdat- An R Package for Preparing Experimental Data for Statistical Analysis Art. e43, p.  5 of 9

Since the within_vars and the between_vars denote
the independent variables in the experiment, which are the
grouping variables for the aggregation, at least one of these
arguments must be provided. Next, the dvc and the dvd
arguments denote the names of the dependent variables
in the merged table, and should be entered as strings. The
dvc argument stands for continuous dependent variable,
and therefore is the name of the column in the merged
table that contains a dependent variable in an interval or
ratio scale (e.g., RTs; dvc = “rt” in the example data).
The dvd argument stands for discrete dependent variable,
and therefore is the name of the column in the merged table
that contains a dependent variable with discrete values (e.g.,
0 and 1 when measuring accuracy; dvd = “ac” in the
example data). Moreover, it is very important to make sure
to enter the name of the continuous dependent variable in
the dvc argument and the discrete dependent variable in
the dvd argument and not the other way around in order
for prep() to work properly. Please note that at least one of
these arguments must be provided.

The aforementioned arguments are the ones the user
must provide in order for prep() to work properly, while
the following arguments are the ones that enable the user
to produce the dependent measure according to desirable
specific needs. The keep_trials and the drop_vars
arguments allow deleting unnecessary observations (i.e.,
rows) and variables (i.e., columns) in the merged table,
before the aggregation takes place. In the keep_trials
argument the user should specify with logical conditions
provided as one string, which observations are desir-
able to keep for further calculations. For example, if the
merged table contains practice trials for each subject, the
user should remove these observations by specifying how
these observations were coded in the merged table. In the
example data the practice trials are the ones for which the
“block” column equals to zero and therefore the keep_
trials argument will be:
keep_trials = “raw_data$block > 0”

raw_data is the internal object in prep() represent-
ing the merged table. All logical conditions should be put
in the same string and be concatenated by & or |. For
example, if the user wants to keep observations except for
the ones in block 0 and block 3 this argument will be as
follow:
keep_trials = “raw_data$block > 0 & raw_
data$block < 3”

In addition, note that the logical conditions for this argu-
ment can relate to different columns in the merged table.
For example if the user for a specific analysis is interested
in keeping observations except for the ones in block 0 and
observations in each block after the 10th trial, this argu-
ment will be as follows:
keep_trials = “raw_data$block > 0 & raw_
data$trial_num > 10”

In the drop_vars argument the user should specify
the names of the variables in the merged table that need
to be deleted. Names should be entered as strings sepa-
rated by a comma. In the example data, for instance, this
can be
drop_vars = c(“fix1_duration”, “distance”)

Note that all further arguments of prep() will relate
to the remaining rows and columns in the merged table.
Therefore, the user should carefully choose which (if any)
rows and columns need to be removed from further cal-
culations using the keep_trials and drop_vars
arguments. We recommend using these arguments in
order to delete observations and variables that have no
significance for further analysis (such as practice trials, as
mentioned above).

The next arguments are the keep_trials_dvc and
the keep_trials_dvd that enable the user to keep
specific observations for calculations of the dependent
measures specified in dvc and dvd (respectively; except
for means according to the outlier removal procedures;
to remove observations for these procedures see the
keep_trials_outlier argument below). The user
can specify a window of acceptable observations for com-
puting the dependent measures according to any logi-
cal conditions. These arguments should be specified as
logical conditions provided as strings as in the keep_
trials argument. In the example data the dependent
variable for dvc is RT and the dependent variable for
dvd is accuracy. A reasonable window of observations
for these dependent measures in these kinds of experi-
ments is to keep observations in which RT was above
100 ms and below 2000 ms for both RT and accuracy,
and in addition for RTs, to keep only observations in
which the subject’s response was correct. Therefore, the
keep_trials_dvc argument which relates to the
continuous dependent variable (i.e., the variable entered
in dvc) will be:
keep_trials_dvc = “raw_data$rt > 100 & raw_
data$rt < 2000 & raw_data$ac == 1”

and the keep_trials_dvd argument which relates to
the discrete dependent variable (i.e., the variable entered
in dvd) will be:
keep_trials_dvd = “raw_data$rt > 100 & raw_
data$rt < 2000”

The next argument is id_properties. This argu-
ment is suitable for a situation in which the user logged
for each trial and for each subject in the experiment also
other important details such as age and gender as in the
example data. In this case, the user can specify the name
of these variables as strings in the id_properties vec-
tor. For instance in the example data this will be:
id_properties = c(“age”, “gender”)

In return, the values for these variables for each subject
will appear in the finalized table.

