
Bryant, N and Wildfire, J 2016 Webcharts – A Web-based Charting
Library for Custom Interactive Data Visualization. Journal of Open
Research Software, 4: e29, DOI: http://dx.doi.org/10.5334/jors.127

Journal of
open research software

SOFTWARE METAPAPER

Webcharts – A Web-based Charting Library for Custom
Interactive Data Visualization
Nathan Bryant1 and Jeremy Wildfire2

1 Lead Designer and Programmer, Rho, US
2 Project Lead, Rho, US
Corresponding author: Jeremy Wildfire (jeremy_wildfire@rhoworld.com)

Webcharts is a JavaScript library built on top of D3.js that creates reusable, flexible, interactive charts
that are highly customizable. Webcharts provides a method for creating commonly-used charts, including
bar charts, scatterplots, and timelines, through a simple configuration scheme. Charts created with Web-
charts allow users to dynamically manipulate chart data, appearance, and behavior both through callback
functions and input elements that are tied to chart objects. This approach allows users to create reusable
charts that range from simple static graphics to complex interactive data exploration tools with custom
user interfaces, all using the same library.

Keywords: Charting library; Data visualization; D3.js; JavaScript
Funding statement: This work was funded in part by NIH grant UM2AI117870.

(1) Overview
Introduction
Background
Statistical graphics have been in use since at least the
1600s [1, 2], but work to understand the links between vis-
ualization and human perception, and to create visualiza-
tion “best practices”, is a much more recent development
[2–5]. This research, combined with insights into human-
computer interaction [6] and the exponential growth of
computing power, has laid the foundation for the release
of open-source software packages for data visualization
in the late 2000s [7–9]. Released in 2011, the Data-Driven
Documents JavaScript library, or D3.js, provides a process
for manipulating web documents based on data, which
allows users to create interactive data visualizations on the
web [10]. D3.js has since been documented [11] and has
attained widespread use [12]. At its core, D3.js facilitates
the manipulation of the Document Object Model based
on data. No full-fledged charting functions are provided
in the core D3, but a suite of functions for creating scales,
manipulating data and creating axes are included for easy
chart creation; this functionality has led to the creation of
hundreds of examples and over a dozen charting libraries
built using D3.js [13].

Many charting libraries have been written based on
D3.js. Most of these focus on providing custom wrapper
functions for generating charts with just a few lines of
code. These libraries range from functions used to create
specified chart types to extremely broad, declarative visu-
alization grammars which provide a standard process for
creating a wide variety of custom visualizations [14–16].

Many existing libraries have prescribed options for basic
interactivity (filtering, zooming, etc.) and customizations
(changing colors, adding annotations, etc.). Libraries may
allow users to write custom JavaScript around a given
chart, but adding interactivity outside of the intended use
of a library is often impossible without editing the source
code or reverse engineering the visualization using the
base D3.js library.

Approach
Webcharts combines a fairly broad charting framework
with a functional, event-driven approach to interactivity.
Three central objects are combined with the concept of
a 5-step chart lifecycle to create an environment where
data visualizations can be created using initial, declara-
tive configurations and then extended with custom func-
tions. This enables a wide range of customization within
the Webcharts framework, which allows for complex,
interactive charts. Further, care has been taken to reduce
dependencies and ensure that the Webcharts library is
compatible with both modern web browsers and the
Node.js environment.
The three objects in Webcharts are:

1. Chart – A chart with conventional x- and y-axes, ren-
dered with SVG. Each chart is created by calling a
function using the following parameters:
a. A CSS selector that identifies the DOM element in

which to create the chart (required)
b. A configuration object whose properties describe

the chart’s behavior and appearance (required)

http://dx.doi.org/10.5334/jors.127
https://github.com/mbostock/d3

Bryant and Wildfire: Webcharts – A Web-based Charting Library for Custom Interactive Data VisualizationArt. e29, p.  2 of 6

c. A controls object, described below (optional)
 The chart is then passed a dataset upon initialization.
2. Table – A simple table, rendered as an HTML <table>

element with a <thead> and <tbody>. A table is
created by a function using the same parameters as
above.

3. Controls – A set of inputs, rendered with <input>
and <select> elements. Controls manipulate charts
and/or tables by changing its configuration (thus
changing its appearance or behavior) or by filtering
the underlying data.