The sd_criterion and the percentiles argu-
ments allow the user to get the dependent measure
specified in dvc according to different cross sections.
In the sd_criterion argument the user can specify
a number of SDs for which prep() will calculate the
mean for each cell of dvc after rejecting observations
that were below and above the SD from the mean of that
cell. As already mentioned, default criteria for this pro-
cedure are sd_criterion = c(1, 1.5, 2), and
the user can specify any desirable criterion number of
SDs (e.g., 2.5 SDs). The following argument is percen-
tiles, which will give the percentile of dvc according

Allon and Luria: prepdat- An R Package for Preparing Experimental Data for Statistical AnalysisArt. e43, p.  6 of 9

to any percentile in percentiles. The default for this
argument is:
percentiles = c(0.05, 0.25, 0.75, 0.95)

Note that the median, which is the 50th percentile, will be
calculated by default even if the user does not enter it to
percentiles.

The outlier_removal argument is relevant when the
dependent measure in dvc is reaction-time (i.e., RT). This
argument enables the user to get the mean of the depend-
ent variable in dvc after rejecting outliers according to one
of the three outlier removal procedures with moving crite-
ria [8]. By assigning 1, 2, or 3 to the outlier_removal
argument, prep() will execute the Non-Recursive, the
Modified-Recursive, or the Hybrid-Recursive procedures,
respectively. By default, prep() will not execute any of
these procedures. In addition, perp() can perform only
one of these procedures at a time. In the example data, we
decided to perform the Modified-Recursive procedure, and
therefore this argument will be:
outlier_removal = 2

The keep_trials_outlier enables to keep specific
observations for performing one of the outlier removal
procedures. In the example data for instance, since dvc is
RT, only correct observations (i.e., observations for which
the “ac” column equals to 1) are analyzed and therefore
this argument will be:
keep_trials_outlier = “raw_data$ac == 1”

This argument should be specified as logical conditions
provided as a string as in the keep_trials argument.

The remaining arguments are decimal_places,
notification, dm, save_results, results_
name, and save_summary, and are aimed to adjust
the finalized table prep() returns. decimal_places,
as its name suggests, allows determining the number of
decimal places for the dependent measures of dvc, with
the default being four places. We recommend using dec-
imal_places = 0 whenever measuring RTs in ms.
For the dependent measures of dvd, prep() gives three
decimal places. The notification argument, as in the
file_merge() function, prints messages about the
progress of prep(). The dm argument, which is a short-
cut for dependent measures, is a string vector that allows
the user to specify the desirable dependent measures in
case the user does not want all the dependent measures
perp() outputs by default. For instance, if the user
wants only the mean and median of dvc and the mean
and error rate of dvd to be in the finalized tale, the dm
argument will be as follows:
dm = c(“mdvc”, “meddvc”, “mdvd”, “merr”)

mdcv stands for mean dvc, meddvc stands for median
dvc, and mdvd and merr stand for mean dvd and mean
error, respectively. The complete list of the names of the
dependent measures prep() outputs can be found in
Appendix A Table 5. All dependent measures except for
the outlier removal procedures can be specified in dm.
prep() will save the finalized table into a txt or csv

file only in case the save_results argument is set
to TRUE (i.e., save_results = TRUE, which is also
the default for this argument). In case save_results

is TRUE, the user can specify the name of the file with
the finalized table as a string (including txt or csv exten-
sion) in results_name (the default for this argument is
results_name = “results.txt”). In addition, in
case the user wants the file with the finalized table to be
saved in a different folder than the one specified in file_
path, then the path to this folder should be entered as a
string in results_path. Finally, if the save_summary
is set to TRUE, prep() will also create a summary txt or
csv file (depending on the file extension of results_
name) that helps to keep track of the type and the num-
ber of observations that were deleted from the merged
table (see below for more details). The complete function
of prep() in order to aggregate the example data is as
follows (the complete txt file, results_n21.txt, with
the finalized table of the example data can be downloaded
form the Example Data repository on GitHub):
> results_n21 <- prep(
+ dataset = merged_t
+ , file_name = NULL
+ , file_path = NULL
+ , id = “subject”
+ , within_vars = c(“cue_nocue”,

“compatibility”)
+ , between_vars = c(“order”)
+ , dvc = “rt”
+ , dvd = “ac”
+ , keep_trials = “raw_data$block > 0”
+ , drop_vars = c()
+ , keep_trials_dvc = “raw_data$rt > 100 & raw_

data$rt < 2000 & raw_data$ac == 1”
+ , keep_trials_dvd = “raw_data$rt > 100 & raw_

data$rt < 2000”
+ , id_properties = c(“age”, “gender”)
+ , sd_criterion = c(1, 1.5, 2)
+ , percentiles = c(0.05, 0.25, 0.75, 0.95)
+ , outlier_removal = 2
+ , keep_trials_outlier = NULL
+ , decimal_places = 0
+ , notification = FALSE
+ , dm = c()
+ , save_results = TRUE
+ , results_name = “results_n21.txt”
+ , results_path = getwd()
+ , save_summary = TRUE
+)
results_n21.txt has 21 observations and 148
variables
prep() returned a data frame to console
Hip Hip Hooray! prep() finished
Have a great day and may all your results be
significant!

Overview of the Finalized Table prep() Returns
In this section we will go over the finalized table prep()
returns. The first six rows of the finalized table for the
example data can be found in Appendix A Table 4. The first
column in the finalized table will always be the id column
(“subject” in the example data), and the next columns
will be the ones entered in the id_properties argu-
ment (“age” and “gender” in the example data).

The next columns of the finalized table contain the
dependent measures according to the order specified in
Appendix A Table 5. The number of columns for each
dependent measure in the finalized table is according to
the experimental design. In the example data there was one

Allon and Luria: prepdat- An R Package for Preparing Experimental Data for Statistical Analysis Art. e43, p.  7 of 9

between-subjects variable (Order: Cue blocks first, No-cue
blocks first), and therefore the next column in the final-
ized table will contain a column named “order” specify-
ing the level of that variable for each subject. Next, there
were two within-subjects independent variables (Cue,
with two levels: Cue, No-cue; Compatibility, with three
levels: Compatible, Incompatible, No-flanker), and the
hierarchical order in which these variables were entered
into the within_vars argument was first the Cue con-
dition and then the Compatibility condition. Thus, for
each dependent measure in the finalized table there will
be six columns according to Cue × Compatibility. The first
dependent measure is the mean for the dependent vari-
able specified in dvc. In the example data this was RT and
therefore the first six columns are mean RTs. For example,
the “mdvc1” is the mean RT for Cue Compatible trials,
the “mdvc2” is the mean RT for Cue Incompatible tri-
als, and the “mdvc3” is the mean RT for Cue No-flanker
trials. Columns “mdvc4” to “mdvc6” will be the mean
RT for the Compatible, Incompatible, and No-flanker trials
for the No-cue condition, respectively.

Overview of the Summary File prep() Creates
As already mentioned, if save_summary is set to TRUE,
prep() will also create a summary txt or csv file that helps
to keep track on the finalized table. The summary file for
the Example Data can be found in Appendix A Figure 1
(this file, results_n21_summary.txt, can also be
downloaded from GitHub). The file contains the name
of the merged table and the date in which prep() was
run. The following lines specify how many observations
the merged table had in each step of prep(). The first
line gives the number of observations and variables of the
merged table before any observations or columns were
removed (7980 observations and 13 variables in the exam-
ple data). Then, you will find which logical conditions
and columns were entered into the keep_trials and
drop_vars arguments and how many observations and
columns were left after removing observations according
to these arguments (7560 observations and 13 variables in
the example data). The next few lines specify which logical
conditions were entered into the keep_trials_dvc,
keep_trials_outlier, and keep_trials_dvd;
how many observations and variables were left for each
of the dependent variables entered in dvc, dvd, and how
many observations and variables were left for the outlier
removal procedure in case the outlier_removal()
argument in prep() was used. The last part of the sum-
mary file describes which subjects were entered into the
analysis (i.e., which ids where included in the finalized
table), what were the independent between-subjects vari-
ables and their levels, what were the id properties (e.g.,
age and gender), and finally what were the within-subjects
independent variables, their levels, and their hierarchi-
cal order (i.e., what were the grouping variables for the
aggregation).