The Webcharts objects are rendered via a standard
5-step process that includes steps for the Creation,
Initialization, Layout, Drawing and Resizing of the
objects. Each step in this life cycle can be refined using
insertion points for custom code, implemented as call-
back functions. A set of Chart, Table, and/or Controls
objects can be packaged together with a collection of
such callbacks to create powerful templating functions.
This approach allows for easy reproduction of highly-
complex visualizations, as demonstrated by the exam-
ples shown below.

Implementation and architecture
Loading Webcharts
Webcharts can be used in modern browsers (Chrome,
Firefox, IE9+, etc.) and also exports itself as a CommonJS
module for compatibility with Node. Install the package
via npm:

 npm install --save webcharts

Then, use it in your modules:

 var webCharts = require(‘webcharts’);
 // or, in ES6:
 import webCharts from ‘webcharts’;

To use Webcharts in the browser, just make sure to include
a reference to D3 first:

 <script type=‘text/javascript’
 src=‘http://d3js.org/d3.v3.min.js’></script>
 <script type=‘text/javascript’
 src=‘webcharts.js’>
 </script>

Webcharts can also be used with an AMD module loader
like Require.js:

 require.config({
 paths: {
 webCharts: ‘webcharts’
 }
 });
 require([‘webCharts’], function(webCharts) {
 console.log(webCharts.version);
 // make some charts!
 });

Making a Chart
Once Webcharts and D3.js are loaded, a chart is created
with a call to webCharts.createChart(). The

function returns an object that represents a chart. The
code to initialize a simple scatter plot is given below. See
http://bl.ocks.org/nbryant/aeaf8d734d7600ca3afa for a
live example:

 var settings ={
 “max_width”:“500”,
 “x”:{
 “label”:“Protein (g)”,
 “type”:“linear”,
 “column”:“Protein (g)”
 },
 “y”:{
 “label”:“Carbs (g)”,
 “type”:“linear”,
 “column”:“Carbo(g)”
 },
 “marks”:[
 {
 “type”:“circle”,
 “per”:[“Food”],
 “tooltip”:“[Food]”
 }
],
 “aspect”:“1”,
 “gridlines”:“xy”
 };
 d3.csv(‘calories.csv’,function(error,csv){
 webCharts.createChart(‘body’, settings).
 init(csv);
 })

The first argument, “body”, tells the function where to
draw the chart. This is a simple CSS selector, so it may ref-
erence a DOM element name (like in this example) or class
attribute, like “.chart-wrapper”.

The second argument is a JavaScript object that sets a
number of options for the chart. The config object in
this example sets some basic options like: what dataset
fields should be mapped to the x and y axes, what type
of marks should be drawn, how wide the chart can get
(max_width), its aspect ratio, and where gridlines should
be drawn. All of the possible configuration options are
described at https://github.com/RhoInc/Webcharts/wiki/
Chart-Configuration.

The chart object returned by webCharts.creat-
eChart() can then be initialized by passing data to the
chart via its init() method. The init method triggers
the remainder of the chart’s life-cycle (Table 1), including
the Layout, Draw, and Resize phases.

The initial settings for a chart are established via a
settings object during the Chart Creation step, and
data is linked to the chart when the chart is initial-
ized. However, both the settings and the underlying
data can be modified throughout the remainder of a
chart’s lifecycle, either via a linked control object or
custom callback functions. Changing a control object
linked to a chart immediately updates the object by
triggering steps 4 and 5 in the chart’s lifecycle. More
detail about the lifecycle of Webcharts objects can be
found at: https://github.com/RhoInc/Webcharts/wiki/
Webcharts-Life-Cycle.

Webcharts does not restrict the file size of the data
loaded, but browser performance may be poor when

http://d3js.org/d3.v3.min.js
http://requirejs.org/
http://bl.ocks.org/nbryant/aeaf8d734d7600ca3afa
http://bl.ocks.org/nbryant/aeaf8d734d7600ca3afa
https://github.com/RhoInc/Webcharts/wiki/Chart-Configuration
https://github.com/RhoInc/Webcharts/wiki/Chart-Configuration
https://github.com/RhoInc/Webcharts/wiki/Webcharts-Life-Cycle
https://github.com/RhoInc/Webcharts/wiki/Webcharts-Life-Cycle

Bryant and Wildfire: Webcharts – A Web-based Charting Library for Custom Interactive Data Visualization Art. e29, p.  3 of 6

rendering large numbers of elements (issues typically start
at around 10,000 elements). Standard techniques such as
data aggregation and server-side rendering can be used in
conjunction with Webcharts to improve performance with
very large data sets.