This summary file can be later used in order to remem-
ber how the finalized table is organized when running
both descriptive and inferential statistical analysis. In

addition, this file can come in handy when writing the
methods section of the manuscript. Often, it takes a while
from the time the researcher finished analyzing the data
until starting to write the manuscript. The researcher can
easily extract from the summary file the percent of obser-
vations removed due to window procedures for each of
the dependent variables reported in the manuscript, and
also other important details for the methods section.

Concluding Remarks
The package- prepdat- introduced in the current paper
enables the user to easily and quickly organize raw data
while keeping the same procedures for all cells in the
aggregated data, and avoiding mistakes often caused
when manually organizing raw data. In addition, the
package offers a look at dependent variables across dif-
ferent sections and measures. This offers researchers an
easy way to locate the source of the effects in question.
Furthermore, prepdat offers unique recursive trimming
procedures for reaction-times. Moreover, it enables the
user to keep track of every step in the organization of the
data, which can be useful later when writing a manuscript.
We hope prepdat will help beginning and advanced
researchers and R users to better organize and understand
their results.

Quality control
All the functions of prepdat were tested to see they
produce the desired results by comparing outputs form
the package and other statistical programs. In addition,
prep() was also tested using a test unit form the test-
that [12] package. The full script for this test can be
found at the tests folder on the prepdat repository on
GitHub. The structure of the package was checked using
devtools::check(document = FALSE) [10] that
provides R CMD check for R packages. This check was
performed both on Mac OS X and Windows operating sys-
tems. Most importantly, since the package is available on
CRAN, it has also successfully passed the CRAN R CMD
check. The results from this check can be found here.

(2) Availability
Operating system
The package can work with either Windows, Mac OS X or
Linux.

Programming language
R version 3.0.3 or higher.

Additional system requirements
An Internet connection is required to install prepdat and
download the individual raw data files from the Example
Data repository on GitHub in case the user wants to run
the example analysis as detailed in the manuscript. The
individual raw data files come in a zip file and will take
258 KB of memory after extraction.

Dependencies
R version 3.0.3 or higher.

Allon and Luria: prepdat- An R Package for Preparing Experimental Data for Statistical AnalysisArt. e43, p.  8 of 9

List of contributors
This package was created by Ayala S. Allon and Roy Luria.

Software location:
Archive The Comprehensive R Archive Network

Name: CRAN
Persistent identifier: https://cran.r-project.org/web/

packages/prepdat/index.html
Licence: GPL-3
Version published: 1.0.8
Date published: 09/23/2016

Code repository
Name: GitHub
Persistent identifier: https://github.com/ayalaallon/

prepdat
Licence: GPL-3.
Date published: 02/03/2016

Language
R

(3) Reuse potential
prepdat is relevant for any situation in which repetitive
data is collected (both human and animal) and one wishes
to aggregate it to get different measures of the depend-
ent variable. By calculating different measures of the
dependent variable, prepdat enables to examine the
data from multiple perspectives, locating the source of
the effect in question. In addition, it is possible to use the
finalized aggregated table for further statistical analysis
in R such as Analysis of Variance (ANOVA) using aov(),
T-Tests using t.test() or linear regression using lm().
Furthermore, the finalized table prep() outputs can be
exported for further analysis in other statistical softwares
such as SPSS and STATISTICA. Many research students do
most of their analysis in Excel, which is prone to mistakes
and ad-hoc decisions. However, prepdat ensures that
all calculations are done at once using the same criteria
for all subjects, does not require previous knowledge in
programming, and thus can serve as a first step in the
data analysis streamline for research students.

All functions and code of prepdat can be found at
the prepdat repository2 on GitHub, enabling the user
to further develop and inspect the code. Support mecha-
nisms for this package are the package maintainer’s email:
ayalaallon@gmail.com. Bug reports should be done using
http://github.com/ayalaallon/prepdat/issues.

Additional Files
The additional files for this article can be found as
follows:

• Additional File 1: Appendix A. http://dx.doi.
org/10.5334/jors.134.s1

Acknowledgements
Nachshon Meiran’s SAS macro code inspired the writ-
ing of this package. We would also like to thank James A.
Grange for allowing us to use parts of his trimr [13] code
for programing the outlier removal procedures.

Competing Interests
The authors have no competing interests to declare.

Notes
 1 Advanced users can install the most current version

of prepdat, sometimes even before its official re-
lease on CRAN. In order to do that, the user should
first install devtools [10] (a package for develop-
ing packages in R and allows installation of packages
directly hosted in GitHub repository) by typing in the
console:

 > install.packages(“devtools”)

 Then, install prepdat directly from GitHub by typing
in the console:

 > devtools::install_github(“ayalaallon/
prepdat”)

 2 https://github.com/ayalaallon/prepdat

References
 1. Team, R C 2015 R: A language and environment for

statistical computing [Internet]. Vienna, Austria:
R Foundation for Statistical Computing; 2013. Avail-
able at: http://www.r-project.org.

 2. Wickham, H 2007 Reshaping data with the reshape
package. Journal of Statistical Software, 21(12): 1–20.
DOI: http://dx.doi.org/10.18637/jss.v021.i12

 3. Wickham, H and Francois, R 2014 dplyr: A grammar
of data manipulation. Retrieved from: http://CRAN.R-
project.org/package=dplyr (R package version 0.2).

 4. Excel Automation n.d. Merge all CSV or TXT files
in a folder in one worksheet. Available at: http://
www.rondebruin.nl/win/s3/win021.htm (Accessed
20 September 2016).

 5. SemiColonWeb 2014 EXMERG merge data online –
www.Exmerg.Com. Available at: http://www.exmerg.
com (Accessed: 20 September 2016).

 6. Mueller, S T and Piper, B J 2014 The psychology exper-
iment building language (PEBL) and PEBL test battery.
Journal of neuroscience methods, 222: 250–259. DOI:
http://dx.doi.org/10.1016/j.jneumeth.2013.10.024

 7. Allon, A S and Luria, R 2016 prepdat: Preparing Ex-
perimental Data for Statistical Analysis. Retrieved
from: http://CRAN.R-project.org/package=prepdat
(R package version 1.0.8).

 8. Van Selst, M and Jolicoeur, P 1994 A solution
to the effect of sample size on outlier elimina-
tion. The quarterly journal of experimental psychol-
ogy, 47(3): 631–650. DOI: http://dx.doi.org/10.1080/
14640749408401131

 9. Miller, J 1991 Short report: Reaction time analy-
sis with outlier exclusion: Bias varies with sam-
ple size. The quarterly journal of experimental
psychology, 43(4): 907–912. DOI: http://dx.doi.
org/10.1080/14640749108400962

10. Wickham, H and Chang, W 2015 devtools: Tools to
Make Developing R Packages Easier. p. 185. Retrieved
from: http://CRAN.R-project.org/package=devtools
(R package version, 1(0)).

11. Lavie, N and Cox, S 1997 On the efficiency of visual
selective attention: Efficient visual search leads to in-
efficient distractor rejection. Psychological Science,

Allon and Luria: prepdat- An R Package for Preparing Experimental Data for Statistical Analysis Art. e43, p.  9 of 9

8(5): 395–396. DOI: http://dx.doi.org/10.1111/j.1467-
9280.1997.tb00432.x

12. Wickham, H 2011 testthat: Get Started with Testing.
The R Journal, 3(1): 5–10.

13. Grange, J 2015 trimr: An Implementation of Common
Response Time Trimming Methods. Retrieved from:
https://cran.r-project.org/package=trimr (R package
version 1.0.1).

How to cite this article: Allon, A S and Luria, R 2016 prepdat- An R Package for Preparing Experimental Data for Statistical
Analysis. Journal of Open Research Software, 4: e43, DOI: http://dx.doi.org/10.5334/jors.134

Submitted: 09 June 2016 Accepted: 11 October 2016 Published: 25 November 2016

Copyright: © 2016 The Author(s). This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

Journal of Open Research Software is a peer-reviewed open access journal published by
Ubiquity Press OPEN ACCESS