Examples
While it can be used in any domain, Webcharts was prin-
cipally designed to be used in clinical trial research, which

is reflected in the examples below Figures 1, 2 and 3.
Additional examples are available at https://github.com/
RhoInc/Webcharts/wiki/Examples.

Quality control
Webcharts has been tested in modern web brows-
ers, including: Chrome, Firefox, Safari and Internet
Explorer (version 9 and later). Full documentation
and working examples are available at: https://github.
com/RhoInc/Webcharts/wiki/. Additionally, outstand-
ing issues, planned features, and support requests are
tracked at: https://github.com/RhoInc/Webcharts/
issues.

(2) Availability
Operating system
Webcharts does not target specific operating systems; it
is compatible with modern web browsers (IE 9+, Google
Chrome, Firefox, Safari, etc.)

Programming language
JavaScript

Additional system requirements
None

Dependencies
Data Driven Documents (D3.js) version 3

Order Phase Description

1 Chart
Creation

Chart Object is created and
returned via the createChart()
method.

2 Initialization The init() methods establishes
default settings, binds data to the
chart, and triggers the remaining
steps in the life-cycle.

3 Layout An svg is added to the DOM along
with placeholder chart components
(e.g. axes).

4 Draw Raw data is processed as needed for
charting. Pre-processing steps are
completed (e.g. Scales are calculated.)

5 Resize All chart marks are rendered/
updated.

Table 1: Chart Foundry Lifecycle.

Figure 1: Simple Dashboard with Controls – This study monitoring dashboard shows common study metrics such as
enrollment status, visit completion, and specimen and case report form status. The dashboard combines 6 different
chart objects, several of which have attached controls, allowing users to filter by site and change the y-axis from a
relative value to an absolute count. A simple callback function is used in the top left chart to customize the legend
with overall counts and provide details for the y-axis in a tooltip. An interactive version of this chart, along with the
source code, is available at: http://bl.ocks.org/jwildfire/raw/80890e1ff7bdc7f43079/.

https://github.com/RhoInc/Webcharts/wiki/Examples
https://github.com/RhoInc/Webcharts/wiki/Examples
https://github.com/RhoInc/Webcharts/wiki/
https://github.com/RhoInc/Webcharts/wiki/
https://github.com/RhoInc/Webcharts/issues
https://github.com/RhoInc/Webcharts/issues
http://bl.ocks.org/jwildfire/raw/80890e1ff7bdc7f43079/

Bryant and Wildfire: Webcharts – A Web-based Charting Library for Custom Interactive Data VisualizationArt. e29, p.  4 of 6

List of contributors
Nathan Bryant, Lead Programmer and Designer
Jeremy Wildfire, Group Lead and Programmer
Ryan Bailey, Project Manager
Spencer Childress, Testing
Rich Budrevich, Testing
Britt Sikora, Coordination and Editing
All contributors are at Rho, Inc.

Software location
Archive

Name: Zenodo
Persistent identifier: 10.5281/zenodo.49396

Licence: MIT
Publisher: Nathan Bryant
Version published: 1.6.1
Date published: 5/6/2016

Code repository
Name: Github
Identifier: https://github.com/RhoInc/Webcharts
Licence: MIT
Date published: 8/31/2015

Language
English

Figure 2: Panel A – Adverse Event Timeline – Overview. Panel B – Adverse Event Timeline – Participant Details – This
figure combines 2 chart objects, a table object, and a control object, along with several custom callbacks to show
the pattern of adverse events in a clinical trial. Panel A shows the pattern of adverse events over time for all partici-
pants. Panel B is triggered by clicking on a participant ID (shown as a label on the y-axis), and presents a detailed
listing of adverse events for a single individual. While there are no dependencies other than Webcharts and d3.js,
the code to produce this chart has also been saved as a separate library to facilitate re-usability. An interactive ver-
sion of this chart along with the source code is available at: https://bl.ocks.org/jwildfire/raw/9865b8e7761f28a8a
1557622d93ffbde/. The stand-alone Adverse Event Timeline library is at: https://github.com/RhoInc/ae-timelines.

http://dx.doi.org/10.5281/zenodo.49396
https://github.com/RhoInc/Webcharts
https://github.com/RhoInc/Webcharts
https://github.com/RhoInc/Webcharts
https://bl.ocks.org/jwildfire/raw/9865b8e7761f28a8a1557622d93ffbde/
https://bl.ocks.org/jwildfire/raw/9865b8e7761f28a8a1557622d93ffbde/
https://bl.ocks.org/jwildfire/raw/9865b8e7761f28a8a1557622d93ffbde/
https://bl.ocks.org/jwildfire/raw/9865b8e7761f28a8a1557622d93ffbde/
https://github.com/RhoInc/ae-timelines
https://github.com/RhoInc/ae-timelines

Bryant and Wildfire: Webcharts – A Web-based Charting Library for Custom Interactive Data Visualization Art. e29, p.  5 of 6

(3) Reuse potential
Webcharts is open source and has a permissive MIT
License that allows users to share and adapt the library.
Although Webcharts was designed with a focus on clinical
trial application, it can be used in any data domain.

Technically, the Webcharts library was designed to bal-
ance reusability and customizations. The code used to cre-
ate a chart for a given dataset can often be applied to many
other, similar datasets. If the structure of the input dataset
is consistent, a chart can be rendered again and again with
new data. The library has a single well-supported depend-
ency (D3.js) and is compatible both with modern web
browsers and the Node.js environment.

Acknowledgements
We would like to thank Herman Mitchell, Agustin
Calatroni, Rich Budrevich, and Russ Helms for their guid-
ance and support.

Competing Interests
The authors declare that they have no competing interests.

References
1. Friendly, M 2005 ‘Milestones in the history of data

visualization: A case study in statistical historiogra-
phy’, in Weihs, C. and Gaul, W. (ed.) Classification—the

 Ubiquitous Challenge. Heidelberg: Springer Berlin Hei-
delberg, pp. 34–52. DOI: http://dx.doi.org/10.1007/3-
540-28084-7_4

2. Tufte, E R 1990 Envisioning information. United States:
Graphics Press USA.

3. Few, S 2004 Show me the numbers: Designing ta-
bles and graphs to enlighten. Oakland, CA: Analytics
Press.

4. Bertin, J 1983 Semiology of graphics: diagrams, net-
works, maps. Madison, WI: University of Wisconsin
Press.

5. Cleveland, W S 1993 Visualizing data. Hobart Press.
6. Shneiderman, B 1996 ‘The eyes have it: A task by

data type taxonomy for information visualizations.’
In Visual Languages, 1996. Proceedings., IEEE Sympo-
sium on 1996 Sep 3, pp. 336–343. DOI: http://dx.doi.
org/10.1109/vl.1996.545307

7. Wickham, H 2009 ggplot2: elegant graphics for data
analysis. Springer Science & Business Media.

8. Sarkar, D 2008 Lattice: multivariate data visualiza-
tion with R. Springer Science & Business Media. DOI:
http://dx.doi.org/10.1007/978-0-387-75969-2

9. Bostock, M and Heer, J 2009 ‘Protovis: A graphical
toolkit for visualization.’ Visualization and Computer
Graphics, IEEE Transactions on 2009 Jun 15, pp. 1121–
1128.

Figure 3: Immunologic Outcome explorer – This display is adapted from Figure 3 in the New England Journal of Medi-
cine article, Randomized Trial of Peanut Consumption in Infants at Risk for Peanut Allergy [17]. The chart was origi-
nally created in response to reader correspondence [18], and was later updated to include follow up data in conjunc-
tion with a second article, Effect of Avoidance on Peanut Allergy after Early Peanut Consumption [19]. The interactive
version allows the user to select from 10 outcomes on the y-axis. Selections for sex, ethnicity, study population, skin
prick test stratum, and peanut specific IgE at 60 and 72 months of age can be interactively chosen to filter the data
and display subgroups of interest. Figure options (e.g. summary lines, box and violin plots) can be selected under the
Overlays heading to alter the properties of the figure. An interactive version of this chart is available at: http://bl.ocks.
org/jwildfire/raw/893681c8f49470ee027a/.

http://dx.doi.org/10.1007/3-540-28084-7_4
http://dx.doi.org/10.1007/3-540-28084-7_4
http://dx.doi.org/10.1109/vl.1996.545307
http://dx.doi.org/10.1109/vl.1996.545307
http://dx.doi.org/10.1007/978-0-387-75969-2
http://www.nejm.org/doi/pdf/10.1056/NEJMoa1414850
http://www.nejm.org/doi/full/10.1056/NEJMc1504021
http://www.nejm.org/doi/pdf/10.1056/NEJMoa1514209
http://bl.ocks.org/jwildfire/raw/893681c8f49470ee027a/
http://bl.ocks.org/jwildfire/raw/893681c8f49470ee027a/

Bryant and Wildfire: Webcharts – A Web-based Charting Library for Custom Interactive Data VisualizationArt. e29, p.  6 of 6

10. Bostock, M, Ogievetsky, V and Heer, J 2011 D3 data-
driven documents. IEEE Transactions on Visualization
and Computer Graphics, 17(12), 2301–2309. DOI:
http://dx.doi.org/10.1109/TVCG.2011.185

11. Murray, S 2013 Interactive Data Visualization for the
Web. Sebastopol, CA: O’Reilly Media.

12. Most-starred projects on Github [search results].
GitHub Website., https://github.com/search?q=sta
rs%3a%3E1&s=stars&type=Repositories. Accessed
March 25, 2016.

13. Gallery · mbostock/d3 Wiki · GitHub. Website.,
https://github.com/mbostock/d3/wiki/Gallery.
 Accessed March 25, 2016.

14. Vega: A Visualization Grammar. Website., https://
vega.github.io/. Accessed March 25, 2016.

15. Vega and D3. Website., https://github.com/vega/
vega/wiki/Vega-and-D3. Accessed March 25, 2016.

16. ggvis 0.4 Overview. Website., http://ggvis.rstudio.
com/. Accessed April 9, 2016.

17. Du Toit, G, Roberts, G, Sayre, P H, Bahnson, H T,
Radulovic, S, Santos, AF, Brough, H A, Phippard, D,
Basting, M, Feeney, M and Turcanu, V 2015 ‘Rand-
omized trial of peanut consumption in infants at risk
for peanut allergy.’ New England Journal of Medicine,
372(9): 803–813. DOI: http://dx.doi.org/10.1056/NE-
JMoa1414850

18. Noonan, L, Alpan, O, Alpan, OO, Du Toit, G,
 Roberts, G and Sayre, PH 2015 ‘Peanut consumption
in infants at risk for peanut allergy.’ The New England
journal of medicine, 372(22), pp. 2163–2163. DOI:
http://dx.doi.org/10.1056/NEJMc1504021

19. Du Toit, G, Sayre, P H, Roberts, G, Sever, M L, Law-
son, K, Bahnson, H T, Brough, H A, Santos, A F, Har-
ris, K M, Radulovic, S and Basting, M 2016 ‘Effect
of avoidance on peanut allergy after early peanut con-
sumption.’ New England Journal of Medicine, 374(15),
pp. 1435–1443. DOI: http://dx.doi.org/10.1056/NEJ-
Moa1514209

How to cite this article: Bryant, N and Wildfire, J 2016 Webcharts – A Web-based Charting Library for Custom Interactive Data
Visualization. Journal of Open Research Software, 4: e29, DOI: http://dx.doi.org/10.5334/jors.127

Submitted: 22 April 2016 Accepted: 01 July 2016 Published: 19 July 2016

Copyright: © 2016 The Author(s). This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

Journal of Open Research Software is a peer-reviewed open access journal published by
Ubiquity Press OPEN ACCESS

http://dx.doi.org/10.1109/TVCG.2011.185
https://github.com/search?q=stars%3a%3E1&s=stars&type=Repositories
https://github.com/search?q=stars%3a%3E1&s=stars&type=Repositories
https://github.com/search?q=stars%3a%3E1&s=stars&type=Repositories
https://github.com/mbostock/d3/wiki/Gallery
https://vega.github.io/
https://vega.github.io/
https://github.com/vega/vega/wiki/Vega-and-D3
https://github.com/vega/vega/wiki/Vega-and-D3
http://ggvis.rstudio.com/
http://ggvis.rstudio.com/
http://dx.doi.org/10.1056/NEJMoa1414850
http://dx.doi.org/10.1056/NEJMoa1414850
http://dx.doi.org/10.1056/NEJMc1504021
http://dx.doi.org/10.1056/NEJMoa1514209
http://dx.doi.org/10.1056/NEJMoa1514209
http://dx.doi.org/10.5334/jors.127
http://creativecommons.org/licenses/by/4.0/

